xref: /third_party/openssl/crypto/rc4/asm/rc4-586.pl (revision e1051a39)
1e1051a39Sopenharmony_ci#! /usr/bin/env perl
2e1051a39Sopenharmony_ci# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci#
4e1051a39Sopenharmony_ci# Licensed under the Apache License 2.0 (the "License").  You may not use
5e1051a39Sopenharmony_ci# this file except in compliance with the License.  You can obtain a copy
6e1051a39Sopenharmony_ci# in the file LICENSE in the source distribution or at
7e1051a39Sopenharmony_ci# https://www.openssl.org/source/license.html
8e1051a39Sopenharmony_ci
9e1051a39Sopenharmony_ci
10e1051a39Sopenharmony_ci# ====================================================================
11e1051a39Sopenharmony_ci# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12e1051a39Sopenharmony_ci# project. The module is, however, dual licensed under OpenSSL and
13e1051a39Sopenharmony_ci# CRYPTOGAMS licenses depending on where you obtain it. For further
14e1051a39Sopenharmony_ci# details see http://www.openssl.org/~appro/cryptogams/.
15e1051a39Sopenharmony_ci# ====================================================================
16e1051a39Sopenharmony_ci
17e1051a39Sopenharmony_ci# At some point it became apparent that the original SSLeay RC4
18e1051a39Sopenharmony_ci# assembler implementation performs suboptimally on latest IA-32
19e1051a39Sopenharmony_ci# microarchitectures. After re-tuning performance has changed as
20e1051a39Sopenharmony_ci# following:
21e1051a39Sopenharmony_ci#
22e1051a39Sopenharmony_ci# Pentium	-10%
23e1051a39Sopenharmony_ci# Pentium III	+12%
24e1051a39Sopenharmony_ci# AMD		+50%(*)
25e1051a39Sopenharmony_ci# P4		+250%(**)
26e1051a39Sopenharmony_ci#
27e1051a39Sopenharmony_ci# (*)	This number is actually a trade-off:-) It's possible to
28e1051a39Sopenharmony_ci#	achieve	+72%, but at the cost of -48% off PIII performance.
29e1051a39Sopenharmony_ci#	In other words code performing further 13% faster on AMD
30e1051a39Sopenharmony_ci#	would perform almost 2 times slower on Intel PIII...
31e1051a39Sopenharmony_ci#	For reference! This code delivers ~80% of rc4-amd64.pl
32e1051a39Sopenharmony_ci#	performance on the same Opteron machine.
33e1051a39Sopenharmony_ci# (**)	This number requires compressed key schedule set up by
34e1051a39Sopenharmony_ci#	RC4_set_key [see commentary below for further details].
35e1051a39Sopenharmony_ci
36e1051a39Sopenharmony_ci# May 2011
37e1051a39Sopenharmony_ci#
38e1051a39Sopenharmony_ci# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
39e1051a39Sopenharmony_ci# performance in cycles per processed byte (less is better) and
40e1051a39Sopenharmony_ci# improvement relative to previous version of this module is:
41e1051a39Sopenharmony_ci#
42e1051a39Sopenharmony_ci# Pentium	10.2			# original numbers
43e1051a39Sopenharmony_ci# Pentium III	7.8(*)
44e1051a39Sopenharmony_ci# Intel P4	7.5
45e1051a39Sopenharmony_ci#
46e1051a39Sopenharmony_ci# Opteron	6.1/+20%		# new MMX numbers
47e1051a39Sopenharmony_ci# Core2		5.3/+67%(**)
48e1051a39Sopenharmony_ci# Westmere	5.1/+94%(**)
49e1051a39Sopenharmony_ci# Sandy Bridge	5.0/+8%
50e1051a39Sopenharmony_ci# Atom		12.6/+6%
51e1051a39Sopenharmony_ci# VIA Nano	6.4/+9%
52e1051a39Sopenharmony_ci# Ivy Bridge	4.9/±0%
53e1051a39Sopenharmony_ci# Bulldozer	4.9/+15%
54e1051a39Sopenharmony_ci#
55e1051a39Sopenharmony_ci# (*)	PIII can actually deliver 6.6 cycles per byte with MMX code,
56e1051a39Sopenharmony_ci#	but this specific code performs poorly on Core2. And vice
57e1051a39Sopenharmony_ci#	versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
58e1051a39Sopenharmony_ci#	poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
59e1051a39Sopenharmony_ci#	[anymore], I chose to discard PIII-specific code path and opt
60e1051a39Sopenharmony_ci#	for original IALU-only code, which is why MMX/SSE code path
61e1051a39Sopenharmony_ci#	is guarded by SSE2 bit (see below), not MMX/SSE.
62e1051a39Sopenharmony_ci# (**)	Performance vs. block size on Core2 and Westmere had a maximum
63e1051a39Sopenharmony_ci#	at ... 64 bytes block size. And it was quite a maximum, 40-60%
64e1051a39Sopenharmony_ci#	in comparison to largest 8KB block size. Above improvement
65e1051a39Sopenharmony_ci#	coefficients are for the largest block size.
66e1051a39Sopenharmony_ci
67e1051a39Sopenharmony_ci$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
68e1051a39Sopenharmony_cipush(@INC,"${dir}","${dir}../../perlasm");
69e1051a39Sopenharmony_cirequire "x86asm.pl";
70e1051a39Sopenharmony_ci
71e1051a39Sopenharmony_ci$output = pop and open STDOUT,">$output";
72e1051a39Sopenharmony_ci
73e1051a39Sopenharmony_ci&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
74e1051a39Sopenharmony_ci
75e1051a39Sopenharmony_ci$xx="eax";
76e1051a39Sopenharmony_ci$yy="ebx";
77e1051a39Sopenharmony_ci$tx="ecx";
78e1051a39Sopenharmony_ci$ty="edx";
79e1051a39Sopenharmony_ci$inp="esi";
80e1051a39Sopenharmony_ci$out="ebp";
81e1051a39Sopenharmony_ci$dat="edi";
82e1051a39Sopenharmony_ci
83e1051a39Sopenharmony_cisub RC4_loop {
84e1051a39Sopenharmony_ci  my $i=shift;
85e1051a39Sopenharmony_ci  my $func = ($i==0)?*mov:*or;
86e1051a39Sopenharmony_ci
87e1051a39Sopenharmony_ci	&add	(&LB($yy),&LB($tx));
88e1051a39Sopenharmony_ci	&mov	($ty,&DWP(0,$dat,$yy,4));
89e1051a39Sopenharmony_ci	&mov	(&DWP(0,$dat,$yy,4),$tx);
90e1051a39Sopenharmony_ci	&mov	(&DWP(0,$dat,$xx,4),$ty);
91e1051a39Sopenharmony_ci	&add	($ty,$tx);
92e1051a39Sopenharmony_ci	&inc	(&LB($xx));
93e1051a39Sopenharmony_ci	&and	($ty,0xff);
94e1051a39Sopenharmony_ci	&ror	($out,8)	if ($i!=0);
95e1051a39Sopenharmony_ci	if ($i<3) {
96e1051a39Sopenharmony_ci	  &mov	($tx,&DWP(0,$dat,$xx,4));
97e1051a39Sopenharmony_ci	} else {
98e1051a39Sopenharmony_ci	  &mov	($tx,&wparam(3));	# reload [re-biased] out
99e1051a39Sopenharmony_ci	}
100e1051a39Sopenharmony_ci	&$func	($out,&DWP(0,$dat,$ty,4));
101e1051a39Sopenharmony_ci}
102e1051a39Sopenharmony_ci
103e1051a39Sopenharmony_ciif ($alt=0) {
104e1051a39Sopenharmony_ci  # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
105e1051a39Sopenharmony_ci  # but ~40% slower on Core2 and Westmere... Attempt to add movz
106e1051a39Sopenharmony_ci  # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
107e1051a39Sopenharmony_ci  # on Core2 with movz it's almost 20% slower than below alternative
108e1051a39Sopenharmony_ci  # code... Yes, it's a total mess...
109e1051a39Sopenharmony_ci  my @XX=($xx,$out);
110e1051a39Sopenharmony_ci  $RC4_loop_mmx = sub {		# SSE actually...
111e1051a39Sopenharmony_ci    my $i=shift;
112e1051a39Sopenharmony_ci    my $j=$i<=0?0:$i>>1;
113e1051a39Sopenharmony_ci    my $mm=$i<=0?"mm0":"mm".($i&1);
114e1051a39Sopenharmony_ci
115e1051a39Sopenharmony_ci	&add	(&LB($yy),&LB($tx));
116e1051a39Sopenharmony_ci	&lea	(@XX[1],&DWP(1,@XX[0]));
117e1051a39Sopenharmony_ci	&pxor	("mm2","mm0")				if ($i==0);
118e1051a39Sopenharmony_ci	&psllq	("mm1",8)				if ($i==0);
119e1051a39Sopenharmony_ci	&and	(@XX[1],0xff);
120e1051a39Sopenharmony_ci	&pxor	("mm0","mm0")				if ($i<=0);
121e1051a39Sopenharmony_ci	&mov	($ty,&DWP(0,$dat,$yy,4));
122e1051a39Sopenharmony_ci	&mov	(&DWP(0,$dat,$yy,4),$tx);
123e1051a39Sopenharmony_ci	&pxor	("mm1","mm2")				if ($i==0);
124e1051a39Sopenharmony_ci	&mov	(&DWP(0,$dat,$XX[0],4),$ty);
125e1051a39Sopenharmony_ci	&add	(&LB($ty),&LB($tx));
126e1051a39Sopenharmony_ci	&movd	(@XX[0],"mm7")				if ($i==0);
127e1051a39Sopenharmony_ci	&mov	($tx,&DWP(0,$dat,@XX[1],4));
128e1051a39Sopenharmony_ci	&pxor	("mm1","mm1")				if ($i==1);
129e1051a39Sopenharmony_ci	&movq	("mm2",&QWP(0,$inp))			if ($i==1);
130e1051a39Sopenharmony_ci	&movq	(&QWP(-8,(@XX[0],$inp)),"mm1")		if ($i==0);
131e1051a39Sopenharmony_ci	&pinsrw	($mm,&DWP(0,$dat,$ty,4),$j);
132e1051a39Sopenharmony_ci
133e1051a39Sopenharmony_ci	push	(@XX,shift(@XX))			if ($i>=0);
134e1051a39Sopenharmony_ci  }
135e1051a39Sopenharmony_ci} else {
136e1051a39Sopenharmony_ci  # Using pinsrw here improves performance on Intel CPUs by 2-3%, but
137e1051a39Sopenharmony_ci  # brings down AMD by 7%...
138e1051a39Sopenharmony_ci  $RC4_loop_mmx = sub {
139e1051a39Sopenharmony_ci    my $i=shift;
140e1051a39Sopenharmony_ci
141e1051a39Sopenharmony_ci	&add	(&LB($yy),&LB($tx));
142e1051a39Sopenharmony_ci	&psllq	("mm1",8*(($i-1)&7))			if (abs($i)!=1);
143e1051a39Sopenharmony_ci	&mov	($ty,&DWP(0,$dat,$yy,4));
144e1051a39Sopenharmony_ci	&mov	(&DWP(0,$dat,$yy,4),$tx);
145e1051a39Sopenharmony_ci	&mov	(&DWP(0,$dat,$xx,4),$ty);
146e1051a39Sopenharmony_ci	&inc	($xx);
147e1051a39Sopenharmony_ci	&add	($ty,$tx);
148e1051a39Sopenharmony_ci	&movz	($xx,&LB($xx));				# (*)
149e1051a39Sopenharmony_ci	&movz	($ty,&LB($ty));				# (*)
150e1051a39Sopenharmony_ci	&pxor	("mm2",$i==1?"mm0":"mm1")		if ($i>=0);
151e1051a39Sopenharmony_ci	&movq	("mm0",&QWP(0,$inp))			if ($i<=0);
152e1051a39Sopenharmony_ci	&movq	(&QWP(-8,($out,$inp)),"mm2")		if ($i==0);
153e1051a39Sopenharmony_ci	&mov	($tx,&DWP(0,$dat,$xx,4));
154e1051a39Sopenharmony_ci	&movd	($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
155e1051a39Sopenharmony_ci
156e1051a39Sopenharmony_ci	# (*)	This is the key to Core2 and Westmere performance.
157e1051a39Sopenharmony_ci	#	Without movz out-of-order execution logic confuses
158e1051a39Sopenharmony_ci	#	itself and fails to reorder loads and stores. Problem
159e1051a39Sopenharmony_ci	#	appears to be fixed in Sandy Bridge...
160e1051a39Sopenharmony_ci  }
161e1051a39Sopenharmony_ci}
162e1051a39Sopenharmony_ci
163e1051a39Sopenharmony_ci&external_label("OPENSSL_ia32cap_P");
164e1051a39Sopenharmony_ci
165e1051a39Sopenharmony_ci# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
166e1051a39Sopenharmony_ci&function_begin("RC4");
167e1051a39Sopenharmony_ci	&mov	($dat,&wparam(0));	# load key schedule pointer
168e1051a39Sopenharmony_ci	&mov	($ty, &wparam(1));	# load len
169e1051a39Sopenharmony_ci	&mov	($inp,&wparam(2));	# load inp
170e1051a39Sopenharmony_ci	&mov	($out,&wparam(3));	# load out
171e1051a39Sopenharmony_ci
172e1051a39Sopenharmony_ci	&xor	($xx,$xx);		# avoid partial register stalls
173e1051a39Sopenharmony_ci	&xor	($yy,$yy);
174e1051a39Sopenharmony_ci
175e1051a39Sopenharmony_ci	&cmp	($ty,0);		# safety net
176e1051a39Sopenharmony_ci	&je	(&label("abort"));
177e1051a39Sopenharmony_ci
178e1051a39Sopenharmony_ci	&mov	(&LB($xx),&BP(0,$dat));	# load key->x
179e1051a39Sopenharmony_ci	&mov	(&LB($yy),&BP(4,$dat));	# load key->y
180e1051a39Sopenharmony_ci	&add	($dat,8);
181e1051a39Sopenharmony_ci
182e1051a39Sopenharmony_ci	&lea	($tx,&DWP(0,$inp,$ty));
183e1051a39Sopenharmony_ci	&sub	($out,$inp);		# re-bias out
184e1051a39Sopenharmony_ci	&mov	(&wparam(1),$tx);	# save input+len
185e1051a39Sopenharmony_ci
186e1051a39Sopenharmony_ci	&inc	(&LB($xx));
187e1051a39Sopenharmony_ci
188e1051a39Sopenharmony_ci	# detect compressed key schedule...
189e1051a39Sopenharmony_ci	&cmp	(&DWP(256,$dat),-1);
190e1051a39Sopenharmony_ci	&je	(&label("RC4_CHAR"));
191e1051a39Sopenharmony_ci
192e1051a39Sopenharmony_ci	&mov	($tx,&DWP(0,$dat,$xx,4));
193e1051a39Sopenharmony_ci
194e1051a39Sopenharmony_ci	&and	($ty,-4);		# how many 4-byte chunks?
195e1051a39Sopenharmony_ci	&jz	(&label("loop1"));
196e1051a39Sopenharmony_ci
197e1051a39Sopenharmony_ci	&mov	(&wparam(3),$out);	# $out as accumulator in these loops
198e1051a39Sopenharmony_ci					if ($x86only) {
199e1051a39Sopenharmony_ci	&jmp	(&label("go4loop4"));
200e1051a39Sopenharmony_ci					} else {
201e1051a39Sopenharmony_ci	&test	($ty,-8);
202e1051a39Sopenharmony_ci	&jz	(&label("go4loop4"));
203e1051a39Sopenharmony_ci
204e1051a39Sopenharmony_ci	&picmeup($out,"OPENSSL_ia32cap_P");
205e1051a39Sopenharmony_ci	&bt	(&DWP(0,$out),26);	# check SSE2 bit [could have been MMX]
206e1051a39Sopenharmony_ci	&jnc	(&label("go4loop4"));
207e1051a39Sopenharmony_ci
208e1051a39Sopenharmony_ci	&mov	($out,&wparam(3))	if (!$alt);
209e1051a39Sopenharmony_ci	&movd	("mm7",&wparam(3))	if ($alt);
210e1051a39Sopenharmony_ci	&and	($ty,-8);
211e1051a39Sopenharmony_ci	&lea	($ty,&DWP(-8,$inp,$ty));
212e1051a39Sopenharmony_ci	&mov	(&DWP(-4,$dat),$ty);	# save input+(len/8)*8-8
213e1051a39Sopenharmony_ci
214e1051a39Sopenharmony_ci	&$RC4_loop_mmx(-1);
215e1051a39Sopenharmony_ci	&jmp(&label("loop_mmx_enter"));
216e1051a39Sopenharmony_ci
217e1051a39Sopenharmony_ci	&set_label("loop_mmx",16);
218e1051a39Sopenharmony_ci		&$RC4_loop_mmx(0);
219e1051a39Sopenharmony_ci	&set_label("loop_mmx_enter");
220e1051a39Sopenharmony_ci		for 	($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
221e1051a39Sopenharmony_ci		&mov	($ty,$yy);
222e1051a39Sopenharmony_ci		&xor	($yy,$yy);		# this is second key to Core2
223e1051a39Sopenharmony_ci		&mov	(&LB($yy),&LB($ty));	# and Westmere performance...
224e1051a39Sopenharmony_ci		&cmp	($inp,&DWP(-4,$dat));
225e1051a39Sopenharmony_ci		&lea	($inp,&DWP(8,$inp));
226e1051a39Sopenharmony_ci	&jb	(&label("loop_mmx"));
227e1051a39Sopenharmony_ci
228e1051a39Sopenharmony_ci    if ($alt) {
229e1051a39Sopenharmony_ci	&movd	($out,"mm7");
230e1051a39Sopenharmony_ci	&pxor	("mm2","mm0");
231e1051a39Sopenharmony_ci	&psllq	("mm1",8);
232e1051a39Sopenharmony_ci	&pxor	("mm1","mm2");
233e1051a39Sopenharmony_ci	&movq	(&QWP(-8,$out,$inp),"mm1");
234e1051a39Sopenharmony_ci    } else {
235e1051a39Sopenharmony_ci	&psllq	("mm1",56);
236e1051a39Sopenharmony_ci	&pxor	("mm2","mm1");
237e1051a39Sopenharmony_ci	&movq	(&QWP(-8,$out,$inp),"mm2");
238e1051a39Sopenharmony_ci    }
239e1051a39Sopenharmony_ci	&emms	();
240e1051a39Sopenharmony_ci
241e1051a39Sopenharmony_ci	&cmp	($inp,&wparam(1));	# compare to input+len
242e1051a39Sopenharmony_ci	&je	(&label("done"));
243e1051a39Sopenharmony_ci	&jmp	(&label("loop1"));
244e1051a39Sopenharmony_ci					}
245e1051a39Sopenharmony_ci
246e1051a39Sopenharmony_ci&set_label("go4loop4",16);
247e1051a39Sopenharmony_ci	&lea	($ty,&DWP(-4,$inp,$ty));
248e1051a39Sopenharmony_ci	&mov	(&wparam(2),$ty);	# save input+(len/4)*4-4
249e1051a39Sopenharmony_ci
250e1051a39Sopenharmony_ci	&set_label("loop4");
251e1051a39Sopenharmony_ci		for ($i=0;$i<4;$i++) { RC4_loop($i); }
252e1051a39Sopenharmony_ci		&ror	($out,8);
253e1051a39Sopenharmony_ci		&xor	($out,&DWP(0,$inp));
254e1051a39Sopenharmony_ci		&cmp	($inp,&wparam(2));	# compare to input+(len/4)*4-4
255e1051a39Sopenharmony_ci		&mov	(&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
256e1051a39Sopenharmony_ci		&lea	($inp,&DWP(4,$inp));
257e1051a39Sopenharmony_ci		&mov	($tx,&DWP(0,$dat,$xx,4));
258e1051a39Sopenharmony_ci	&jb	(&label("loop4"));
259e1051a39Sopenharmony_ci
260e1051a39Sopenharmony_ci	&cmp	($inp,&wparam(1));	# compare to input+len
261e1051a39Sopenharmony_ci	&je	(&label("done"));
262e1051a39Sopenharmony_ci	&mov	($out,&wparam(3));	# restore $out
263e1051a39Sopenharmony_ci
264e1051a39Sopenharmony_ci	&set_label("loop1",16);
265e1051a39Sopenharmony_ci		&add	(&LB($yy),&LB($tx));
266e1051a39Sopenharmony_ci		&mov	($ty,&DWP(0,$dat,$yy,4));
267e1051a39Sopenharmony_ci		&mov	(&DWP(0,$dat,$yy,4),$tx);
268e1051a39Sopenharmony_ci		&mov	(&DWP(0,$dat,$xx,4),$ty);
269e1051a39Sopenharmony_ci		&add	($ty,$tx);
270e1051a39Sopenharmony_ci		&inc	(&LB($xx));
271e1051a39Sopenharmony_ci		&and	($ty,0xff);
272e1051a39Sopenharmony_ci		&mov	($ty,&DWP(0,$dat,$ty,4));
273e1051a39Sopenharmony_ci		&xor	(&LB($ty),&BP(0,$inp));
274e1051a39Sopenharmony_ci		&lea	($inp,&DWP(1,$inp));
275e1051a39Sopenharmony_ci		&mov	($tx,&DWP(0,$dat,$xx,4));
276e1051a39Sopenharmony_ci		&cmp	($inp,&wparam(1));	# compare to input+len
277e1051a39Sopenharmony_ci		&mov	(&BP(-1,$out,$inp),&LB($ty));
278e1051a39Sopenharmony_ci	&jb	(&label("loop1"));
279e1051a39Sopenharmony_ci
280e1051a39Sopenharmony_ci	&jmp	(&label("done"));
281e1051a39Sopenharmony_ci
282e1051a39Sopenharmony_ci# this is essentially Intel P4 specific codepath...
283e1051a39Sopenharmony_ci&set_label("RC4_CHAR",16);
284e1051a39Sopenharmony_ci	&movz	($tx,&BP(0,$dat,$xx));
285e1051a39Sopenharmony_ci	# strangely enough unrolled loop performs over 20% slower...
286e1051a39Sopenharmony_ci	&set_label("cloop1");
287e1051a39Sopenharmony_ci		&add	(&LB($yy),&LB($tx));
288e1051a39Sopenharmony_ci		&movz	($ty,&BP(0,$dat,$yy));
289e1051a39Sopenharmony_ci		&mov	(&BP(0,$dat,$yy),&LB($tx));
290e1051a39Sopenharmony_ci		&mov	(&BP(0,$dat,$xx),&LB($ty));
291e1051a39Sopenharmony_ci		&add	(&LB($ty),&LB($tx));
292e1051a39Sopenharmony_ci		&movz	($ty,&BP(0,$dat,$ty));
293e1051a39Sopenharmony_ci		&add	(&LB($xx),1);
294e1051a39Sopenharmony_ci		&xor	(&LB($ty),&BP(0,$inp));
295e1051a39Sopenharmony_ci		&lea	($inp,&DWP(1,$inp));
296e1051a39Sopenharmony_ci		&movz	($tx,&BP(0,$dat,$xx));
297e1051a39Sopenharmony_ci		&cmp	($inp,&wparam(1));
298e1051a39Sopenharmony_ci		&mov	(&BP(-1,$out,$inp),&LB($ty));
299e1051a39Sopenharmony_ci	&jb	(&label("cloop1"));
300e1051a39Sopenharmony_ci
301e1051a39Sopenharmony_ci&set_label("done");
302e1051a39Sopenharmony_ci	&dec	(&LB($xx));
303e1051a39Sopenharmony_ci	&mov	(&DWP(-4,$dat),$yy);		# save key->y
304e1051a39Sopenharmony_ci	&mov	(&BP(-8,$dat),&LB($xx));	# save key->x
305e1051a39Sopenharmony_ci&set_label("abort");
306e1051a39Sopenharmony_ci&function_end("RC4");
307e1051a39Sopenharmony_ci
308e1051a39Sopenharmony_ci########################################################################
309e1051a39Sopenharmony_ci
310e1051a39Sopenharmony_ci$inp="esi";
311e1051a39Sopenharmony_ci$out="edi";
312e1051a39Sopenharmony_ci$idi="ebp";
313e1051a39Sopenharmony_ci$ido="ecx";
314e1051a39Sopenharmony_ci$idx="edx";
315e1051a39Sopenharmony_ci
316e1051a39Sopenharmony_ci# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
317e1051a39Sopenharmony_ci&function_begin("RC4_set_key");
318e1051a39Sopenharmony_ci	&mov	($out,&wparam(0));		# load key
319e1051a39Sopenharmony_ci	&mov	($idi,&wparam(1));		# load len
320e1051a39Sopenharmony_ci	&mov	($inp,&wparam(2));		# load data
321e1051a39Sopenharmony_ci	&picmeup($idx,"OPENSSL_ia32cap_P");
322e1051a39Sopenharmony_ci
323e1051a39Sopenharmony_ci	&lea	($out,&DWP(2*4,$out));		# &key->data
324e1051a39Sopenharmony_ci	&lea	($inp,&DWP(0,$inp,$idi));	# $inp to point at the end
325e1051a39Sopenharmony_ci	&neg	($idi);
326e1051a39Sopenharmony_ci	&xor	("eax","eax");
327e1051a39Sopenharmony_ci	&mov	(&DWP(-4,$out),$idi);		# borrow key->y
328e1051a39Sopenharmony_ci
329e1051a39Sopenharmony_ci	&bt	(&DWP(0,$idx),20);		# check for bit#20
330e1051a39Sopenharmony_ci	&jc	(&label("c1stloop"));
331e1051a39Sopenharmony_ci
332e1051a39Sopenharmony_ci&set_label("w1stloop",16);
333e1051a39Sopenharmony_ci	&mov	(&DWP(0,$out,"eax",4),"eax");	# key->data[i]=i;
334e1051a39Sopenharmony_ci	&add	(&LB("eax"),1);			# i++;
335e1051a39Sopenharmony_ci	&jnc	(&label("w1stloop"));
336e1051a39Sopenharmony_ci
337e1051a39Sopenharmony_ci	&xor	($ido,$ido);
338e1051a39Sopenharmony_ci	&xor	($idx,$idx);
339e1051a39Sopenharmony_ci
340e1051a39Sopenharmony_ci&set_label("w2ndloop",16);
341e1051a39Sopenharmony_ci	&mov	("eax",&DWP(0,$out,$ido,4));
342e1051a39Sopenharmony_ci	&add	(&LB($idx),&BP(0,$inp,$idi));
343e1051a39Sopenharmony_ci	&add	(&LB($idx),&LB("eax"));
344e1051a39Sopenharmony_ci	&add	($idi,1);
345e1051a39Sopenharmony_ci	&mov	("ebx",&DWP(0,$out,$idx,4));
346e1051a39Sopenharmony_ci	&jnz	(&label("wnowrap"));
347e1051a39Sopenharmony_ci	  &mov	($idi,&DWP(-4,$out));
348e1051a39Sopenharmony_ci	&set_label("wnowrap");
349e1051a39Sopenharmony_ci	&mov	(&DWP(0,$out,$idx,4),"eax");
350e1051a39Sopenharmony_ci	&mov	(&DWP(0,$out,$ido,4),"ebx");
351e1051a39Sopenharmony_ci	&add	(&LB($ido),1);
352e1051a39Sopenharmony_ci	&jnc	(&label("w2ndloop"));
353e1051a39Sopenharmony_ci&jmp	(&label("exit"));
354e1051a39Sopenharmony_ci
355e1051a39Sopenharmony_ci# Unlike all other x86 [and x86_64] implementations, Intel P4 core
356e1051a39Sopenharmony_ci# [including EM64T] was found to perform poorly with above "32-bit" key
357e1051a39Sopenharmony_ci# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
358e1051a39Sopenharmony_ci# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
359e1051a39Sopenharmony_ci# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
360e1051a39Sopenharmony_ci# schedule for x86[_64], because non-P4 implementations suffer from
361e1051a39Sopenharmony_ci# significant performance losses then, e.g. PIII exhibits >2x
362e1051a39Sopenharmony_ci# deterioration, and so does Opteron. In order to assure optimal
363e1051a39Sopenharmony_ci# all-round performance, we detect P4 at run-time and set up compressed
364e1051a39Sopenharmony_ci# key schedule, which is recognized by RC4 procedure.
365e1051a39Sopenharmony_ci
366e1051a39Sopenharmony_ci&set_label("c1stloop",16);
367e1051a39Sopenharmony_ci	&mov	(&BP(0,$out,"eax"),&LB("eax"));	# key->data[i]=i;
368e1051a39Sopenharmony_ci	&add	(&LB("eax"),1);			# i++;
369e1051a39Sopenharmony_ci	&jnc	(&label("c1stloop"));
370e1051a39Sopenharmony_ci
371e1051a39Sopenharmony_ci	&xor	($ido,$ido);
372e1051a39Sopenharmony_ci	&xor	($idx,$idx);
373e1051a39Sopenharmony_ci	&xor	("ebx","ebx");
374e1051a39Sopenharmony_ci
375e1051a39Sopenharmony_ci&set_label("c2ndloop",16);
376e1051a39Sopenharmony_ci	&mov	(&LB("eax"),&BP(0,$out,$ido));
377e1051a39Sopenharmony_ci	&add	(&LB($idx),&BP(0,$inp,$idi));
378e1051a39Sopenharmony_ci	&add	(&LB($idx),&LB("eax"));
379e1051a39Sopenharmony_ci	&add	($idi,1);
380e1051a39Sopenharmony_ci	&mov	(&LB("ebx"),&BP(0,$out,$idx));
381e1051a39Sopenharmony_ci	&jnz	(&label("cnowrap"));
382e1051a39Sopenharmony_ci	  &mov	($idi,&DWP(-4,$out));
383e1051a39Sopenharmony_ci	&set_label("cnowrap");
384e1051a39Sopenharmony_ci	&mov	(&BP(0,$out,$idx),&LB("eax"));
385e1051a39Sopenharmony_ci	&mov	(&BP(0,$out,$ido),&LB("ebx"));
386e1051a39Sopenharmony_ci	&add	(&LB($ido),1);
387e1051a39Sopenharmony_ci	&jnc	(&label("c2ndloop"));
388e1051a39Sopenharmony_ci
389e1051a39Sopenharmony_ci	&mov	(&DWP(256,$out),-1);		# mark schedule as compressed
390e1051a39Sopenharmony_ci
391e1051a39Sopenharmony_ci&set_label("exit");
392e1051a39Sopenharmony_ci	&xor	("eax","eax");
393e1051a39Sopenharmony_ci	&mov	(&DWP(-8,$out),"eax");		# key->x=0;
394e1051a39Sopenharmony_ci	&mov	(&DWP(-4,$out),"eax");		# key->y=0;
395e1051a39Sopenharmony_ci&function_end("RC4_set_key");
396e1051a39Sopenharmony_ci
397e1051a39Sopenharmony_ci# const char *RC4_options(void);
398e1051a39Sopenharmony_ci&function_begin_B("RC4_options");
399e1051a39Sopenharmony_ci	&call	(&label("pic_point"));
400e1051a39Sopenharmony_ci&set_label("pic_point");
401e1051a39Sopenharmony_ci	&blindpop("eax");
402e1051a39Sopenharmony_ci	&lea	("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
403e1051a39Sopenharmony_ci	&picmeup("edx","OPENSSL_ia32cap_P");
404e1051a39Sopenharmony_ci	&mov	("edx",&DWP(0,"edx"));
405e1051a39Sopenharmony_ci	&bt	("edx",20);
406e1051a39Sopenharmony_ci	&jc	(&label("1xchar"));
407e1051a39Sopenharmony_ci	&bt	("edx",26);
408e1051a39Sopenharmony_ci	&jnc	(&label("ret"));
409e1051a39Sopenharmony_ci	&add	("eax",25);
410e1051a39Sopenharmony_ci	&ret	();
411e1051a39Sopenharmony_ci&set_label("1xchar");
412e1051a39Sopenharmony_ci	&add	("eax",12);
413e1051a39Sopenharmony_ci&set_label("ret");
414e1051a39Sopenharmony_ci	&ret	();
415e1051a39Sopenharmony_ci&set_label("opts",64);
416e1051a39Sopenharmony_ci&asciz	("rc4(4x,int)");
417e1051a39Sopenharmony_ci&asciz	("rc4(1x,char)");
418e1051a39Sopenharmony_ci&asciz	("rc4(8x,mmx)");
419e1051a39Sopenharmony_ci&asciz	("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
420e1051a39Sopenharmony_ci&align	(64);
421e1051a39Sopenharmony_ci&function_end_B("RC4_options");
422e1051a39Sopenharmony_ci
423e1051a39Sopenharmony_ci&asm_finish();
424e1051a39Sopenharmony_ci
425e1051a39Sopenharmony_ciclose STDOUT or die "error closing STDOUT: $!";
426