1e1051a39Sopenharmony_ci/*
2e1051a39Sopenharmony_ci * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci * Copyright (c) 2019, Oracle and/or its affiliates.  All rights reserved.
4e1051a39Sopenharmony_ci *
5e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License").  You may not use
6e1051a39Sopenharmony_ci * this file except in compliance with the License.  You can obtain a copy
7e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at
8e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html
9e1051a39Sopenharmony_ci */
10e1051a39Sopenharmony_ci
11e1051a39Sopenharmony_ci#include <openssl/crypto.h>
12e1051a39Sopenharmony_ci#include <openssl/bn.h>
13e1051a39Sopenharmony_ci#include "crypto/sparse_array.h"
14e1051a39Sopenharmony_ci
15e1051a39Sopenharmony_ci/*
16e1051a39Sopenharmony_ci * How many bits are used to index each level in the tree structure?
17e1051a39Sopenharmony_ci * This setting determines the number of pointers stored in each node of the
18e1051a39Sopenharmony_ci * tree used to represent the sparse array.  Having more pointers reduces the
19e1051a39Sopenharmony_ci * depth of the tree but potentially wastes more memory.  That is, this is a
20e1051a39Sopenharmony_ci * direct space versus time tradeoff.
21e1051a39Sopenharmony_ci *
22e1051a39Sopenharmony_ci * The default is to use four bits which means that the are 16
23e1051a39Sopenharmony_ci * pointers in each tree node.
24e1051a39Sopenharmony_ci *
25e1051a39Sopenharmony_ci * The library builder is also permitted to define other sizes in the closed
26e1051a39Sopenharmony_ci * interval [2, sizeof(ossl_uintmax_t) * 8].  Space use generally scales
27e1051a39Sopenharmony_ci * exponentially with the block size, although the implementation only
28e1051a39Sopenharmony_ci * creates enough blocks to support the largest used index.  The depth is:
29e1051a39Sopenharmony_ci *      ceil(log_2(largest index) / 2^{block size})
30e1051a39Sopenharmony_ci * E.g. with a block size of 4, and a largest index of 1000, the depth
31e1051a39Sopenharmony_ci * will be three.
32e1051a39Sopenharmony_ci */
33e1051a39Sopenharmony_ci#ifndef OPENSSL_SA_BLOCK_BITS
34e1051a39Sopenharmony_ci# define OPENSSL_SA_BLOCK_BITS           4
35e1051a39Sopenharmony_ci#elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)
36e1051a39Sopenharmony_ci# error OPENSSL_SA_BLOCK_BITS is out of range
37e1051a39Sopenharmony_ci#endif
38e1051a39Sopenharmony_ci
39e1051a39Sopenharmony_ci/*
40e1051a39Sopenharmony_ci * From the number of bits, work out:
41e1051a39Sopenharmony_ci *    the number of pointers in a tree node;
42e1051a39Sopenharmony_ci *    a bit mask to quickly extract an index and
43e1051a39Sopenharmony_ci *    the maximum depth of the tree structure.
44e1051a39Sopenharmony_ci  */
45e1051a39Sopenharmony_ci#define SA_BLOCK_MAX            (1 << OPENSSL_SA_BLOCK_BITS)
46e1051a39Sopenharmony_ci#define SA_BLOCK_MASK           (SA_BLOCK_MAX - 1)
47e1051a39Sopenharmony_ci#define SA_BLOCK_MAX_LEVELS     (((int)sizeof(ossl_uintmax_t) * 8 \
48e1051a39Sopenharmony_ci                                  + OPENSSL_SA_BLOCK_BITS - 1) \
49e1051a39Sopenharmony_ci                                 / OPENSSL_SA_BLOCK_BITS)
50e1051a39Sopenharmony_ci
51e1051a39Sopenharmony_cistruct sparse_array_st {
52e1051a39Sopenharmony_ci    int levels;
53e1051a39Sopenharmony_ci    ossl_uintmax_t top;
54e1051a39Sopenharmony_ci    size_t nelem;
55e1051a39Sopenharmony_ci    void **nodes;
56e1051a39Sopenharmony_ci};
57e1051a39Sopenharmony_ci
58e1051a39Sopenharmony_ciOPENSSL_SA *ossl_sa_new(void)
59e1051a39Sopenharmony_ci{
60e1051a39Sopenharmony_ci    OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));
61e1051a39Sopenharmony_ci
62e1051a39Sopenharmony_ci    return res;
63e1051a39Sopenharmony_ci}
64e1051a39Sopenharmony_ci
65e1051a39Sopenharmony_cistatic void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),
66e1051a39Sopenharmony_ci                     void (*leaf)(ossl_uintmax_t, void *, void *), void *arg)
67e1051a39Sopenharmony_ci{
68e1051a39Sopenharmony_ci    int i[SA_BLOCK_MAX_LEVELS];
69e1051a39Sopenharmony_ci    void *nodes[SA_BLOCK_MAX_LEVELS];
70e1051a39Sopenharmony_ci    ossl_uintmax_t idx = 0;
71e1051a39Sopenharmony_ci    int l = 0;
72e1051a39Sopenharmony_ci
73e1051a39Sopenharmony_ci    i[0] = 0;
74e1051a39Sopenharmony_ci    nodes[0] = sa->nodes;
75e1051a39Sopenharmony_ci    while (l >= 0) {
76e1051a39Sopenharmony_ci        const int n = i[l];
77e1051a39Sopenharmony_ci        void ** const p = nodes[l];
78e1051a39Sopenharmony_ci
79e1051a39Sopenharmony_ci        if (n >= SA_BLOCK_MAX) {
80e1051a39Sopenharmony_ci            if (p != NULL && node != NULL)
81e1051a39Sopenharmony_ci                (*node)(p);
82e1051a39Sopenharmony_ci            l--;
83e1051a39Sopenharmony_ci            idx >>= OPENSSL_SA_BLOCK_BITS;
84e1051a39Sopenharmony_ci        } else {
85e1051a39Sopenharmony_ci            i[l] = n + 1;
86e1051a39Sopenharmony_ci            if (p != NULL && p[n] != NULL) {
87e1051a39Sopenharmony_ci                idx = (idx & ~SA_BLOCK_MASK) | n;
88e1051a39Sopenharmony_ci                if (l < sa->levels - 1) {
89e1051a39Sopenharmony_ci                    i[++l] = 0;
90e1051a39Sopenharmony_ci                    nodes[l] = p[n];
91e1051a39Sopenharmony_ci                    idx <<= OPENSSL_SA_BLOCK_BITS;
92e1051a39Sopenharmony_ci                } else if (leaf != NULL) {
93e1051a39Sopenharmony_ci                    (*leaf)(idx, p[n], arg);
94e1051a39Sopenharmony_ci                }
95e1051a39Sopenharmony_ci            }
96e1051a39Sopenharmony_ci        }
97e1051a39Sopenharmony_ci    }
98e1051a39Sopenharmony_ci}
99e1051a39Sopenharmony_ci
100e1051a39Sopenharmony_cistatic void sa_free_node(void **p)
101e1051a39Sopenharmony_ci{
102e1051a39Sopenharmony_ci    OPENSSL_free(p);
103e1051a39Sopenharmony_ci}
104e1051a39Sopenharmony_ci
105e1051a39Sopenharmony_cistatic void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg)
106e1051a39Sopenharmony_ci{
107e1051a39Sopenharmony_ci    OPENSSL_free(p);
108e1051a39Sopenharmony_ci}
109e1051a39Sopenharmony_ci
110e1051a39Sopenharmony_civoid ossl_sa_free(OPENSSL_SA *sa)
111e1051a39Sopenharmony_ci{
112e1051a39Sopenharmony_ci    if (sa != NULL) {
113e1051a39Sopenharmony_ci        sa_doall(sa, &sa_free_node, NULL, NULL);
114e1051a39Sopenharmony_ci        OPENSSL_free(sa);
115e1051a39Sopenharmony_ci    }
116e1051a39Sopenharmony_ci}
117e1051a39Sopenharmony_ci
118e1051a39Sopenharmony_civoid ossl_sa_free_leaves(OPENSSL_SA *sa)
119e1051a39Sopenharmony_ci{
120e1051a39Sopenharmony_ci    sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);
121e1051a39Sopenharmony_ci    OPENSSL_free(sa);
122e1051a39Sopenharmony_ci}
123e1051a39Sopenharmony_ci
124e1051a39Sopenharmony_ci/* Wrap this in a structure to avoid compiler warnings */
125e1051a39Sopenharmony_cistruct trampoline_st {
126e1051a39Sopenharmony_ci    void (*func)(ossl_uintmax_t, void *);
127e1051a39Sopenharmony_ci};
128e1051a39Sopenharmony_ci
129e1051a39Sopenharmony_cistatic void trampoline(ossl_uintmax_t n, void *l, void *arg)
130e1051a39Sopenharmony_ci{
131e1051a39Sopenharmony_ci    ((const struct trampoline_st *)arg)->func(n, l);
132e1051a39Sopenharmony_ci}
133e1051a39Sopenharmony_ci
134e1051a39Sopenharmony_civoid ossl_sa_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *))
135e1051a39Sopenharmony_ci{
136e1051a39Sopenharmony_ci    struct trampoline_st tramp;
137e1051a39Sopenharmony_ci
138e1051a39Sopenharmony_ci    tramp.func = leaf;
139e1051a39Sopenharmony_ci    if (sa != NULL)
140e1051a39Sopenharmony_ci        sa_doall(sa, NULL, &trampoline, &tramp);
141e1051a39Sopenharmony_ci}
142e1051a39Sopenharmony_ci
143e1051a39Sopenharmony_civoid ossl_sa_doall_arg(const OPENSSL_SA *sa,
144e1051a39Sopenharmony_ci                          void (*leaf)(ossl_uintmax_t, void *, void *),
145e1051a39Sopenharmony_ci                          void *arg)
146e1051a39Sopenharmony_ci{
147e1051a39Sopenharmony_ci    if (sa != NULL)
148e1051a39Sopenharmony_ci        sa_doall(sa, NULL, leaf, arg);
149e1051a39Sopenharmony_ci}
150e1051a39Sopenharmony_ci
151e1051a39Sopenharmony_cisize_t ossl_sa_num(const OPENSSL_SA *sa)
152e1051a39Sopenharmony_ci{
153e1051a39Sopenharmony_ci    return sa == NULL ? 0 : sa->nelem;
154e1051a39Sopenharmony_ci}
155e1051a39Sopenharmony_ci
156e1051a39Sopenharmony_civoid *ossl_sa_get(const OPENSSL_SA *sa, ossl_uintmax_t n)
157e1051a39Sopenharmony_ci{
158e1051a39Sopenharmony_ci    int level;
159e1051a39Sopenharmony_ci    void **p, *r = NULL;
160e1051a39Sopenharmony_ci
161e1051a39Sopenharmony_ci    if (sa == NULL || sa->nelem == 0)
162e1051a39Sopenharmony_ci        return NULL;
163e1051a39Sopenharmony_ci
164e1051a39Sopenharmony_ci    if (n <= sa->top) {
165e1051a39Sopenharmony_ci        p = sa->nodes;
166e1051a39Sopenharmony_ci        for (level = sa->levels - 1; p != NULL && level > 0; level--)
167e1051a39Sopenharmony_ci            p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))
168e1051a39Sopenharmony_ci                           & SA_BLOCK_MASK];
169e1051a39Sopenharmony_ci        r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];
170e1051a39Sopenharmony_ci    }
171e1051a39Sopenharmony_ci    return r;
172e1051a39Sopenharmony_ci}
173e1051a39Sopenharmony_ci
174e1051a39Sopenharmony_cistatic ossl_inline void **alloc_node(void)
175e1051a39Sopenharmony_ci{
176e1051a39Sopenharmony_ci    return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));
177e1051a39Sopenharmony_ci}
178e1051a39Sopenharmony_ci
179e1051a39Sopenharmony_ciint ossl_sa_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val)
180e1051a39Sopenharmony_ci{
181e1051a39Sopenharmony_ci    int i, level = 1;
182e1051a39Sopenharmony_ci    ossl_uintmax_t n = posn;
183e1051a39Sopenharmony_ci    void **p;
184e1051a39Sopenharmony_ci
185e1051a39Sopenharmony_ci    if (sa == NULL)
186e1051a39Sopenharmony_ci        return 0;
187e1051a39Sopenharmony_ci
188e1051a39Sopenharmony_ci    for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)
189e1051a39Sopenharmony_ci        if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)
190e1051a39Sopenharmony_ci            break;
191e1051a39Sopenharmony_ci
192e1051a39Sopenharmony_ci    for (;sa->levels < level; sa->levels++) {
193e1051a39Sopenharmony_ci        p = alloc_node();
194e1051a39Sopenharmony_ci        if (p == NULL)
195e1051a39Sopenharmony_ci            return 0;
196e1051a39Sopenharmony_ci        p[0] = sa->nodes;
197e1051a39Sopenharmony_ci        sa->nodes = p;
198e1051a39Sopenharmony_ci    }
199e1051a39Sopenharmony_ci    if (sa->top < posn)
200e1051a39Sopenharmony_ci        sa->top = posn;
201e1051a39Sopenharmony_ci
202e1051a39Sopenharmony_ci    p = sa->nodes;
203e1051a39Sopenharmony_ci    for (level = sa->levels - 1; level > 0; level--) {
204e1051a39Sopenharmony_ci        i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;
205e1051a39Sopenharmony_ci        if (p[i] == NULL && (p[i] = alloc_node()) == NULL)
206e1051a39Sopenharmony_ci            return 0;
207e1051a39Sopenharmony_ci        p = p[i];
208e1051a39Sopenharmony_ci    }
209e1051a39Sopenharmony_ci    p += posn & SA_BLOCK_MASK;
210e1051a39Sopenharmony_ci    if (val == NULL && *p != NULL)
211e1051a39Sopenharmony_ci        sa->nelem--;
212e1051a39Sopenharmony_ci    else if (val != NULL && *p == NULL)
213e1051a39Sopenharmony_ci        sa->nelem++;
214e1051a39Sopenharmony_ci    *p = val;
215e1051a39Sopenharmony_ci    return 1;
216e1051a39Sopenharmony_ci}
217