xref: /third_party/optimized-routines/math/log.c (revision bbbf1280)
1/*
2 * Double-precision log(x) function.
3 *
4 * Copyright (c) 2018-2019, Arm Limited.
5 * SPDX-License-Identifier: MIT
6 */
7
8#include <float.h>
9#include <math.h>
10#include <stdint.h>
11#include "math_config.h"
12
13#define T __log_data.tab
14#define T2 __log_data.tab2
15#define B __log_data.poly1
16#define A __log_data.poly
17#define Ln2hi __log_data.ln2hi
18#define Ln2lo __log_data.ln2lo
19#define N (1 << LOG_TABLE_BITS)
20#define OFF 0x3fe6000000000000
21
22/* Top 16 bits of a double.  */
23static inline uint32_t
24top16 (double x)
25{
26  return asuint64 (x) >> 48;
27}
28
29double
30log (double x)
31{
32  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
33  double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
34  uint64_t ix, iz, tmp;
35  uint32_t top;
36  int k, i;
37
38  ix = asuint64 (x);
39  top = top16 (x);
40
41#if LOG_POLY1_ORDER == 10 || LOG_POLY1_ORDER == 11
42# define LO asuint64 (1.0 - 0x1p-5)
43# define HI asuint64 (1.0 + 0x1.1p-5)
44#elif LOG_POLY1_ORDER == 12
45# define LO asuint64 (1.0 - 0x1p-4)
46# define HI asuint64 (1.0 + 0x1.09p-4)
47#endif
48  if (unlikely (ix - LO < HI - LO))
49    {
50      /* Handle close to 1.0 inputs separately.  */
51      /* Fix sign of zero with downward rounding when x==1.  */
52      if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
53	return 0;
54      r = x - 1.0;
55      r2 = r * r;
56      r3 = r * r2;
57#if LOG_POLY1_ORDER == 10
58      /* Worst-case error is around 0.516 ULP.  */
59      y = r3 * (B[1] + r * B[2] + r2 * B[3]
60		+ r3 * (B[4] + r * B[5] + r2 * B[6] + r3 * (B[7] + r * B[8])));
61      w = B[0] * r2; /* B[0] == -0.5.  */
62      hi = r + w;
63      y += r - hi + w;
64      y += hi;
65#elif LOG_POLY1_ORDER == 11
66      /* Worst-case error is around 0.516 ULP.  */
67      y = r3 * (B[1] + r * B[2]
68		+ r2 * (B[3] + r * B[4] + r2 * B[5]
69			+ r3 * (B[6] + r * B[7] + r2 * B[8] + r3 * B[9])));
70      w = B[0] * r2; /* B[0] == -0.5.  */
71      hi = r + w;
72      y += r - hi + w;
73      y += hi;
74#elif LOG_POLY1_ORDER == 12
75      y = r3 * (B[1] + r * B[2] + r2 * B[3]
76		+ r3 * (B[4] + r * B[5] + r2 * B[6]
77			+ r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
78# if N <= 64
79      /* Worst-case error is around 0.532 ULP.  */
80      w = B[0] * r2; /* B[0] == -0.5.  */
81      hi = r + w;
82      y += r - hi + w;
83      y += hi;
84# else
85      /* Worst-case error is around 0.507 ULP.  */
86      w = r * 0x1p27;
87      double_t rhi = r + w - w;
88      double_t rlo = r - rhi;
89      w = rhi * rhi * B[0]; /* B[0] == -0.5.  */
90      hi = r + w;
91      lo = r - hi + w;
92      lo += B[0] * rlo * (rhi + r);
93      y += lo;
94      y += hi;
95# endif
96#endif
97      return eval_as_double (y);
98    }
99  if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
100    {
101      /* x < 0x1p-1022 or inf or nan.  */
102      if (ix * 2 == 0)
103	return __math_divzero (1);
104      if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
105	return x;
106      if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
107	return __math_invalid (x);
108      /* x is subnormal, normalize it.  */
109      ix = asuint64 (x * 0x1p52);
110      ix -= 52ULL << 52;
111    }
112
113  /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
114     The range is split into N subintervals.
115     The ith subinterval contains z and c is near its center.  */
116  tmp = ix - OFF;
117  i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
118  k = (int64_t) tmp >> 52; /* arithmetic shift */
119  iz = ix - (tmp & 0xfffULL << 52);
120  invc = T[i].invc;
121  logc = T[i].logc;
122  z = asdouble (iz);
123
124  /* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
125  /* r ~= z/c - 1, |r| < 1/(2*N).  */
126#if HAVE_FAST_FMA
127  /* rounding error: 0x1p-55/N.  */
128  r = fma (z, invc, -1.0);
129#else
130  /* rounding error: 0x1p-55/N + 0x1p-66.  */
131  r = (z - T2[i].chi - T2[i].clo) * invc;
132#endif
133  kd = (double_t) k;
134
135  /* hi + lo = r + log(c) + k*Ln2.  */
136  w = kd * Ln2hi + logc;
137  hi = w + r;
138  lo = w - hi + r + kd * Ln2lo;
139
140  /* log(x) = lo + (log1p(r) - r) + hi.  */
141  r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
142  /* Worst case error if |y| > 0x1p-5:
143     0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
144     Worst case error if |y| > 0x1p-4:
145     0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma).  */
146#if LOG_POLY_ORDER == 6
147  y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
148#elif LOG_POLY_ORDER == 7
149  y = lo
150      + r2 * (A[0] + r * A[1] + r2 * (A[2] + r * A[3])
151	      + r2 * r2 * (A[4] + r * A[5]))
152      + hi;
153#endif
154  return eval_as_double (y);
155}
156#if USE_GLIBC_ABI
157strong_alias (log, __log_finite)
158hidden_alias (log, __ieee754_log)
159# if LDBL_MANT_DIG == 53
160long double logl (long double x) { return log (x); }
161# endif
162#endif
163