1bbbf1280Sopenharmony_ci/* 2bbbf1280Sopenharmony_ci * Double-precision e^x function. 3bbbf1280Sopenharmony_ci * 4bbbf1280Sopenharmony_ci * Copyright (c) 2018-2019, Arm Limited. 5bbbf1280Sopenharmony_ci * SPDX-License-Identifier: MIT 6bbbf1280Sopenharmony_ci */ 7bbbf1280Sopenharmony_ci 8bbbf1280Sopenharmony_ci#include <float.h> 9bbbf1280Sopenharmony_ci#include <math.h> 10bbbf1280Sopenharmony_ci#include <stdint.h> 11bbbf1280Sopenharmony_ci#include "math_config.h" 12bbbf1280Sopenharmony_ci 13bbbf1280Sopenharmony_ci#define N (1 << EXP_TABLE_BITS) 14bbbf1280Sopenharmony_ci#define InvLn2N __exp_data.invln2N 15bbbf1280Sopenharmony_ci#define NegLn2hiN __exp_data.negln2hiN 16bbbf1280Sopenharmony_ci#define NegLn2loN __exp_data.negln2loN 17bbbf1280Sopenharmony_ci#define Shift __exp_data.shift 18bbbf1280Sopenharmony_ci#define T __exp_data.tab 19bbbf1280Sopenharmony_ci#define C2 __exp_data.poly[5 - EXP_POLY_ORDER] 20bbbf1280Sopenharmony_ci#define C3 __exp_data.poly[6 - EXP_POLY_ORDER] 21bbbf1280Sopenharmony_ci#define C4 __exp_data.poly[7 - EXP_POLY_ORDER] 22bbbf1280Sopenharmony_ci#define C5 __exp_data.poly[8 - EXP_POLY_ORDER] 23bbbf1280Sopenharmony_ci#define C6 __exp_data.poly[9 - EXP_POLY_ORDER] 24bbbf1280Sopenharmony_ci 25bbbf1280Sopenharmony_ci/* Handle cases that may overflow or underflow when computing the result that 26bbbf1280Sopenharmony_ci is scale*(1+TMP) without intermediate rounding. The bit representation of 27bbbf1280Sopenharmony_ci scale is in SBITS, however it has a computed exponent that may have 28bbbf1280Sopenharmony_ci overflown into the sign bit so that needs to be adjusted before using it as 29bbbf1280Sopenharmony_ci a double. (int32_t)KI is the k used in the argument reduction and exponent 30bbbf1280Sopenharmony_ci adjustment of scale, positive k here means the result may overflow and 31bbbf1280Sopenharmony_ci negative k means the result may underflow. */ 32bbbf1280Sopenharmony_cistatic inline double 33bbbf1280Sopenharmony_cispecialcase (double_t tmp, uint64_t sbits, uint64_t ki) 34bbbf1280Sopenharmony_ci{ 35bbbf1280Sopenharmony_ci double_t scale, y; 36bbbf1280Sopenharmony_ci 37bbbf1280Sopenharmony_ci if ((ki & 0x80000000) == 0) 38bbbf1280Sopenharmony_ci { 39bbbf1280Sopenharmony_ci /* k > 0, the exponent of scale might have overflowed by <= 460. */ 40bbbf1280Sopenharmony_ci sbits -= 1009ull << 52; 41bbbf1280Sopenharmony_ci scale = asdouble (sbits); 42bbbf1280Sopenharmony_ci y = 0x1p1009 * (scale + scale * tmp); 43bbbf1280Sopenharmony_ci return check_oflow (eval_as_double (y)); 44bbbf1280Sopenharmony_ci } 45bbbf1280Sopenharmony_ci /* k < 0, need special care in the subnormal range. */ 46bbbf1280Sopenharmony_ci sbits += 1022ull << 52; 47bbbf1280Sopenharmony_ci scale = asdouble (sbits); 48bbbf1280Sopenharmony_ci y = scale + scale * tmp; 49bbbf1280Sopenharmony_ci if (y < 1.0) 50bbbf1280Sopenharmony_ci { 51bbbf1280Sopenharmony_ci /* Round y to the right precision before scaling it into the subnormal 52bbbf1280Sopenharmony_ci range to avoid double rounding that can cause 0.5+E/2 ulp error where 53bbbf1280Sopenharmony_ci E is the worst-case ulp error outside the subnormal range. So this 54bbbf1280Sopenharmony_ci is only useful if the goal is better than 1 ulp worst-case error. */ 55bbbf1280Sopenharmony_ci double_t hi, lo; 56bbbf1280Sopenharmony_ci lo = scale - y + scale * tmp; 57bbbf1280Sopenharmony_ci hi = 1.0 + y; 58bbbf1280Sopenharmony_ci lo = 1.0 - hi + y + lo; 59bbbf1280Sopenharmony_ci y = eval_as_double (hi + lo) - 1.0; 60bbbf1280Sopenharmony_ci /* Avoid -0.0 with downward rounding. */ 61bbbf1280Sopenharmony_ci if (WANT_ROUNDING && y == 0.0) 62bbbf1280Sopenharmony_ci y = 0.0; 63bbbf1280Sopenharmony_ci /* The underflow exception needs to be signaled explicitly. */ 64bbbf1280Sopenharmony_ci force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); 65bbbf1280Sopenharmony_ci } 66bbbf1280Sopenharmony_ci y = 0x1p-1022 * y; 67bbbf1280Sopenharmony_ci return check_uflow (eval_as_double (y)); 68bbbf1280Sopenharmony_ci} 69bbbf1280Sopenharmony_ci 70bbbf1280Sopenharmony_ci/* Top 12 bits of a double (sign and exponent bits). */ 71bbbf1280Sopenharmony_cistatic inline uint32_t 72bbbf1280Sopenharmony_citop12 (double x) 73bbbf1280Sopenharmony_ci{ 74bbbf1280Sopenharmony_ci return asuint64 (x) >> 52; 75bbbf1280Sopenharmony_ci} 76bbbf1280Sopenharmony_ci 77bbbf1280Sopenharmony_ci/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. 78bbbf1280Sopenharmony_ci If hastail is 0 then xtail is assumed to be 0 too. */ 79bbbf1280Sopenharmony_cistatic inline double 80bbbf1280Sopenharmony_ciexp_inline (double x, double xtail, int hastail) 81bbbf1280Sopenharmony_ci{ 82bbbf1280Sopenharmony_ci uint32_t abstop; 83bbbf1280Sopenharmony_ci uint64_t ki, idx, top, sbits; 84bbbf1280Sopenharmony_ci /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ 85bbbf1280Sopenharmony_ci double_t kd, z, r, r2, scale, tail, tmp; 86bbbf1280Sopenharmony_ci 87bbbf1280Sopenharmony_ci abstop = top12 (x) & 0x7ff; 88bbbf1280Sopenharmony_ci if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54))) 89bbbf1280Sopenharmony_ci { 90bbbf1280Sopenharmony_ci if (abstop - top12 (0x1p-54) >= 0x80000000) 91bbbf1280Sopenharmony_ci /* Avoid spurious underflow for tiny x. */ 92bbbf1280Sopenharmony_ci /* Note: 0 is common input. */ 93bbbf1280Sopenharmony_ci return WANT_ROUNDING ? 1.0 + x : 1.0; 94bbbf1280Sopenharmony_ci if (abstop >= top12 (1024.0)) 95bbbf1280Sopenharmony_ci { 96bbbf1280Sopenharmony_ci if (asuint64 (x) == asuint64 (-INFINITY)) 97bbbf1280Sopenharmony_ci return 0.0; 98bbbf1280Sopenharmony_ci if (abstop >= top12 (INFINITY)) 99bbbf1280Sopenharmony_ci return 1.0 + x; 100bbbf1280Sopenharmony_ci if (asuint64 (x) >> 63) 101bbbf1280Sopenharmony_ci return __math_uflow (0); 102bbbf1280Sopenharmony_ci else 103bbbf1280Sopenharmony_ci return __math_oflow (0); 104bbbf1280Sopenharmony_ci } 105bbbf1280Sopenharmony_ci /* Large x is special cased below. */ 106bbbf1280Sopenharmony_ci abstop = 0; 107bbbf1280Sopenharmony_ci } 108bbbf1280Sopenharmony_ci 109bbbf1280Sopenharmony_ci /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ 110bbbf1280Sopenharmony_ci /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ 111bbbf1280Sopenharmony_ci z = InvLn2N * x; 112bbbf1280Sopenharmony_ci#if TOINT_INTRINSICS 113bbbf1280Sopenharmony_ci kd = roundtoint (z); 114bbbf1280Sopenharmony_ci ki = converttoint (z); 115bbbf1280Sopenharmony_ci#elif EXP_USE_TOINT_NARROW 116bbbf1280Sopenharmony_ci /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ 117bbbf1280Sopenharmony_ci kd = eval_as_double (z + Shift); 118bbbf1280Sopenharmony_ci ki = asuint64 (kd) >> 16; 119bbbf1280Sopenharmony_ci kd = (double_t) (int32_t) ki; 120bbbf1280Sopenharmony_ci#else 121bbbf1280Sopenharmony_ci /* z - kd is in [-1, 1] in non-nearest rounding modes. */ 122bbbf1280Sopenharmony_ci kd = eval_as_double (z + Shift); 123bbbf1280Sopenharmony_ci ki = asuint64 (kd); 124bbbf1280Sopenharmony_ci kd -= Shift; 125bbbf1280Sopenharmony_ci#endif 126bbbf1280Sopenharmony_ci r = x + kd * NegLn2hiN + kd * NegLn2loN; 127bbbf1280Sopenharmony_ci /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ 128bbbf1280Sopenharmony_ci if (hastail) 129bbbf1280Sopenharmony_ci r += xtail; 130bbbf1280Sopenharmony_ci /* 2^(k/N) ~= scale * (1 + tail). */ 131bbbf1280Sopenharmony_ci idx = 2 * (ki % N); 132bbbf1280Sopenharmony_ci top = ki << (52 - EXP_TABLE_BITS); 133bbbf1280Sopenharmony_ci tail = asdouble (T[idx]); 134bbbf1280Sopenharmony_ci /* This is only a valid scale when -1023*N < k < 1024*N. */ 135bbbf1280Sopenharmony_ci sbits = T[idx + 1] + top; 136bbbf1280Sopenharmony_ci /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ 137bbbf1280Sopenharmony_ci /* Evaluation is optimized assuming superscalar pipelined execution. */ 138bbbf1280Sopenharmony_ci r2 = r * r; 139bbbf1280Sopenharmony_ci /* Without fma the worst case error is 0.25/N ulp larger. */ 140bbbf1280Sopenharmony_ci /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ 141bbbf1280Sopenharmony_ci#if EXP_POLY_ORDER == 4 142bbbf1280Sopenharmony_ci tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4); 143bbbf1280Sopenharmony_ci#elif EXP_POLY_ORDER == 5 144bbbf1280Sopenharmony_ci tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); 145bbbf1280Sopenharmony_ci#elif EXP_POLY_ORDER == 6 146bbbf1280Sopenharmony_ci tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6); 147bbbf1280Sopenharmony_ci#endif 148bbbf1280Sopenharmony_ci if (unlikely (abstop == 0)) 149bbbf1280Sopenharmony_ci return specialcase (tmp, sbits, ki); 150bbbf1280Sopenharmony_ci scale = asdouble (sbits); 151bbbf1280Sopenharmony_ci /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there 152bbbf1280Sopenharmony_ci is no spurious underflow here even without fma. */ 153bbbf1280Sopenharmony_ci return eval_as_double (scale + scale * tmp); 154bbbf1280Sopenharmony_ci} 155bbbf1280Sopenharmony_ci 156bbbf1280Sopenharmony_cidouble 157bbbf1280Sopenharmony_ciexp (double x) 158bbbf1280Sopenharmony_ci{ 159bbbf1280Sopenharmony_ci return exp_inline (x, 0, 0); 160bbbf1280Sopenharmony_ci} 161bbbf1280Sopenharmony_ci 162bbbf1280Sopenharmony_ci/* May be useful for implementing pow where more than double 163bbbf1280Sopenharmony_ci precision input is needed. */ 164bbbf1280Sopenharmony_cidouble 165bbbf1280Sopenharmony_ci__exp_dd (double x, double xtail) 166bbbf1280Sopenharmony_ci{ 167bbbf1280Sopenharmony_ci return exp_inline (x, xtail, 1); 168bbbf1280Sopenharmony_ci} 169bbbf1280Sopenharmony_ci#if USE_GLIBC_ABI 170bbbf1280Sopenharmony_cistrong_alias (exp, __exp_finite) 171bbbf1280Sopenharmony_cihidden_alias (exp, __ieee754_exp) 172bbbf1280Sopenharmony_cihidden_alias (__exp_dd, __exp1) 173bbbf1280Sopenharmony_ci# if LDBL_MANT_DIG == 53 174bbbf1280Sopenharmony_cilong double expl (long double x) { return exp (x); } 175bbbf1280Sopenharmony_ci# endif 176bbbf1280Sopenharmony_ci#endif 177