xref: /third_party/openssl/crypto/rsa/rsa_gen.c (revision e1051a39)
1/*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * NB: these functions have been "upgraded", the deprecated versions (which
12 * are compatibility wrappers using these functions) are in rsa_depr.c. -
13 * Geoff
14 */
15
16/*
17 * RSA low level APIs are deprecated for public use, but still ok for
18 * internal use.
19 */
20#include "internal/deprecated.h"
21
22#include <stdio.h>
23#include <time.h>
24#include "internal/cryptlib.h"
25#include <openssl/bn.h>
26#include <openssl/self_test.h>
27#include "prov/providercommon.h"
28#include "rsa_local.h"
29
30static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
31static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
32                      BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
33
34/*
35 * NB: this wrapper would normally be placed in rsa_lib.c and the static
36 * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
37 * so that we don't introduce a new linker dependency. Eg. any application
38 * that wasn't previously linking object code related to key-generation won't
39 * have to now just because key-generation is part of RSA_METHOD.
40 */
41int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
42{
43    if (rsa->meth->rsa_keygen != NULL)
44        return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
45
46    return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
47                                        e_value, cb);
48}
49
50int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
51                                 BIGNUM *e_value, BN_GENCB *cb)
52{
53#ifndef FIPS_MODULE
54    /* multi-prime is only supported with the builtin key generation */
55    if (rsa->meth->rsa_multi_prime_keygen != NULL) {
56        return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
57                                                 e_value, cb);
58    } else if (rsa->meth->rsa_keygen != NULL) {
59        /*
60         * However, if rsa->meth implements only rsa_keygen, then we
61         * have to honour it in 2-prime case and assume that it wouldn't
62         * know what to do with multi-prime key generated by builtin
63         * subroutine...
64         */
65        if (primes == 2)
66            return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
67        else
68            return 0;
69    }
70#endif /* FIPS_MODULE */
71    return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);
72}
73
74#ifndef FIPS_MODULE
75static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
76                                 BIGNUM *e_value, BN_GENCB *cb)
77{
78    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
79    int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
80    int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
81    RSA_PRIME_INFO *pinfo = NULL;
82    STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
83    BN_CTX *ctx = NULL;
84    BN_ULONG bitst = 0;
85    unsigned long error = 0;
86    int ok = -1;
87
88    if (bits < RSA_MIN_MODULUS_BITS) {
89        ok = 0;             /* we set our own err */
90        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
91        goto err;
92    }
93
94    /* A bad value for e can cause infinite loops */
95    if (e_value != NULL && !ossl_rsa_check_public_exponent(e_value)) {
96        ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
97        return 0;
98    }
99
100    if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {
101        ok = 0;             /* we set our own err */
102        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);
103        goto err;
104    }
105
106    ctx = BN_CTX_new_ex(rsa->libctx);
107    if (ctx == NULL)
108        goto err;
109    BN_CTX_start(ctx);
110    r0 = BN_CTX_get(ctx);
111    r1 = BN_CTX_get(ctx);
112    r2 = BN_CTX_get(ctx);
113    if (r2 == NULL)
114        goto err;
115
116    /* divide bits into 'primes' pieces evenly */
117    quo = bits / primes;
118    rmd = bits % primes;
119
120    for (i = 0; i < primes; i++)
121        bitsr[i] = (i < rmd) ? quo + 1 : quo;
122
123    rsa->dirty_cnt++;
124
125    /* We need the RSA components non-NULL */
126    if (!rsa->n && ((rsa->n = BN_new()) == NULL))
127        goto err;
128    if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
129        goto err;
130    BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
131    if (!rsa->e && ((rsa->e = BN_new()) == NULL))
132        goto err;
133    if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
134        goto err;
135    BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
136    if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
137        goto err;
138    BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
139    if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
140        goto err;
141    BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME);
142    if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
143        goto err;
144    BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME);
145    if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
146        goto err;
147    BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME);
148
149    /* initialize multi-prime components */
150    if (primes > RSA_DEFAULT_PRIME_NUM) {
151        rsa->version = RSA_ASN1_VERSION_MULTI;
152        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
153        if (prime_infos == NULL)
154            goto err;
155        if (rsa->prime_infos != NULL) {
156            /* could this happen? */
157            sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,
158                                       ossl_rsa_multip_info_free);
159        }
160        rsa->prime_infos = prime_infos;
161
162        /* prime_info from 2 to |primes| -1 */
163        for (i = 2; i < primes; i++) {
164            pinfo = ossl_rsa_multip_info_new();
165            if (pinfo == NULL)
166                goto err;
167            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
168        }
169    }
170
171    if (BN_copy(rsa->e, e_value) == NULL)
172        goto err;
173
174    /* generate p, q and other primes (if any) */
175    for (i = 0; i < primes; i++) {
176        adj = 0;
177        retries = 0;
178
179        if (i == 0) {
180            prime = rsa->p;
181        } else if (i == 1) {
182            prime = rsa->q;
183        } else {
184            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
185            prime = pinfo->r;
186        }
187        BN_set_flags(prime, BN_FLG_CONSTTIME);
188
189        for (;;) {
190 redo:
191            if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,
192                                       cb, ctx))
193                goto err;
194            /*
195             * prime should not be equal to p, q, r_3...
196             * (those primes prior to this one)
197             */
198            {
199                int j;
200
201                for (j = 0; j < i; j++) {
202                    BIGNUM *prev_prime;
203
204                    if (j == 0)
205                        prev_prime = rsa->p;
206                    else if (j == 1)
207                        prev_prime = rsa->q;
208                    else
209                        prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
210                                                             j - 2)->r;
211
212                    if (!BN_cmp(prime, prev_prime)) {
213                        goto redo;
214                    }
215                }
216            }
217            if (!BN_sub(r2, prime, BN_value_one()))
218                goto err;
219            ERR_set_mark();
220            BN_set_flags(r2, BN_FLG_CONSTTIME);
221            if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
222               /* GCD == 1 since inverse exists */
223                break;
224            }
225            error = ERR_peek_last_error();
226            if (ERR_GET_LIB(error) == ERR_LIB_BN
227                && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
228                /* GCD != 1 */
229                ERR_pop_to_mark();
230            } else {
231                goto err;
232            }
233            if (!BN_GENCB_call(cb, 2, n++))
234                goto err;
235        }
236
237        bitse += bitsr[i];
238
239        /* calculate n immediately to see if it's sufficient */
240        if (i == 1) {
241            /* we get at least 2 primes */
242            if (!BN_mul(r1, rsa->p, rsa->q, ctx))
243                goto err;
244        } else if (i != 0) {
245            /* modulus n = p * q * r_3 * r_4 ... */
246            if (!BN_mul(r1, rsa->n, prime, ctx))
247                goto err;
248        } else {
249            /* i == 0, do nothing */
250            if (!BN_GENCB_call(cb, 3, i))
251                goto err;
252            continue;
253        }
254        /*
255         * if |r1|, product of factors so far, is not as long as expected
256         * (by checking the first 4 bits are less than 0x9 or greater than
257         * 0xF). If so, re-generate the last prime.
258         *
259         * NOTE: This actually can't happen in two-prime case, because of
260         * the way factors are generated.
261         *
262         * Besides, another consideration is, for multi-prime case, even the
263         * length modulus is as long as expected, the modulus could start at
264         * 0x8, which could be utilized to distinguish a multi-prime private
265         * key by using the modulus in a certificate. This is also covered
266         * by checking the length should not be less than 0x9.
267         */
268        if (!BN_rshift(r2, r1, bitse - 4))
269            goto err;
270        bitst = BN_get_word(r2);
271
272        if (bitst < 0x9 || bitst > 0xF) {
273            /*
274             * For keys with more than 4 primes, we attempt longer factor to
275             * meet length requirement.
276             *
277             * Otherwise, we just re-generate the prime with the same length.
278             *
279             * This strategy has the following goals:
280             *
281             * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
282             * 2. stay the same logic with normal 2-prime key
283             */
284            bitse -= bitsr[i];
285            if (!BN_GENCB_call(cb, 2, n++))
286                goto err;
287            if (primes > 4) {
288                if (bitst < 0x9)
289                    adj++;
290                else
291                    adj--;
292            } else if (retries == 4) {
293                /*
294                 * re-generate all primes from scratch, mainly used
295                 * in 4 prime case to avoid long loop. Max retry times
296                 * is set to 4.
297                 */
298                i = -1;
299                bitse = 0;
300                continue;
301            }
302            retries++;
303            goto redo;
304        }
305        /* save product of primes for further use, for multi-prime only */
306        if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
307            goto err;
308        if (BN_copy(rsa->n, r1) == NULL)
309            goto err;
310        if (!BN_GENCB_call(cb, 3, i))
311            goto err;
312    }
313
314    if (BN_cmp(rsa->p, rsa->q) < 0) {
315        tmp = rsa->p;
316        rsa->p = rsa->q;
317        rsa->q = tmp;
318    }
319
320    /* calculate d */
321
322    /* p - 1 */
323    if (!BN_sub(r1, rsa->p, BN_value_one()))
324        goto err;
325    /* q - 1 */
326    if (!BN_sub(r2, rsa->q, BN_value_one()))
327        goto err;
328    /* (p - 1)(q - 1) */
329    if (!BN_mul(r0, r1, r2, ctx))
330        goto err;
331    /* multi-prime */
332    for (i = 2; i < primes; i++) {
333        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
334        /* save r_i - 1 to pinfo->d temporarily */
335        if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
336            goto err;
337        if (!BN_mul(r0, r0, pinfo->d, ctx))
338            goto err;
339    }
340
341    {
342        BIGNUM *pr0 = BN_new();
343
344        if (pr0 == NULL)
345            goto err;
346
347        BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
348        if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
349            BN_free(pr0);
350            goto err;               /* d */
351        }
352        /* We MUST free pr0 before any further use of r0 */
353        BN_free(pr0);
354    }
355
356    {
357        BIGNUM *d = BN_new();
358
359        if (d == NULL)
360            goto err;
361
362        BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
363
364        /* calculate d mod (p-1) and d mod (q - 1) */
365        if (!BN_mod(rsa->dmp1, d, r1, ctx)
366            || !BN_mod(rsa->dmq1, d, r2, ctx)) {
367            BN_free(d);
368            goto err;
369        }
370
371        /* calculate CRT exponents */
372        for (i = 2; i < primes; i++) {
373            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
374            /* pinfo->d == r_i - 1 */
375            if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
376                BN_free(d);
377                goto err;
378            }
379        }
380
381        /* We MUST free d before any further use of rsa->d */
382        BN_free(d);
383    }
384
385    {
386        BIGNUM *p = BN_new();
387
388        if (p == NULL)
389            goto err;
390        BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
391
392        /* calculate inverse of q mod p */
393        if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
394            BN_free(p);
395            goto err;
396        }
397
398        /* calculate CRT coefficient for other primes */
399        for (i = 2; i < primes; i++) {
400            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
401            BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
402            if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
403                BN_free(p);
404                goto err;
405            }
406        }
407
408        /* We MUST free p before any further use of rsa->p */
409        BN_free(p);
410    }
411
412    ok = 1;
413 err:
414    if (ok == -1) {
415        ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
416        ok = 0;
417    }
418    BN_CTX_end(ctx);
419    BN_CTX_free(ctx);
420    return ok;
421}
422#endif /* FIPS_MODULE */
423
424static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
425                      BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
426{
427    int ok = 0;
428
429#ifdef FIPS_MODULE
430    ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
431    pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
432#else
433    /*
434     * Only multi-prime keys or insecure keys with a small key length or a
435     * public exponent <= 2^16 will use the older rsa_multiprime_keygen().
436     */
437    if (primes == 2
438            && bits >= 2048
439            && (e_value == NULL || BN_num_bits(e_value) > 16))
440        ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
441    else
442        ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
443#endif /* FIPS_MODULE */
444
445    if (pairwise_test && ok > 0) {
446        OSSL_CALLBACK *stcb = NULL;
447        void *stcbarg = NULL;
448
449        OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
450        ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
451        if (!ok) {
452            ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
453            /* Clear intermediate results */
454            BN_clear_free(rsa->d);
455            BN_clear_free(rsa->p);
456            BN_clear_free(rsa->q);
457            BN_clear_free(rsa->dmp1);
458            BN_clear_free(rsa->dmq1);
459            BN_clear_free(rsa->iqmp);
460            rsa->d = NULL;
461            rsa->p = NULL;
462            rsa->q = NULL;
463            rsa->dmp1 = NULL;
464            rsa->dmq1 = NULL;
465            rsa->iqmp = NULL;
466        }
467    }
468    return ok;
469}
470
471/*
472 * For RSA key generation it is not known whether the key pair will be used
473 * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
474 * either a signature verification OR an encryption operation may be used to
475 * perform the pairwise consistency check. The simpler encrypt/decrypt operation
476 * has been chosen for this case.
477 */
478static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
479{
480    int ret = 0;
481    unsigned int ciphertxt_len;
482    unsigned char *ciphertxt = NULL;
483    const unsigned char plaintxt[16] = {0};
484    unsigned char *decoded = NULL;
485    unsigned int decoded_len;
486    unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
487    int padding = RSA_PKCS1_PADDING;
488    OSSL_SELF_TEST *st = NULL;
489
490    st = OSSL_SELF_TEST_new(cb, cbarg);
491    if (st == NULL)
492        goto err;
493    OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
494                           OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
495
496    ciphertxt_len = RSA_size(rsa);
497    /*
498     * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to'
499     * parameter to be a maximum of RSA_size() - allocate space for both.
500     */
501    ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2);
502    if (ciphertxt == NULL)
503        goto err;
504    decoded = ciphertxt + ciphertxt_len;
505
506    ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
507                                       padding);
508    if (ciphertxt_len <= 0)
509        goto err;
510    if (ciphertxt_len == plaintxt_len
511        && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)
512        goto err;
513
514    OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
515
516    decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
517                                      padding);
518    if (decoded_len != plaintxt_len
519        || memcmp(decoded, plaintxt,  decoded_len) != 0)
520        goto err;
521
522    ret = 1;
523err:
524    OSSL_SELF_TEST_onend(st, ret);
525    OSSL_SELF_TEST_free(st);
526    OPENSSL_free(ciphertxt);
527
528    return ret;
529}
530