1bbbf1280Sopenharmony_ci/* 2bbbf1280Sopenharmony_ci * Double-precision x^y function. 3bbbf1280Sopenharmony_ci * 4bbbf1280Sopenharmony_ci * Copyright (c) 2018-2020, Arm Limited. 5bbbf1280Sopenharmony_ci * SPDX-License-Identifier: MIT 6bbbf1280Sopenharmony_ci */ 7bbbf1280Sopenharmony_ci 8bbbf1280Sopenharmony_ci#include <float.h> 9bbbf1280Sopenharmony_ci#include <math.h> 10bbbf1280Sopenharmony_ci#include <stdint.h> 11bbbf1280Sopenharmony_ci#include "math_config.h" 12bbbf1280Sopenharmony_ci 13bbbf1280Sopenharmony_ci/* 14bbbf1280Sopenharmony_ciWorst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53) 15bbbf1280Sopenharmony_cirelerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma) 16bbbf1280Sopenharmony_ciulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma) 17bbbf1280Sopenharmony_ci*/ 18bbbf1280Sopenharmony_ci 19bbbf1280Sopenharmony_ci#define T __pow_log_data.tab 20bbbf1280Sopenharmony_ci#define A __pow_log_data.poly 21bbbf1280Sopenharmony_ci#define Ln2hi __pow_log_data.ln2hi 22bbbf1280Sopenharmony_ci#define Ln2lo __pow_log_data.ln2lo 23bbbf1280Sopenharmony_ci#define N (1 << POW_LOG_TABLE_BITS) 24bbbf1280Sopenharmony_ci#define OFF 0x3fe6955500000000 25bbbf1280Sopenharmony_ci 26bbbf1280Sopenharmony_ci/* Top 12 bits of a double (sign and exponent bits). */ 27bbbf1280Sopenharmony_cistatic inline uint32_t 28bbbf1280Sopenharmony_citop12 (double x) 29bbbf1280Sopenharmony_ci{ 30bbbf1280Sopenharmony_ci return asuint64 (x) >> 52; 31bbbf1280Sopenharmony_ci} 32bbbf1280Sopenharmony_ci 33bbbf1280Sopenharmony_ci/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about 34bbbf1280Sopenharmony_ci additional 15 bits precision. IX is the bit representation of x, but 35bbbf1280Sopenharmony_ci normalized in the subnormal range using the sign bit for the exponent. */ 36bbbf1280Sopenharmony_cistatic inline double_t 37bbbf1280Sopenharmony_cilog_inline (uint64_t ix, double_t *tail) 38bbbf1280Sopenharmony_ci{ 39bbbf1280Sopenharmony_ci /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ 40bbbf1280Sopenharmony_ci double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p; 41bbbf1280Sopenharmony_ci uint64_t iz, tmp; 42bbbf1280Sopenharmony_ci int k, i; 43bbbf1280Sopenharmony_ci 44bbbf1280Sopenharmony_ci /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. 45bbbf1280Sopenharmony_ci The range is split into N subintervals. 46bbbf1280Sopenharmony_ci The ith subinterval contains z and c is near its center. */ 47bbbf1280Sopenharmony_ci tmp = ix - OFF; 48bbbf1280Sopenharmony_ci i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N; 49bbbf1280Sopenharmony_ci k = (int64_t) tmp >> 52; /* arithmetic shift */ 50bbbf1280Sopenharmony_ci iz = ix - (tmp & 0xfffULL << 52); 51bbbf1280Sopenharmony_ci z = asdouble (iz); 52bbbf1280Sopenharmony_ci kd = (double_t) k; 53bbbf1280Sopenharmony_ci 54bbbf1280Sopenharmony_ci /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ 55bbbf1280Sopenharmony_ci invc = T[i].invc; 56bbbf1280Sopenharmony_ci logc = T[i].logc; 57bbbf1280Sopenharmony_ci logctail = T[i].logctail; 58bbbf1280Sopenharmony_ci 59bbbf1280Sopenharmony_ci /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and 60bbbf1280Sopenharmony_ci |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ 61bbbf1280Sopenharmony_ci#if HAVE_FAST_FMA 62bbbf1280Sopenharmony_ci r = fma (z, invc, -1.0); 63bbbf1280Sopenharmony_ci#else 64bbbf1280Sopenharmony_ci /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */ 65bbbf1280Sopenharmony_ci double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32)); 66bbbf1280Sopenharmony_ci double_t zlo = z - zhi; 67bbbf1280Sopenharmony_ci double_t rhi = zhi * invc - 1.0; 68bbbf1280Sopenharmony_ci double_t rlo = zlo * invc; 69bbbf1280Sopenharmony_ci r = rhi + rlo; 70bbbf1280Sopenharmony_ci#endif 71bbbf1280Sopenharmony_ci 72bbbf1280Sopenharmony_ci /* k*Ln2 + log(c) + r. */ 73bbbf1280Sopenharmony_ci t1 = kd * Ln2hi + logc; 74bbbf1280Sopenharmony_ci t2 = t1 + r; 75bbbf1280Sopenharmony_ci lo1 = kd * Ln2lo + logctail; 76bbbf1280Sopenharmony_ci lo2 = t1 - t2 + r; 77bbbf1280Sopenharmony_ci 78bbbf1280Sopenharmony_ci /* Evaluation is optimized assuming superscalar pipelined execution. */ 79bbbf1280Sopenharmony_ci double_t ar, ar2, ar3, lo3, lo4; 80bbbf1280Sopenharmony_ci ar = A[0] * r; /* A[0] = -0.5. */ 81bbbf1280Sopenharmony_ci ar2 = r * ar; 82bbbf1280Sopenharmony_ci ar3 = r * ar2; 83bbbf1280Sopenharmony_ci /* k*Ln2 + log(c) + r + A[0]*r*r. */ 84bbbf1280Sopenharmony_ci#if HAVE_FAST_FMA 85bbbf1280Sopenharmony_ci hi = t2 + ar2; 86bbbf1280Sopenharmony_ci lo3 = fma (ar, r, -ar2); 87bbbf1280Sopenharmony_ci lo4 = t2 - hi + ar2; 88bbbf1280Sopenharmony_ci#else 89bbbf1280Sopenharmony_ci double_t arhi = A[0] * rhi; 90bbbf1280Sopenharmony_ci double_t arhi2 = rhi * arhi; 91bbbf1280Sopenharmony_ci hi = t2 + arhi2; 92bbbf1280Sopenharmony_ci lo3 = rlo * (ar + arhi); 93bbbf1280Sopenharmony_ci lo4 = t2 - hi + arhi2; 94bbbf1280Sopenharmony_ci#endif 95bbbf1280Sopenharmony_ci /* p = log1p(r) - r - A[0]*r*r. */ 96bbbf1280Sopenharmony_ci#if POW_LOG_POLY_ORDER == 8 97bbbf1280Sopenharmony_ci p = (ar3 98bbbf1280Sopenharmony_ci * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6])))); 99bbbf1280Sopenharmony_ci#endif 100bbbf1280Sopenharmony_ci lo = lo1 + lo2 + lo3 + lo4 + p; 101bbbf1280Sopenharmony_ci y = hi + lo; 102bbbf1280Sopenharmony_ci *tail = hi - y + lo; 103bbbf1280Sopenharmony_ci return y; 104bbbf1280Sopenharmony_ci} 105bbbf1280Sopenharmony_ci 106bbbf1280Sopenharmony_ci#undef N 107bbbf1280Sopenharmony_ci#undef T 108bbbf1280Sopenharmony_ci#define N (1 << EXP_TABLE_BITS) 109bbbf1280Sopenharmony_ci#define InvLn2N __exp_data.invln2N 110bbbf1280Sopenharmony_ci#define NegLn2hiN __exp_data.negln2hiN 111bbbf1280Sopenharmony_ci#define NegLn2loN __exp_data.negln2loN 112bbbf1280Sopenharmony_ci#define Shift __exp_data.shift 113bbbf1280Sopenharmony_ci#define T __exp_data.tab 114bbbf1280Sopenharmony_ci#define C2 __exp_data.poly[5 - EXP_POLY_ORDER] 115bbbf1280Sopenharmony_ci#define C3 __exp_data.poly[6 - EXP_POLY_ORDER] 116bbbf1280Sopenharmony_ci#define C4 __exp_data.poly[7 - EXP_POLY_ORDER] 117bbbf1280Sopenharmony_ci#define C5 __exp_data.poly[8 - EXP_POLY_ORDER] 118bbbf1280Sopenharmony_ci#define C6 __exp_data.poly[9 - EXP_POLY_ORDER] 119bbbf1280Sopenharmony_ci 120bbbf1280Sopenharmony_ci/* Handle cases that may overflow or underflow when computing the result that 121bbbf1280Sopenharmony_ci is scale*(1+TMP) without intermediate rounding. The bit representation of 122bbbf1280Sopenharmony_ci scale is in SBITS, however it has a computed exponent that may have 123bbbf1280Sopenharmony_ci overflown into the sign bit so that needs to be adjusted before using it as 124bbbf1280Sopenharmony_ci a double. (int32_t)KI is the k used in the argument reduction and exponent 125bbbf1280Sopenharmony_ci adjustment of scale, positive k here means the result may overflow and 126bbbf1280Sopenharmony_ci negative k means the result may underflow. */ 127bbbf1280Sopenharmony_cistatic inline double 128bbbf1280Sopenharmony_cispecialcase (double_t tmp, uint64_t sbits, uint64_t ki) 129bbbf1280Sopenharmony_ci{ 130bbbf1280Sopenharmony_ci double_t scale, y; 131bbbf1280Sopenharmony_ci 132bbbf1280Sopenharmony_ci if ((ki & 0x80000000) == 0) 133bbbf1280Sopenharmony_ci { 134bbbf1280Sopenharmony_ci /* k > 0, the exponent of scale might have overflowed by <= 460. */ 135bbbf1280Sopenharmony_ci sbits -= 1009ull << 52; 136bbbf1280Sopenharmony_ci scale = asdouble (sbits); 137bbbf1280Sopenharmony_ci y = 0x1p1009 * (scale + scale * tmp); 138bbbf1280Sopenharmony_ci return check_oflow (eval_as_double (y)); 139bbbf1280Sopenharmony_ci } 140bbbf1280Sopenharmony_ci /* k < 0, need special care in the subnormal range. */ 141bbbf1280Sopenharmony_ci sbits += 1022ull << 52; 142bbbf1280Sopenharmony_ci /* Note: sbits is signed scale. */ 143bbbf1280Sopenharmony_ci scale = asdouble (sbits); 144bbbf1280Sopenharmony_ci y = scale + scale * tmp; 145bbbf1280Sopenharmony_ci if (fabs (y) < 1.0) 146bbbf1280Sopenharmony_ci { 147bbbf1280Sopenharmony_ci /* Round y to the right precision before scaling it into the subnormal 148bbbf1280Sopenharmony_ci range to avoid double rounding that can cause 0.5+E/2 ulp error where 149bbbf1280Sopenharmony_ci E is the worst-case ulp error outside the subnormal range. So this 150bbbf1280Sopenharmony_ci is only useful if the goal is better than 1 ulp worst-case error. */ 151bbbf1280Sopenharmony_ci double_t hi, lo, one = 1.0; 152bbbf1280Sopenharmony_ci if (y < 0.0) 153bbbf1280Sopenharmony_ci one = -1.0; 154bbbf1280Sopenharmony_ci lo = scale - y + scale * tmp; 155bbbf1280Sopenharmony_ci hi = one + y; 156bbbf1280Sopenharmony_ci lo = one - hi + y + lo; 157bbbf1280Sopenharmony_ci y = eval_as_double (hi + lo) - one; 158bbbf1280Sopenharmony_ci /* Fix the sign of 0. */ 159bbbf1280Sopenharmony_ci if (y == 0.0) 160bbbf1280Sopenharmony_ci y = asdouble (sbits & 0x8000000000000000); 161bbbf1280Sopenharmony_ci /* The underflow exception needs to be signaled explicitly. */ 162bbbf1280Sopenharmony_ci force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); 163bbbf1280Sopenharmony_ci } 164bbbf1280Sopenharmony_ci y = 0x1p-1022 * y; 165bbbf1280Sopenharmony_ci return check_uflow (eval_as_double (y)); 166bbbf1280Sopenharmony_ci} 167bbbf1280Sopenharmony_ci 168bbbf1280Sopenharmony_ci#define SIGN_BIAS (0x800 << EXP_TABLE_BITS) 169bbbf1280Sopenharmony_ci 170bbbf1280Sopenharmony_ci/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. 171bbbf1280Sopenharmony_ci The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */ 172bbbf1280Sopenharmony_cistatic inline double 173bbbf1280Sopenharmony_ciexp_inline (double_t x, double_t xtail, uint32_t sign_bias) 174bbbf1280Sopenharmony_ci{ 175bbbf1280Sopenharmony_ci uint32_t abstop; 176bbbf1280Sopenharmony_ci uint64_t ki, idx, top, sbits; 177bbbf1280Sopenharmony_ci /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ 178bbbf1280Sopenharmony_ci double_t kd, z, r, r2, scale, tail, tmp; 179bbbf1280Sopenharmony_ci 180bbbf1280Sopenharmony_ci abstop = top12 (x) & 0x7ff; 181bbbf1280Sopenharmony_ci if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54))) 182bbbf1280Sopenharmony_ci { 183bbbf1280Sopenharmony_ci if (abstop - top12 (0x1p-54) >= 0x80000000) 184bbbf1280Sopenharmony_ci { 185bbbf1280Sopenharmony_ci /* Avoid spurious underflow for tiny x. */ 186bbbf1280Sopenharmony_ci /* Note: 0 is common input. */ 187bbbf1280Sopenharmony_ci double_t one = WANT_ROUNDING ? 1.0 + x : 1.0; 188bbbf1280Sopenharmony_ci return sign_bias ? -one : one; 189bbbf1280Sopenharmony_ci } 190bbbf1280Sopenharmony_ci if (abstop >= top12 (1024.0)) 191bbbf1280Sopenharmony_ci { 192bbbf1280Sopenharmony_ci /* Note: inf and nan are already handled. */ 193bbbf1280Sopenharmony_ci if (asuint64 (x) >> 63) 194bbbf1280Sopenharmony_ci return __math_uflow (sign_bias); 195bbbf1280Sopenharmony_ci else 196bbbf1280Sopenharmony_ci return __math_oflow (sign_bias); 197bbbf1280Sopenharmony_ci } 198bbbf1280Sopenharmony_ci /* Large x is special cased below. */ 199bbbf1280Sopenharmony_ci abstop = 0; 200bbbf1280Sopenharmony_ci } 201bbbf1280Sopenharmony_ci 202bbbf1280Sopenharmony_ci /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ 203bbbf1280Sopenharmony_ci /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ 204bbbf1280Sopenharmony_ci z = InvLn2N * x; 205bbbf1280Sopenharmony_ci#if TOINT_INTRINSICS 206bbbf1280Sopenharmony_ci kd = roundtoint (z); 207bbbf1280Sopenharmony_ci ki = converttoint (z); 208bbbf1280Sopenharmony_ci#elif EXP_USE_TOINT_NARROW 209bbbf1280Sopenharmony_ci /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ 210bbbf1280Sopenharmony_ci kd = eval_as_double (z + Shift); 211bbbf1280Sopenharmony_ci ki = asuint64 (kd) >> 16; 212bbbf1280Sopenharmony_ci kd = (double_t) (int32_t) ki; 213bbbf1280Sopenharmony_ci#else 214bbbf1280Sopenharmony_ci /* z - kd is in [-1, 1] in non-nearest rounding modes. */ 215bbbf1280Sopenharmony_ci kd = eval_as_double (z + Shift); 216bbbf1280Sopenharmony_ci ki = asuint64 (kd); 217bbbf1280Sopenharmony_ci kd -= Shift; 218bbbf1280Sopenharmony_ci#endif 219bbbf1280Sopenharmony_ci r = x + kd * NegLn2hiN + kd * NegLn2loN; 220bbbf1280Sopenharmony_ci /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ 221bbbf1280Sopenharmony_ci r += xtail; 222bbbf1280Sopenharmony_ci /* 2^(k/N) ~= scale * (1 + tail). */ 223bbbf1280Sopenharmony_ci idx = 2 * (ki % N); 224bbbf1280Sopenharmony_ci top = (ki + sign_bias) << (52 - EXP_TABLE_BITS); 225bbbf1280Sopenharmony_ci tail = asdouble (T[idx]); 226bbbf1280Sopenharmony_ci /* This is only a valid scale when -1023*N < k < 1024*N. */ 227bbbf1280Sopenharmony_ci sbits = T[idx + 1] + top; 228bbbf1280Sopenharmony_ci /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ 229bbbf1280Sopenharmony_ci /* Evaluation is optimized assuming superscalar pipelined execution. */ 230bbbf1280Sopenharmony_ci r2 = r * r; 231bbbf1280Sopenharmony_ci /* Without fma the worst case error is 0.25/N ulp larger. */ 232bbbf1280Sopenharmony_ci /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ 233bbbf1280Sopenharmony_ci#if EXP_POLY_ORDER == 4 234bbbf1280Sopenharmony_ci tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4); 235bbbf1280Sopenharmony_ci#elif EXP_POLY_ORDER == 5 236bbbf1280Sopenharmony_ci tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); 237bbbf1280Sopenharmony_ci#elif EXP_POLY_ORDER == 6 238bbbf1280Sopenharmony_ci tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6); 239bbbf1280Sopenharmony_ci#endif 240bbbf1280Sopenharmony_ci if (unlikely (abstop == 0)) 241bbbf1280Sopenharmony_ci return specialcase (tmp, sbits, ki); 242bbbf1280Sopenharmony_ci scale = asdouble (sbits); 243bbbf1280Sopenharmony_ci /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there 244bbbf1280Sopenharmony_ci is no spurious underflow here even without fma. */ 245bbbf1280Sopenharmony_ci return eval_as_double (scale + scale * tmp); 246bbbf1280Sopenharmony_ci} 247bbbf1280Sopenharmony_ci 248bbbf1280Sopenharmony_ci/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is 249bbbf1280Sopenharmony_ci the bit representation of a non-zero finite floating-point value. */ 250bbbf1280Sopenharmony_cistatic inline int 251bbbf1280Sopenharmony_cicheckint (uint64_t iy) 252bbbf1280Sopenharmony_ci{ 253bbbf1280Sopenharmony_ci int e = iy >> 52 & 0x7ff; 254bbbf1280Sopenharmony_ci if (e < 0x3ff) 255bbbf1280Sopenharmony_ci return 0; 256bbbf1280Sopenharmony_ci if (e > 0x3ff + 52) 257bbbf1280Sopenharmony_ci return 2; 258bbbf1280Sopenharmony_ci if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) 259bbbf1280Sopenharmony_ci return 0; 260bbbf1280Sopenharmony_ci if (iy & (1ULL << (0x3ff + 52 - e))) 261bbbf1280Sopenharmony_ci return 1; 262bbbf1280Sopenharmony_ci return 2; 263bbbf1280Sopenharmony_ci} 264bbbf1280Sopenharmony_ci 265bbbf1280Sopenharmony_ci/* Returns 1 if input is the bit representation of 0, infinity or nan. */ 266bbbf1280Sopenharmony_cistatic inline int 267bbbf1280Sopenharmony_cizeroinfnan (uint64_t i) 268bbbf1280Sopenharmony_ci{ 269bbbf1280Sopenharmony_ci return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; 270bbbf1280Sopenharmony_ci} 271bbbf1280Sopenharmony_ci 272bbbf1280Sopenharmony_cidouble 273bbbf1280Sopenharmony_cipow (double x, double y) 274bbbf1280Sopenharmony_ci{ 275bbbf1280Sopenharmony_ci uint32_t sign_bias = 0; 276bbbf1280Sopenharmony_ci uint64_t ix, iy; 277bbbf1280Sopenharmony_ci uint32_t topx, topy; 278bbbf1280Sopenharmony_ci 279bbbf1280Sopenharmony_ci ix = asuint64 (x); 280bbbf1280Sopenharmony_ci iy = asuint64 (y); 281bbbf1280Sopenharmony_ci topx = top12 (x); 282bbbf1280Sopenharmony_ci topy = top12 (y); 283bbbf1280Sopenharmony_ci if (unlikely (topx - 0x001 >= 0x7ff - 0x001 284bbbf1280Sopenharmony_ci || (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)) 285bbbf1280Sopenharmony_ci { 286bbbf1280Sopenharmony_ci /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 287bbbf1280Sopenharmony_ci and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ 288bbbf1280Sopenharmony_ci /* Special cases: (x < 0x1p-126 or inf or nan) or 289bbbf1280Sopenharmony_ci (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ 290bbbf1280Sopenharmony_ci if (unlikely (zeroinfnan (iy))) 291bbbf1280Sopenharmony_ci { 292bbbf1280Sopenharmony_ci if (2 * iy == 0) 293bbbf1280Sopenharmony_ci return issignaling_inline (x) ? x + y : 1.0; 294bbbf1280Sopenharmony_ci if (ix == asuint64 (1.0)) 295bbbf1280Sopenharmony_ci return issignaling_inline (y) ? x + y : 1.0; 296bbbf1280Sopenharmony_ci if (2 * ix > 2 * asuint64 (INFINITY) 297bbbf1280Sopenharmony_ci || 2 * iy > 2 * asuint64 (INFINITY)) 298bbbf1280Sopenharmony_ci return x + y; 299bbbf1280Sopenharmony_ci if (2 * ix == 2 * asuint64 (1.0)) 300bbbf1280Sopenharmony_ci return 1.0; 301bbbf1280Sopenharmony_ci if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63)) 302bbbf1280Sopenharmony_ci return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ 303bbbf1280Sopenharmony_ci return y * y; 304bbbf1280Sopenharmony_ci } 305bbbf1280Sopenharmony_ci if (unlikely (zeroinfnan (ix))) 306bbbf1280Sopenharmony_ci { 307bbbf1280Sopenharmony_ci double_t x2 = x * x; 308bbbf1280Sopenharmony_ci if (ix >> 63 && checkint (iy) == 1) 309bbbf1280Sopenharmony_ci { 310bbbf1280Sopenharmony_ci x2 = -x2; 311bbbf1280Sopenharmony_ci sign_bias = 1; 312bbbf1280Sopenharmony_ci } 313bbbf1280Sopenharmony_ci if (WANT_ERRNO && 2 * ix == 0 && iy >> 63) 314bbbf1280Sopenharmony_ci return __math_divzero (sign_bias); 315bbbf1280Sopenharmony_ci /* Without the barrier some versions of clang hoist the 1/x2 and 316bbbf1280Sopenharmony_ci thus division by zero exception can be signaled spuriously. */ 317bbbf1280Sopenharmony_ci return iy >> 63 ? opt_barrier_double (1 / x2) : x2; 318bbbf1280Sopenharmony_ci } 319bbbf1280Sopenharmony_ci /* Here x and y are non-zero finite. */ 320bbbf1280Sopenharmony_ci if (ix >> 63) 321bbbf1280Sopenharmony_ci { 322bbbf1280Sopenharmony_ci /* Finite x < 0. */ 323bbbf1280Sopenharmony_ci int yint = checkint (iy); 324bbbf1280Sopenharmony_ci if (yint == 0) 325bbbf1280Sopenharmony_ci return __math_invalid (x); 326bbbf1280Sopenharmony_ci if (yint == 1) 327bbbf1280Sopenharmony_ci sign_bias = SIGN_BIAS; 328bbbf1280Sopenharmony_ci ix &= 0x7fffffffffffffff; 329bbbf1280Sopenharmony_ci topx &= 0x7ff; 330bbbf1280Sopenharmony_ci } 331bbbf1280Sopenharmony_ci if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) 332bbbf1280Sopenharmony_ci { 333bbbf1280Sopenharmony_ci /* Note: sign_bias == 0 here because y is not odd. */ 334bbbf1280Sopenharmony_ci if (ix == asuint64 (1.0)) 335bbbf1280Sopenharmony_ci return 1.0; 336bbbf1280Sopenharmony_ci if ((topy & 0x7ff) < 0x3be) 337bbbf1280Sopenharmony_ci { 338bbbf1280Sopenharmony_ci /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ 339bbbf1280Sopenharmony_ci if (WANT_ROUNDING) 340bbbf1280Sopenharmony_ci return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y; 341bbbf1280Sopenharmony_ci else 342bbbf1280Sopenharmony_ci return 1.0; 343bbbf1280Sopenharmony_ci } 344bbbf1280Sopenharmony_ci return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0) 345bbbf1280Sopenharmony_ci : __math_uflow (0); 346bbbf1280Sopenharmony_ci } 347bbbf1280Sopenharmony_ci if (topx == 0) 348bbbf1280Sopenharmony_ci { 349bbbf1280Sopenharmony_ci /* Normalize subnormal x so exponent becomes negative. */ 350bbbf1280Sopenharmony_ci /* Without the barrier some versions of clang evalutate the mul 351bbbf1280Sopenharmony_ci unconditionally causing spurious overflow exceptions. */ 352bbbf1280Sopenharmony_ci ix = asuint64 (opt_barrier_double (x) * 0x1p52); 353bbbf1280Sopenharmony_ci ix &= 0x7fffffffffffffff; 354bbbf1280Sopenharmony_ci ix -= 52ULL << 52; 355bbbf1280Sopenharmony_ci } 356bbbf1280Sopenharmony_ci } 357bbbf1280Sopenharmony_ci 358bbbf1280Sopenharmony_ci double_t lo; 359bbbf1280Sopenharmony_ci double_t hi = log_inline (ix, &lo); 360bbbf1280Sopenharmony_ci double_t ehi, elo; 361bbbf1280Sopenharmony_ci#if HAVE_FAST_FMA 362bbbf1280Sopenharmony_ci ehi = y * hi; 363bbbf1280Sopenharmony_ci elo = y * lo + fma (y, hi, -ehi); 364bbbf1280Sopenharmony_ci#else 365bbbf1280Sopenharmony_ci double_t yhi = asdouble (iy & -1ULL << 27); 366bbbf1280Sopenharmony_ci double_t ylo = y - yhi; 367bbbf1280Sopenharmony_ci double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27); 368bbbf1280Sopenharmony_ci double_t llo = hi - lhi + lo; 369bbbf1280Sopenharmony_ci ehi = yhi * lhi; 370bbbf1280Sopenharmony_ci elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */ 371bbbf1280Sopenharmony_ci#endif 372bbbf1280Sopenharmony_ci return exp_inline (ehi, elo, sign_bias); 373bbbf1280Sopenharmony_ci} 374bbbf1280Sopenharmony_ci#if USE_GLIBC_ABI 375bbbf1280Sopenharmony_cistrong_alias (pow, __pow_finite) 376bbbf1280Sopenharmony_cihidden_alias (pow, __ieee754_pow) 377bbbf1280Sopenharmony_ci# if LDBL_MANT_DIG == 53 378bbbf1280Sopenharmony_cilong double powl (long double x, long double y) { return pow (x, y); } 379bbbf1280Sopenharmony_ci# endif 380bbbf1280Sopenharmony_ci#endif 381