1e1051a39Sopenharmony_ci#! /usr/bin/env perl 2e1051a39Sopenharmony_ci# Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. 3e1051a39Sopenharmony_ci# 4e1051a39Sopenharmony_ci# Licensed under the Apache License 2.0 (the "License"). You may not use 5e1051a39Sopenharmony_ci# this file except in compliance with the License. You can obtain a copy 6e1051a39Sopenharmony_ci# in the file LICENSE in the source distribution or at 7e1051a39Sopenharmony_ci# https://www.openssl.org/source/license.html 8e1051a39Sopenharmony_ci 9e1051a39Sopenharmony_ci 10e1051a39Sopenharmony_ci# ==================================================================== 11e1051a39Sopenharmony_ci# [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL 12e1051a39Sopenharmony_ci# project. The module is, however, dual licensed under OpenSSL and 13e1051a39Sopenharmony_ci# CRYPTOGAMS licenses depending on where you obtain it. For further 14e1051a39Sopenharmony_ci# details see http://www.openssl.org/~appro/cryptogams/. 15e1051a39Sopenharmony_ci# ==================================================================== 16e1051a39Sopenharmony_ci 17e1051a39Sopenharmony_ci# At some point it became apparent that the original SSLeay RC4 18e1051a39Sopenharmony_ci# assembler implementation performs suboptimally on latest IA-32 19e1051a39Sopenharmony_ci# microarchitectures. After re-tuning performance has changed as 20e1051a39Sopenharmony_ci# following: 21e1051a39Sopenharmony_ci# 22e1051a39Sopenharmony_ci# Pentium -10% 23e1051a39Sopenharmony_ci# Pentium III +12% 24e1051a39Sopenharmony_ci# AMD +50%(*) 25e1051a39Sopenharmony_ci# P4 +250%(**) 26e1051a39Sopenharmony_ci# 27e1051a39Sopenharmony_ci# (*) This number is actually a trade-off:-) It's possible to 28e1051a39Sopenharmony_ci# achieve +72%, but at the cost of -48% off PIII performance. 29e1051a39Sopenharmony_ci# In other words code performing further 13% faster on AMD 30e1051a39Sopenharmony_ci# would perform almost 2 times slower on Intel PIII... 31e1051a39Sopenharmony_ci# For reference! This code delivers ~80% of rc4-amd64.pl 32e1051a39Sopenharmony_ci# performance on the same Opteron machine. 33e1051a39Sopenharmony_ci# (**) This number requires compressed key schedule set up by 34e1051a39Sopenharmony_ci# RC4_set_key [see commentary below for further details]. 35e1051a39Sopenharmony_ci 36e1051a39Sopenharmony_ci# May 2011 37e1051a39Sopenharmony_ci# 38e1051a39Sopenharmony_ci# Optimize for Core2 and Westmere [and incidentally Opteron]. Current 39e1051a39Sopenharmony_ci# performance in cycles per processed byte (less is better) and 40e1051a39Sopenharmony_ci# improvement relative to previous version of this module is: 41e1051a39Sopenharmony_ci# 42e1051a39Sopenharmony_ci# Pentium 10.2 # original numbers 43e1051a39Sopenharmony_ci# Pentium III 7.8(*) 44e1051a39Sopenharmony_ci# Intel P4 7.5 45e1051a39Sopenharmony_ci# 46e1051a39Sopenharmony_ci# Opteron 6.1/+20% # new MMX numbers 47e1051a39Sopenharmony_ci# Core2 5.3/+67%(**) 48e1051a39Sopenharmony_ci# Westmere 5.1/+94%(**) 49e1051a39Sopenharmony_ci# Sandy Bridge 5.0/+8% 50e1051a39Sopenharmony_ci# Atom 12.6/+6% 51e1051a39Sopenharmony_ci# VIA Nano 6.4/+9% 52e1051a39Sopenharmony_ci# Ivy Bridge 4.9/±0% 53e1051a39Sopenharmony_ci# Bulldozer 4.9/+15% 54e1051a39Sopenharmony_ci# 55e1051a39Sopenharmony_ci# (*) PIII can actually deliver 6.6 cycles per byte with MMX code, 56e1051a39Sopenharmony_ci# but this specific code performs poorly on Core2. And vice 57e1051a39Sopenharmony_ci# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs 58e1051a39Sopenharmony_ci# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU 59e1051a39Sopenharmony_ci# [anymore], I chose to discard PIII-specific code path and opt 60e1051a39Sopenharmony_ci# for original IALU-only code, which is why MMX/SSE code path 61e1051a39Sopenharmony_ci# is guarded by SSE2 bit (see below), not MMX/SSE. 62e1051a39Sopenharmony_ci# (**) Performance vs. block size on Core2 and Westmere had a maximum 63e1051a39Sopenharmony_ci# at ... 64 bytes block size. And it was quite a maximum, 40-60% 64e1051a39Sopenharmony_ci# in comparison to largest 8KB block size. Above improvement 65e1051a39Sopenharmony_ci# coefficients are for the largest block size. 66e1051a39Sopenharmony_ci 67e1051a39Sopenharmony_ci$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 68e1051a39Sopenharmony_cipush(@INC,"${dir}","${dir}../../perlasm"); 69e1051a39Sopenharmony_cirequire "x86asm.pl"; 70e1051a39Sopenharmony_ci 71e1051a39Sopenharmony_ci$output = pop and open STDOUT,">$output"; 72e1051a39Sopenharmony_ci 73e1051a39Sopenharmony_ci&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); 74e1051a39Sopenharmony_ci 75e1051a39Sopenharmony_ci$xx="eax"; 76e1051a39Sopenharmony_ci$yy="ebx"; 77e1051a39Sopenharmony_ci$tx="ecx"; 78e1051a39Sopenharmony_ci$ty="edx"; 79e1051a39Sopenharmony_ci$inp="esi"; 80e1051a39Sopenharmony_ci$out="ebp"; 81e1051a39Sopenharmony_ci$dat="edi"; 82e1051a39Sopenharmony_ci 83e1051a39Sopenharmony_cisub RC4_loop { 84e1051a39Sopenharmony_ci my $i=shift; 85e1051a39Sopenharmony_ci my $func = ($i==0)?*mov:*or; 86e1051a39Sopenharmony_ci 87e1051a39Sopenharmony_ci &add (&LB($yy),&LB($tx)); 88e1051a39Sopenharmony_ci &mov ($ty,&DWP(0,$dat,$yy,4)); 89e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$yy,4),$tx); 90e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$xx,4),$ty); 91e1051a39Sopenharmony_ci &add ($ty,$tx); 92e1051a39Sopenharmony_ci &inc (&LB($xx)); 93e1051a39Sopenharmony_ci &and ($ty,0xff); 94e1051a39Sopenharmony_ci &ror ($out,8) if ($i!=0); 95e1051a39Sopenharmony_ci if ($i<3) { 96e1051a39Sopenharmony_ci &mov ($tx,&DWP(0,$dat,$xx,4)); 97e1051a39Sopenharmony_ci } else { 98e1051a39Sopenharmony_ci &mov ($tx,&wparam(3)); # reload [re-biased] out 99e1051a39Sopenharmony_ci } 100e1051a39Sopenharmony_ci &$func ($out,&DWP(0,$dat,$ty,4)); 101e1051a39Sopenharmony_ci} 102e1051a39Sopenharmony_ci 103e1051a39Sopenharmony_ciif ($alt=0) { 104e1051a39Sopenharmony_ci # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, 105e1051a39Sopenharmony_ci # but ~40% slower on Core2 and Westmere... Attempt to add movz 106e1051a39Sopenharmony_ci # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet 107e1051a39Sopenharmony_ci # on Core2 with movz it's almost 20% slower than below alternative 108e1051a39Sopenharmony_ci # code... Yes, it's a total mess... 109e1051a39Sopenharmony_ci my @XX=($xx,$out); 110e1051a39Sopenharmony_ci $RC4_loop_mmx = sub { # SSE actually... 111e1051a39Sopenharmony_ci my $i=shift; 112e1051a39Sopenharmony_ci my $j=$i<=0?0:$i>>1; 113e1051a39Sopenharmony_ci my $mm=$i<=0?"mm0":"mm".($i&1); 114e1051a39Sopenharmony_ci 115e1051a39Sopenharmony_ci &add (&LB($yy),&LB($tx)); 116e1051a39Sopenharmony_ci &lea (@XX[1],&DWP(1,@XX[0])); 117e1051a39Sopenharmony_ci &pxor ("mm2","mm0") if ($i==0); 118e1051a39Sopenharmony_ci &psllq ("mm1",8) if ($i==0); 119e1051a39Sopenharmony_ci &and (@XX[1],0xff); 120e1051a39Sopenharmony_ci &pxor ("mm0","mm0") if ($i<=0); 121e1051a39Sopenharmony_ci &mov ($ty,&DWP(0,$dat,$yy,4)); 122e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$yy,4),$tx); 123e1051a39Sopenharmony_ci &pxor ("mm1","mm2") if ($i==0); 124e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$XX[0],4),$ty); 125e1051a39Sopenharmony_ci &add (&LB($ty),&LB($tx)); 126e1051a39Sopenharmony_ci &movd (@XX[0],"mm7") if ($i==0); 127e1051a39Sopenharmony_ci &mov ($tx,&DWP(0,$dat,@XX[1],4)); 128e1051a39Sopenharmony_ci &pxor ("mm1","mm1") if ($i==1); 129e1051a39Sopenharmony_ci &movq ("mm2",&QWP(0,$inp)) if ($i==1); 130e1051a39Sopenharmony_ci &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); 131e1051a39Sopenharmony_ci &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); 132e1051a39Sopenharmony_ci 133e1051a39Sopenharmony_ci push (@XX,shift(@XX)) if ($i>=0); 134e1051a39Sopenharmony_ci } 135e1051a39Sopenharmony_ci} else { 136e1051a39Sopenharmony_ci # Using pinsrw here improves performance on Intel CPUs by 2-3%, but 137e1051a39Sopenharmony_ci # brings down AMD by 7%... 138e1051a39Sopenharmony_ci $RC4_loop_mmx = sub { 139e1051a39Sopenharmony_ci my $i=shift; 140e1051a39Sopenharmony_ci 141e1051a39Sopenharmony_ci &add (&LB($yy),&LB($tx)); 142e1051a39Sopenharmony_ci &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); 143e1051a39Sopenharmony_ci &mov ($ty,&DWP(0,$dat,$yy,4)); 144e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$yy,4),$tx); 145e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$xx,4),$ty); 146e1051a39Sopenharmony_ci &inc ($xx); 147e1051a39Sopenharmony_ci &add ($ty,$tx); 148e1051a39Sopenharmony_ci &movz ($xx,&LB($xx)); # (*) 149e1051a39Sopenharmony_ci &movz ($ty,&LB($ty)); # (*) 150e1051a39Sopenharmony_ci &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); 151e1051a39Sopenharmony_ci &movq ("mm0",&QWP(0,$inp)) if ($i<=0); 152e1051a39Sopenharmony_ci &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); 153e1051a39Sopenharmony_ci &mov ($tx,&DWP(0,$dat,$xx,4)); 154e1051a39Sopenharmony_ci &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); 155e1051a39Sopenharmony_ci 156e1051a39Sopenharmony_ci # (*) This is the key to Core2 and Westmere performance. 157e1051a39Sopenharmony_ci # Without movz out-of-order execution logic confuses 158e1051a39Sopenharmony_ci # itself and fails to reorder loads and stores. Problem 159e1051a39Sopenharmony_ci # appears to be fixed in Sandy Bridge... 160e1051a39Sopenharmony_ci } 161e1051a39Sopenharmony_ci} 162e1051a39Sopenharmony_ci 163e1051a39Sopenharmony_ci&external_label("OPENSSL_ia32cap_P"); 164e1051a39Sopenharmony_ci 165e1051a39Sopenharmony_ci# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); 166e1051a39Sopenharmony_ci&function_begin("RC4"); 167e1051a39Sopenharmony_ci &mov ($dat,&wparam(0)); # load key schedule pointer 168e1051a39Sopenharmony_ci &mov ($ty, &wparam(1)); # load len 169e1051a39Sopenharmony_ci &mov ($inp,&wparam(2)); # load inp 170e1051a39Sopenharmony_ci &mov ($out,&wparam(3)); # load out 171e1051a39Sopenharmony_ci 172e1051a39Sopenharmony_ci &xor ($xx,$xx); # avoid partial register stalls 173e1051a39Sopenharmony_ci &xor ($yy,$yy); 174e1051a39Sopenharmony_ci 175e1051a39Sopenharmony_ci &cmp ($ty,0); # safety net 176e1051a39Sopenharmony_ci &je (&label("abort")); 177e1051a39Sopenharmony_ci 178e1051a39Sopenharmony_ci &mov (&LB($xx),&BP(0,$dat)); # load key->x 179e1051a39Sopenharmony_ci &mov (&LB($yy),&BP(4,$dat)); # load key->y 180e1051a39Sopenharmony_ci &add ($dat,8); 181e1051a39Sopenharmony_ci 182e1051a39Sopenharmony_ci &lea ($tx,&DWP(0,$inp,$ty)); 183e1051a39Sopenharmony_ci &sub ($out,$inp); # re-bias out 184e1051a39Sopenharmony_ci &mov (&wparam(1),$tx); # save input+len 185e1051a39Sopenharmony_ci 186e1051a39Sopenharmony_ci &inc (&LB($xx)); 187e1051a39Sopenharmony_ci 188e1051a39Sopenharmony_ci # detect compressed key schedule... 189e1051a39Sopenharmony_ci &cmp (&DWP(256,$dat),-1); 190e1051a39Sopenharmony_ci &je (&label("RC4_CHAR")); 191e1051a39Sopenharmony_ci 192e1051a39Sopenharmony_ci &mov ($tx,&DWP(0,$dat,$xx,4)); 193e1051a39Sopenharmony_ci 194e1051a39Sopenharmony_ci &and ($ty,-4); # how many 4-byte chunks? 195e1051a39Sopenharmony_ci &jz (&label("loop1")); 196e1051a39Sopenharmony_ci 197e1051a39Sopenharmony_ci &mov (&wparam(3),$out); # $out as accumulator in these loops 198e1051a39Sopenharmony_ci if ($x86only) { 199e1051a39Sopenharmony_ci &jmp (&label("go4loop4")); 200e1051a39Sopenharmony_ci } else { 201e1051a39Sopenharmony_ci &test ($ty,-8); 202e1051a39Sopenharmony_ci &jz (&label("go4loop4")); 203e1051a39Sopenharmony_ci 204e1051a39Sopenharmony_ci &picmeup($out,"OPENSSL_ia32cap_P"); 205e1051a39Sopenharmony_ci &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] 206e1051a39Sopenharmony_ci &jnc (&label("go4loop4")); 207e1051a39Sopenharmony_ci 208e1051a39Sopenharmony_ci &mov ($out,&wparam(3)) if (!$alt); 209e1051a39Sopenharmony_ci &movd ("mm7",&wparam(3)) if ($alt); 210e1051a39Sopenharmony_ci &and ($ty,-8); 211e1051a39Sopenharmony_ci &lea ($ty,&DWP(-8,$inp,$ty)); 212e1051a39Sopenharmony_ci &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 213e1051a39Sopenharmony_ci 214e1051a39Sopenharmony_ci &$RC4_loop_mmx(-1); 215e1051a39Sopenharmony_ci &jmp(&label("loop_mmx_enter")); 216e1051a39Sopenharmony_ci 217e1051a39Sopenharmony_ci &set_label("loop_mmx",16); 218e1051a39Sopenharmony_ci &$RC4_loop_mmx(0); 219e1051a39Sopenharmony_ci &set_label("loop_mmx_enter"); 220e1051a39Sopenharmony_ci for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } 221e1051a39Sopenharmony_ci &mov ($ty,$yy); 222e1051a39Sopenharmony_ci &xor ($yy,$yy); # this is second key to Core2 223e1051a39Sopenharmony_ci &mov (&LB($yy),&LB($ty)); # and Westmere performance... 224e1051a39Sopenharmony_ci &cmp ($inp,&DWP(-4,$dat)); 225e1051a39Sopenharmony_ci &lea ($inp,&DWP(8,$inp)); 226e1051a39Sopenharmony_ci &jb (&label("loop_mmx")); 227e1051a39Sopenharmony_ci 228e1051a39Sopenharmony_ci if ($alt) { 229e1051a39Sopenharmony_ci &movd ($out,"mm7"); 230e1051a39Sopenharmony_ci &pxor ("mm2","mm0"); 231e1051a39Sopenharmony_ci &psllq ("mm1",8); 232e1051a39Sopenharmony_ci &pxor ("mm1","mm2"); 233e1051a39Sopenharmony_ci &movq (&QWP(-8,$out,$inp),"mm1"); 234e1051a39Sopenharmony_ci } else { 235e1051a39Sopenharmony_ci &psllq ("mm1",56); 236e1051a39Sopenharmony_ci &pxor ("mm2","mm1"); 237e1051a39Sopenharmony_ci &movq (&QWP(-8,$out,$inp),"mm2"); 238e1051a39Sopenharmony_ci } 239e1051a39Sopenharmony_ci &emms (); 240e1051a39Sopenharmony_ci 241e1051a39Sopenharmony_ci &cmp ($inp,&wparam(1)); # compare to input+len 242e1051a39Sopenharmony_ci &je (&label("done")); 243e1051a39Sopenharmony_ci &jmp (&label("loop1")); 244e1051a39Sopenharmony_ci } 245e1051a39Sopenharmony_ci 246e1051a39Sopenharmony_ci&set_label("go4loop4",16); 247e1051a39Sopenharmony_ci &lea ($ty,&DWP(-4,$inp,$ty)); 248e1051a39Sopenharmony_ci &mov (&wparam(2),$ty); # save input+(len/4)*4-4 249e1051a39Sopenharmony_ci 250e1051a39Sopenharmony_ci &set_label("loop4"); 251e1051a39Sopenharmony_ci for ($i=0;$i<4;$i++) { RC4_loop($i); } 252e1051a39Sopenharmony_ci &ror ($out,8); 253e1051a39Sopenharmony_ci &xor ($out,&DWP(0,$inp)); 254e1051a39Sopenharmony_ci &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 255e1051a39Sopenharmony_ci &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here 256e1051a39Sopenharmony_ci &lea ($inp,&DWP(4,$inp)); 257e1051a39Sopenharmony_ci &mov ($tx,&DWP(0,$dat,$xx,4)); 258e1051a39Sopenharmony_ci &jb (&label("loop4")); 259e1051a39Sopenharmony_ci 260e1051a39Sopenharmony_ci &cmp ($inp,&wparam(1)); # compare to input+len 261e1051a39Sopenharmony_ci &je (&label("done")); 262e1051a39Sopenharmony_ci &mov ($out,&wparam(3)); # restore $out 263e1051a39Sopenharmony_ci 264e1051a39Sopenharmony_ci &set_label("loop1",16); 265e1051a39Sopenharmony_ci &add (&LB($yy),&LB($tx)); 266e1051a39Sopenharmony_ci &mov ($ty,&DWP(0,$dat,$yy,4)); 267e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$yy,4),$tx); 268e1051a39Sopenharmony_ci &mov (&DWP(0,$dat,$xx,4),$ty); 269e1051a39Sopenharmony_ci &add ($ty,$tx); 270e1051a39Sopenharmony_ci &inc (&LB($xx)); 271e1051a39Sopenharmony_ci &and ($ty,0xff); 272e1051a39Sopenharmony_ci &mov ($ty,&DWP(0,$dat,$ty,4)); 273e1051a39Sopenharmony_ci &xor (&LB($ty),&BP(0,$inp)); 274e1051a39Sopenharmony_ci &lea ($inp,&DWP(1,$inp)); 275e1051a39Sopenharmony_ci &mov ($tx,&DWP(0,$dat,$xx,4)); 276e1051a39Sopenharmony_ci &cmp ($inp,&wparam(1)); # compare to input+len 277e1051a39Sopenharmony_ci &mov (&BP(-1,$out,$inp),&LB($ty)); 278e1051a39Sopenharmony_ci &jb (&label("loop1")); 279e1051a39Sopenharmony_ci 280e1051a39Sopenharmony_ci &jmp (&label("done")); 281e1051a39Sopenharmony_ci 282e1051a39Sopenharmony_ci# this is essentially Intel P4 specific codepath... 283e1051a39Sopenharmony_ci&set_label("RC4_CHAR",16); 284e1051a39Sopenharmony_ci &movz ($tx,&BP(0,$dat,$xx)); 285e1051a39Sopenharmony_ci # strangely enough unrolled loop performs over 20% slower... 286e1051a39Sopenharmony_ci &set_label("cloop1"); 287e1051a39Sopenharmony_ci &add (&LB($yy),&LB($tx)); 288e1051a39Sopenharmony_ci &movz ($ty,&BP(0,$dat,$yy)); 289e1051a39Sopenharmony_ci &mov (&BP(0,$dat,$yy),&LB($tx)); 290e1051a39Sopenharmony_ci &mov (&BP(0,$dat,$xx),&LB($ty)); 291e1051a39Sopenharmony_ci &add (&LB($ty),&LB($tx)); 292e1051a39Sopenharmony_ci &movz ($ty,&BP(0,$dat,$ty)); 293e1051a39Sopenharmony_ci &add (&LB($xx),1); 294e1051a39Sopenharmony_ci &xor (&LB($ty),&BP(0,$inp)); 295e1051a39Sopenharmony_ci &lea ($inp,&DWP(1,$inp)); 296e1051a39Sopenharmony_ci &movz ($tx,&BP(0,$dat,$xx)); 297e1051a39Sopenharmony_ci &cmp ($inp,&wparam(1)); 298e1051a39Sopenharmony_ci &mov (&BP(-1,$out,$inp),&LB($ty)); 299e1051a39Sopenharmony_ci &jb (&label("cloop1")); 300e1051a39Sopenharmony_ci 301e1051a39Sopenharmony_ci&set_label("done"); 302e1051a39Sopenharmony_ci &dec (&LB($xx)); 303e1051a39Sopenharmony_ci &mov (&DWP(-4,$dat),$yy); # save key->y 304e1051a39Sopenharmony_ci &mov (&BP(-8,$dat),&LB($xx)); # save key->x 305e1051a39Sopenharmony_ci&set_label("abort"); 306e1051a39Sopenharmony_ci&function_end("RC4"); 307e1051a39Sopenharmony_ci 308e1051a39Sopenharmony_ci######################################################################## 309e1051a39Sopenharmony_ci 310e1051a39Sopenharmony_ci$inp="esi"; 311e1051a39Sopenharmony_ci$out="edi"; 312e1051a39Sopenharmony_ci$idi="ebp"; 313e1051a39Sopenharmony_ci$ido="ecx"; 314e1051a39Sopenharmony_ci$idx="edx"; 315e1051a39Sopenharmony_ci 316e1051a39Sopenharmony_ci# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); 317e1051a39Sopenharmony_ci&function_begin("RC4_set_key"); 318e1051a39Sopenharmony_ci &mov ($out,&wparam(0)); # load key 319e1051a39Sopenharmony_ci &mov ($idi,&wparam(1)); # load len 320e1051a39Sopenharmony_ci &mov ($inp,&wparam(2)); # load data 321e1051a39Sopenharmony_ci &picmeup($idx,"OPENSSL_ia32cap_P"); 322e1051a39Sopenharmony_ci 323e1051a39Sopenharmony_ci &lea ($out,&DWP(2*4,$out)); # &key->data 324e1051a39Sopenharmony_ci &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end 325e1051a39Sopenharmony_ci &neg ($idi); 326e1051a39Sopenharmony_ci &xor ("eax","eax"); 327e1051a39Sopenharmony_ci &mov (&DWP(-4,$out),$idi); # borrow key->y 328e1051a39Sopenharmony_ci 329e1051a39Sopenharmony_ci &bt (&DWP(0,$idx),20); # check for bit#20 330e1051a39Sopenharmony_ci &jc (&label("c1stloop")); 331e1051a39Sopenharmony_ci 332e1051a39Sopenharmony_ci&set_label("w1stloop",16); 333e1051a39Sopenharmony_ci &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; 334e1051a39Sopenharmony_ci &add (&LB("eax"),1); # i++; 335e1051a39Sopenharmony_ci &jnc (&label("w1stloop")); 336e1051a39Sopenharmony_ci 337e1051a39Sopenharmony_ci &xor ($ido,$ido); 338e1051a39Sopenharmony_ci &xor ($idx,$idx); 339e1051a39Sopenharmony_ci 340e1051a39Sopenharmony_ci&set_label("w2ndloop",16); 341e1051a39Sopenharmony_ci &mov ("eax",&DWP(0,$out,$ido,4)); 342e1051a39Sopenharmony_ci &add (&LB($idx),&BP(0,$inp,$idi)); 343e1051a39Sopenharmony_ci &add (&LB($idx),&LB("eax")); 344e1051a39Sopenharmony_ci &add ($idi,1); 345e1051a39Sopenharmony_ci &mov ("ebx",&DWP(0,$out,$idx,4)); 346e1051a39Sopenharmony_ci &jnz (&label("wnowrap")); 347e1051a39Sopenharmony_ci &mov ($idi,&DWP(-4,$out)); 348e1051a39Sopenharmony_ci &set_label("wnowrap"); 349e1051a39Sopenharmony_ci &mov (&DWP(0,$out,$idx,4),"eax"); 350e1051a39Sopenharmony_ci &mov (&DWP(0,$out,$ido,4),"ebx"); 351e1051a39Sopenharmony_ci &add (&LB($ido),1); 352e1051a39Sopenharmony_ci &jnc (&label("w2ndloop")); 353e1051a39Sopenharmony_ci&jmp (&label("exit")); 354e1051a39Sopenharmony_ci 355e1051a39Sopenharmony_ci# Unlike all other x86 [and x86_64] implementations, Intel P4 core 356e1051a39Sopenharmony_ci# [including EM64T] was found to perform poorly with above "32-bit" key 357e1051a39Sopenharmony_ci# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded 358e1051a39Sopenharmony_ci# assembler turned out to be 3.5x if re-coded for compressed 8-bit one, 359e1051a39Sopenharmony_ci# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit 360e1051a39Sopenharmony_ci# schedule for x86[_64], because non-P4 implementations suffer from 361e1051a39Sopenharmony_ci# significant performance losses then, e.g. PIII exhibits >2x 362e1051a39Sopenharmony_ci# deterioration, and so does Opteron. In order to assure optimal 363e1051a39Sopenharmony_ci# all-round performance, we detect P4 at run-time and set up compressed 364e1051a39Sopenharmony_ci# key schedule, which is recognized by RC4 procedure. 365e1051a39Sopenharmony_ci 366e1051a39Sopenharmony_ci&set_label("c1stloop",16); 367e1051a39Sopenharmony_ci &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; 368e1051a39Sopenharmony_ci &add (&LB("eax"),1); # i++; 369e1051a39Sopenharmony_ci &jnc (&label("c1stloop")); 370e1051a39Sopenharmony_ci 371e1051a39Sopenharmony_ci &xor ($ido,$ido); 372e1051a39Sopenharmony_ci &xor ($idx,$idx); 373e1051a39Sopenharmony_ci &xor ("ebx","ebx"); 374e1051a39Sopenharmony_ci 375e1051a39Sopenharmony_ci&set_label("c2ndloop",16); 376e1051a39Sopenharmony_ci &mov (&LB("eax"),&BP(0,$out,$ido)); 377e1051a39Sopenharmony_ci &add (&LB($idx),&BP(0,$inp,$idi)); 378e1051a39Sopenharmony_ci &add (&LB($idx),&LB("eax")); 379e1051a39Sopenharmony_ci &add ($idi,1); 380e1051a39Sopenharmony_ci &mov (&LB("ebx"),&BP(0,$out,$idx)); 381e1051a39Sopenharmony_ci &jnz (&label("cnowrap")); 382e1051a39Sopenharmony_ci &mov ($idi,&DWP(-4,$out)); 383e1051a39Sopenharmony_ci &set_label("cnowrap"); 384e1051a39Sopenharmony_ci &mov (&BP(0,$out,$idx),&LB("eax")); 385e1051a39Sopenharmony_ci &mov (&BP(0,$out,$ido),&LB("ebx")); 386e1051a39Sopenharmony_ci &add (&LB($ido),1); 387e1051a39Sopenharmony_ci &jnc (&label("c2ndloop")); 388e1051a39Sopenharmony_ci 389e1051a39Sopenharmony_ci &mov (&DWP(256,$out),-1); # mark schedule as compressed 390e1051a39Sopenharmony_ci 391e1051a39Sopenharmony_ci&set_label("exit"); 392e1051a39Sopenharmony_ci &xor ("eax","eax"); 393e1051a39Sopenharmony_ci &mov (&DWP(-8,$out),"eax"); # key->x=0; 394e1051a39Sopenharmony_ci &mov (&DWP(-4,$out),"eax"); # key->y=0; 395e1051a39Sopenharmony_ci&function_end("RC4_set_key"); 396e1051a39Sopenharmony_ci 397e1051a39Sopenharmony_ci# const char *RC4_options(void); 398e1051a39Sopenharmony_ci&function_begin_B("RC4_options"); 399e1051a39Sopenharmony_ci &call (&label("pic_point")); 400e1051a39Sopenharmony_ci&set_label("pic_point"); 401e1051a39Sopenharmony_ci &blindpop("eax"); 402e1051a39Sopenharmony_ci &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); 403e1051a39Sopenharmony_ci &picmeup("edx","OPENSSL_ia32cap_P"); 404e1051a39Sopenharmony_ci &mov ("edx",&DWP(0,"edx")); 405e1051a39Sopenharmony_ci &bt ("edx",20); 406e1051a39Sopenharmony_ci &jc (&label("1xchar")); 407e1051a39Sopenharmony_ci &bt ("edx",26); 408e1051a39Sopenharmony_ci &jnc (&label("ret")); 409e1051a39Sopenharmony_ci &add ("eax",25); 410e1051a39Sopenharmony_ci &ret (); 411e1051a39Sopenharmony_ci&set_label("1xchar"); 412e1051a39Sopenharmony_ci &add ("eax",12); 413e1051a39Sopenharmony_ci&set_label("ret"); 414e1051a39Sopenharmony_ci &ret (); 415e1051a39Sopenharmony_ci&set_label("opts",64); 416e1051a39Sopenharmony_ci&asciz ("rc4(4x,int)"); 417e1051a39Sopenharmony_ci&asciz ("rc4(1x,char)"); 418e1051a39Sopenharmony_ci&asciz ("rc4(8x,mmx)"); 419e1051a39Sopenharmony_ci&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); 420e1051a39Sopenharmony_ci&align (64); 421e1051a39Sopenharmony_ci&function_end_B("RC4_options"); 422e1051a39Sopenharmony_ci 423e1051a39Sopenharmony_ci&asm_finish(); 424e1051a39Sopenharmony_ci 425e1051a39Sopenharmony_ciclose STDOUT or die "error closing STDOUT: $!"; 426