1e1051a39Sopenharmony_ci#! /usr/bin/env perl
2e1051a39Sopenharmony_ci# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci#
4e1051a39Sopenharmony_ci# Licensed under the Apache License 2.0 (the "License").  You may not use
5e1051a39Sopenharmony_ci# this file except in compliance with the License.  You can obtain a copy
6e1051a39Sopenharmony_ci# in the file LICENSE in the source distribution or at
7e1051a39Sopenharmony_ci# https://www.openssl.org/source/license.html
8e1051a39Sopenharmony_ci
9e1051a39Sopenharmony_ci#
10e1051a39Sopenharmony_ci# ====================================================================
11e1051a39Sopenharmony_ci# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12e1051a39Sopenharmony_ci# project. The module is, however, dual licensed under OpenSSL and
13e1051a39Sopenharmony_ci# CRYPTOGAMS licenses depending on where you obtain it. For further
14e1051a39Sopenharmony_ci# details see http://www.openssl.org/~appro/cryptogams/.
15e1051a39Sopenharmony_ci# ====================================================================
16e1051a39Sopenharmony_ci#
17e1051a39Sopenharmony_ci# March, May, June 2010
18e1051a39Sopenharmony_ci#
19e1051a39Sopenharmony_ci# The module implements "4-bit" GCM GHASH function and underlying
20e1051a39Sopenharmony_ci# single multiplication operation in GF(2^128). "4-bit" means that it
21e1051a39Sopenharmony_ci# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
22e1051a39Sopenharmony_ci# code paths: vanilla x86 and vanilla SSE. Former will be executed on
23e1051a39Sopenharmony_ci# 486 and Pentium, latter on all others. SSE GHASH features so called
24e1051a39Sopenharmony_ci# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
25e1051a39Sopenharmony_ci# of per-key storage [+512 bytes shared table]. Performance results
26e1051a39Sopenharmony_ci# are for streamed GHASH subroutine and are expressed in cycles per
27e1051a39Sopenharmony_ci# processed byte, less is better:
28e1051a39Sopenharmony_ci#
29e1051a39Sopenharmony_ci#		gcc 2.95.3(*)	SSE assembler	x86 assembler
30e1051a39Sopenharmony_ci#
31e1051a39Sopenharmony_ci# Pentium	105/111(**)	-		50
32e1051a39Sopenharmony_ci# PIII		68 /75		12.2		24
33e1051a39Sopenharmony_ci# P4		125/125		17.8		84(***)
34e1051a39Sopenharmony_ci# Opteron	66 /70		10.1		30
35e1051a39Sopenharmony_ci# Core2		54 /67		8.4		18
36e1051a39Sopenharmony_ci# Atom		105/105		16.8		53
37e1051a39Sopenharmony_ci# VIA Nano	69 /71		13.0		27
38e1051a39Sopenharmony_ci#
39e1051a39Sopenharmony_ci# (*)	gcc 3.4.x was observed to generate few percent slower code,
40e1051a39Sopenharmony_ci#	which is one of reasons why 2.95.3 results were chosen,
41e1051a39Sopenharmony_ci#	another reason is lack of 3.4.x results for older CPUs;
42e1051a39Sopenharmony_ci#	comparison with SSE results is not completely fair, because C
43e1051a39Sopenharmony_ci#	results are for vanilla "256B" implementation, while
44e1051a39Sopenharmony_ci#	assembler results are for "528B";-)
45e1051a39Sopenharmony_ci# (**)	second number is result for code compiled with -fPIC flag,
46e1051a39Sopenharmony_ci#	which is actually more relevant, because assembler code is
47e1051a39Sopenharmony_ci#	position-independent;
48e1051a39Sopenharmony_ci# (***)	see comment in non-MMX routine for further details;
49e1051a39Sopenharmony_ci#
50e1051a39Sopenharmony_ci# To summarize, it's >2-5 times faster than gcc-generated code. To
51e1051a39Sopenharmony_ci# anchor it to something else SHA1 assembler processes one byte in
52e1051a39Sopenharmony_ci# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
53e1051a39Sopenharmony_ci# in particular, see comment at the end of the file...
54e1051a39Sopenharmony_ci
55e1051a39Sopenharmony_ci# May 2010
56e1051a39Sopenharmony_ci#
57e1051a39Sopenharmony_ci# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
58e1051a39Sopenharmony_ci# The question is how close is it to theoretical limit? The pclmulqdq
59e1051a39Sopenharmony_ci# instruction latency appears to be 14 cycles and there can't be more
60e1051a39Sopenharmony_ci# than 2 of them executing at any given time. This means that single
61e1051a39Sopenharmony_ci# Karatsuba multiplication would take 28 cycles *plus* few cycles for
62e1051a39Sopenharmony_ci# pre- and post-processing. Then multiplication has to be followed by
63e1051a39Sopenharmony_ci# modulo-reduction. Given that aggregated reduction method [see
64e1051a39Sopenharmony_ci# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
65e1051a39Sopenharmony_ci# white paper by Intel] allows you to perform reduction only once in
66e1051a39Sopenharmony_ci# a while we can assume that asymptotic performance can be estimated
67e1051a39Sopenharmony_ci# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
68e1051a39Sopenharmony_ci# and Naggr is the aggregation factor.
69e1051a39Sopenharmony_ci#
70e1051a39Sopenharmony_ci# Before we proceed to this implementation let's have closer look at
71e1051a39Sopenharmony_ci# the best-performing code suggested by Intel in their white paper.
72e1051a39Sopenharmony_ci# By tracing inter-register dependencies Tmod is estimated as ~19
73e1051a39Sopenharmony_ci# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
74e1051a39Sopenharmony_ci# processed byte. As implied, this is quite optimistic estimate,
75e1051a39Sopenharmony_ci# because it does not account for Karatsuba pre- and post-processing,
76e1051a39Sopenharmony_ci# which for a single multiplication is ~5 cycles. Unfortunately Intel
77e1051a39Sopenharmony_ci# does not provide performance data for GHASH alone. But benchmarking
78e1051a39Sopenharmony_ci# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
79e1051a39Sopenharmony_ci# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
80e1051a39Sopenharmony_ci# the result accounts even for pre-computing of degrees of the hash
81e1051a39Sopenharmony_ci# key H, but its portion is negligible at 16KB buffer size.
82e1051a39Sopenharmony_ci#
83e1051a39Sopenharmony_ci# Moving on to the implementation in question. Tmod is estimated as
84e1051a39Sopenharmony_ci# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
85e1051a39Sopenharmony_ci# 2.16. How is it possible that measured performance is better than
86e1051a39Sopenharmony_ci# optimistic theoretical estimate? There is one thing Intel failed
87e1051a39Sopenharmony_ci# to recognize. By serializing GHASH with CTR in same subroutine
88e1051a39Sopenharmony_ci# former's performance is really limited to above (Tmul + Tmod/Naggr)
89e1051a39Sopenharmony_ci# equation. But if GHASH procedure is detached, the modulo-reduction
90e1051a39Sopenharmony_ci# can be interleaved with Naggr-1 multiplications at instruction level
91e1051a39Sopenharmony_ci# and under ideal conditions even disappear from the equation. So that
92e1051a39Sopenharmony_ci# optimistic theoretical estimate for this implementation is ...
93e1051a39Sopenharmony_ci# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
94e1051a39Sopenharmony_ci# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
95e1051a39Sopenharmony_ci# where Tproc is time required for Karatsuba pre- and post-processing,
96e1051a39Sopenharmony_ci# is more realistic estimate. In this case it gives ... 1.91 cycles.
97e1051a39Sopenharmony_ci# Or in other words, depending on how well we can interleave reduction
98e1051a39Sopenharmony_ci# and one of the two multiplications the performance should be between
99e1051a39Sopenharmony_ci# 1.91 and 2.16. As already mentioned, this implementation processes
100e1051a39Sopenharmony_ci# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
101e1051a39Sopenharmony_ci# - in 2.02. x86_64 performance is better, because larger register
102e1051a39Sopenharmony_ci# bank allows to interleave reduction and multiplication better.
103e1051a39Sopenharmony_ci#
104e1051a39Sopenharmony_ci# Does it make sense to increase Naggr? To start with it's virtually
105e1051a39Sopenharmony_ci# impossible in 32-bit mode, because of limited register bank
106e1051a39Sopenharmony_ci# capacity. Otherwise improvement has to be weighed against slower
107e1051a39Sopenharmony_ci# setup, as well as code size and complexity increase. As even
108e1051a39Sopenharmony_ci# optimistic estimate doesn't promise 30% performance improvement,
109e1051a39Sopenharmony_ci# there are currently no plans to increase Naggr.
110e1051a39Sopenharmony_ci#
111e1051a39Sopenharmony_ci# Special thanks to David Woodhouse for providing access to a
112e1051a39Sopenharmony_ci# Westmere-based system on behalf of Intel Open Source Technology Centre.
113e1051a39Sopenharmony_ci
114e1051a39Sopenharmony_ci# January 2010
115e1051a39Sopenharmony_ci#
116e1051a39Sopenharmony_ci# Tweaked to optimize transitions between integer and FP operations
117e1051a39Sopenharmony_ci# on same XMM register, PCLMULQDQ subroutine was measured to process
118e1051a39Sopenharmony_ci# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
119e1051a39Sopenharmony_ci# The minor regression on Westmere is outweighed by ~15% improvement
120e1051a39Sopenharmony_ci# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
121e1051a39Sopenharmony_ci# similar manner resulted in almost 20% degradation on Sandy Bridge,
122e1051a39Sopenharmony_ci# where original 64-bit code processes one byte in 1.95 cycles.
123e1051a39Sopenharmony_ci
124e1051a39Sopenharmony_ci#####################################################################
125e1051a39Sopenharmony_ci# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
126e1051a39Sopenharmony_ci# 32-bit mode and 1.89 in 64-bit.
127e1051a39Sopenharmony_ci
128e1051a39Sopenharmony_ci# February 2013
129e1051a39Sopenharmony_ci#
130e1051a39Sopenharmony_ci# Overhaul: aggregate Karatsuba post-processing, improve ILP in
131e1051a39Sopenharmony_ci# reduction_alg9. Resulting performance is 1.96 cycles per byte on
132e1051a39Sopenharmony_ci# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
133e1051a39Sopenharmony_ci
134e1051a39Sopenharmony_ci$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
135e1051a39Sopenharmony_cipush(@INC,"${dir}","${dir}../../perlasm");
136e1051a39Sopenharmony_cirequire "x86asm.pl";
137e1051a39Sopenharmony_ci
138e1051a39Sopenharmony_ci$output=pop and open STDOUT,">$output";
139e1051a39Sopenharmony_ci
140e1051a39Sopenharmony_ci&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
141e1051a39Sopenharmony_ci
142e1051a39Sopenharmony_ci$sse2=0;
143e1051a39Sopenharmony_cifor (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
144e1051a39Sopenharmony_ci
145e1051a39Sopenharmony_ci($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
146e1051a39Sopenharmony_ci$inp  = "edi";
147e1051a39Sopenharmony_ci$Htbl = "esi";
148e1051a39Sopenharmony_ci
149e1051a39Sopenharmony_ci$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
150e1051a39Sopenharmony_ci		# than unrolled, which has to be weighted against
151e1051a39Sopenharmony_ci		# 2.5x x86-specific code size reduction.
152e1051a39Sopenharmony_ci
153e1051a39Sopenharmony_cisub x86_loop {
154e1051a39Sopenharmony_ci    my $off = shift;
155e1051a39Sopenharmony_ci    my $rem = "eax";
156e1051a39Sopenharmony_ci
157e1051a39Sopenharmony_ci	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
158e1051a39Sopenharmony_ci	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
159e1051a39Sopenharmony_ci	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
160e1051a39Sopenharmony_ci	&mov	($Zll,&DWP(8,$Htbl,$Zll));
161e1051a39Sopenharmony_ci	&xor	($rem,$rem);	# avoid partial register stalls on PIII
162e1051a39Sopenharmony_ci
163e1051a39Sopenharmony_ci	# shrd practically kills P4, 2.5x deterioration, but P4 has
164e1051a39Sopenharmony_ci	# MMX code-path to execute. shrd runs tad faster [than twice
165e1051a39Sopenharmony_ci	# the shifts, move's and or's] on pre-MMX Pentium (as well as
166e1051a39Sopenharmony_ci	# PIII and Core2), *but* minimizes code size, spares register
167e1051a39Sopenharmony_ci	# and thus allows to fold the loop...
168e1051a39Sopenharmony_ci	if (!$unroll) {
169e1051a39Sopenharmony_ci	my $cnt = $inp;
170e1051a39Sopenharmony_ci	&mov	($cnt,15);
171e1051a39Sopenharmony_ci	&jmp	(&label("x86_loop"));
172e1051a39Sopenharmony_ci	&set_label("x86_loop",16);
173e1051a39Sopenharmony_ci	    for($i=1;$i<=2;$i++) {
174e1051a39Sopenharmony_ci		&mov	(&LB($rem),&LB($Zll));
175e1051a39Sopenharmony_ci		&shrd	($Zll,$Zlh,4);
176e1051a39Sopenharmony_ci		&and	(&LB($rem),0xf);
177e1051a39Sopenharmony_ci		&shrd	($Zlh,$Zhl,4);
178e1051a39Sopenharmony_ci		&shrd	($Zhl,$Zhh,4);
179e1051a39Sopenharmony_ci		&shr	($Zhh,4);
180e1051a39Sopenharmony_ci		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
181e1051a39Sopenharmony_ci
182e1051a39Sopenharmony_ci		&mov	(&LB($rem),&BP($off,"esp",$cnt));
183e1051a39Sopenharmony_ci		if ($i&1) {
184e1051a39Sopenharmony_ci			&and	(&LB($rem),0xf0);
185e1051a39Sopenharmony_ci		} else {
186e1051a39Sopenharmony_ci			&shl	(&LB($rem),4);
187e1051a39Sopenharmony_ci		}
188e1051a39Sopenharmony_ci
189e1051a39Sopenharmony_ci		&xor	($Zll,&DWP(8,$Htbl,$rem));
190e1051a39Sopenharmony_ci		&xor	($Zlh,&DWP(12,$Htbl,$rem));
191e1051a39Sopenharmony_ci		&xor	($Zhl,&DWP(0,$Htbl,$rem));
192e1051a39Sopenharmony_ci		&xor	($Zhh,&DWP(4,$Htbl,$rem));
193e1051a39Sopenharmony_ci
194e1051a39Sopenharmony_ci		if ($i&1) {
195e1051a39Sopenharmony_ci			&dec	($cnt);
196e1051a39Sopenharmony_ci			&js	(&label("x86_break"));
197e1051a39Sopenharmony_ci		} else {
198e1051a39Sopenharmony_ci			&jmp	(&label("x86_loop"));
199e1051a39Sopenharmony_ci		}
200e1051a39Sopenharmony_ci	    }
201e1051a39Sopenharmony_ci	&set_label("x86_break",16);
202e1051a39Sopenharmony_ci	} else {
203e1051a39Sopenharmony_ci	    for($i=1;$i<32;$i++) {
204e1051a39Sopenharmony_ci		&comment($i);
205e1051a39Sopenharmony_ci		&mov	(&LB($rem),&LB($Zll));
206e1051a39Sopenharmony_ci		&shrd	($Zll,$Zlh,4);
207e1051a39Sopenharmony_ci		&and	(&LB($rem),0xf);
208e1051a39Sopenharmony_ci		&shrd	($Zlh,$Zhl,4);
209e1051a39Sopenharmony_ci		&shrd	($Zhl,$Zhh,4);
210e1051a39Sopenharmony_ci		&shr	($Zhh,4);
211e1051a39Sopenharmony_ci		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
212e1051a39Sopenharmony_ci
213e1051a39Sopenharmony_ci		if ($i&1) {
214e1051a39Sopenharmony_ci			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
215e1051a39Sopenharmony_ci			&and	(&LB($rem),0xf0);
216e1051a39Sopenharmony_ci		} else {
217e1051a39Sopenharmony_ci			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
218e1051a39Sopenharmony_ci			&shl	(&LB($rem),4);
219e1051a39Sopenharmony_ci		}
220e1051a39Sopenharmony_ci
221e1051a39Sopenharmony_ci		&xor	($Zll,&DWP(8,$Htbl,$rem));
222e1051a39Sopenharmony_ci		&xor	($Zlh,&DWP(12,$Htbl,$rem));
223e1051a39Sopenharmony_ci		&xor	($Zhl,&DWP(0,$Htbl,$rem));
224e1051a39Sopenharmony_ci		&xor	($Zhh,&DWP(4,$Htbl,$rem));
225e1051a39Sopenharmony_ci	    }
226e1051a39Sopenharmony_ci	}
227e1051a39Sopenharmony_ci	&bswap	($Zll);
228e1051a39Sopenharmony_ci	&bswap	($Zlh);
229e1051a39Sopenharmony_ci	&bswap	($Zhl);
230e1051a39Sopenharmony_ci	if (!$x86only) {
231e1051a39Sopenharmony_ci		&bswap	($Zhh);
232e1051a39Sopenharmony_ci	} else {
233e1051a39Sopenharmony_ci		&mov	("eax",$Zhh);
234e1051a39Sopenharmony_ci		&bswap	("eax");
235e1051a39Sopenharmony_ci		&mov	($Zhh,"eax");
236e1051a39Sopenharmony_ci	}
237e1051a39Sopenharmony_ci}
238e1051a39Sopenharmony_ci
239e1051a39Sopenharmony_ciif ($unroll) {
240e1051a39Sopenharmony_ci    &function_begin_B("_x86_gmult_4bit_inner");
241e1051a39Sopenharmony_ci	&x86_loop(4);
242e1051a39Sopenharmony_ci	&ret	();
243e1051a39Sopenharmony_ci    &function_end_B("_x86_gmult_4bit_inner");
244e1051a39Sopenharmony_ci}
245e1051a39Sopenharmony_ci
246e1051a39Sopenharmony_cisub deposit_rem_4bit {
247e1051a39Sopenharmony_ci    my $bias = shift;
248e1051a39Sopenharmony_ci
249e1051a39Sopenharmony_ci	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
250e1051a39Sopenharmony_ci	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
251e1051a39Sopenharmony_ci	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
252e1051a39Sopenharmony_ci	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
253e1051a39Sopenharmony_ci	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
254e1051a39Sopenharmony_ci	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
255e1051a39Sopenharmony_ci	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
256e1051a39Sopenharmony_ci	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
257e1051a39Sopenharmony_ci	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
258e1051a39Sopenharmony_ci	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
259e1051a39Sopenharmony_ci	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
260e1051a39Sopenharmony_ci	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
261e1051a39Sopenharmony_ci	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
262e1051a39Sopenharmony_ci	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
263e1051a39Sopenharmony_ci	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
264e1051a39Sopenharmony_ci	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
265e1051a39Sopenharmony_ci}
266e1051a39Sopenharmony_ci
267e1051a39Sopenharmony_ci$suffix = $x86only ? "" : "_x86";
268e1051a39Sopenharmony_ci
269e1051a39Sopenharmony_ci&function_begin("gcm_gmult_4bit".$suffix);
270e1051a39Sopenharmony_ci	&stack_push(16+4+1);			# +1 for stack alignment
271e1051a39Sopenharmony_ci	&mov	($inp,&wparam(0));		# load Xi
272e1051a39Sopenharmony_ci	&mov	($Htbl,&wparam(1));		# load Htable
273e1051a39Sopenharmony_ci
274e1051a39Sopenharmony_ci	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
275e1051a39Sopenharmony_ci	&mov	($Zhl,&DWP(4,$inp));
276e1051a39Sopenharmony_ci	&mov	($Zlh,&DWP(8,$inp));
277e1051a39Sopenharmony_ci	&mov	($Zll,&DWP(12,$inp));
278e1051a39Sopenharmony_ci
279e1051a39Sopenharmony_ci	&deposit_rem_4bit(16);
280e1051a39Sopenharmony_ci
281e1051a39Sopenharmony_ci	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
282e1051a39Sopenharmony_ci	&mov	(&DWP(4,"esp"),$Zhl);
283e1051a39Sopenharmony_ci	&mov	(&DWP(8,"esp"),$Zlh);
284e1051a39Sopenharmony_ci	&mov	(&DWP(12,"esp"),$Zll);
285e1051a39Sopenharmony_ci	&shr	($Zll,20);
286e1051a39Sopenharmony_ci	&and	($Zll,0xf0);
287e1051a39Sopenharmony_ci
288e1051a39Sopenharmony_ci	if ($unroll) {
289e1051a39Sopenharmony_ci		&call	("_x86_gmult_4bit_inner");
290e1051a39Sopenharmony_ci	} else {
291e1051a39Sopenharmony_ci		&x86_loop(0);
292e1051a39Sopenharmony_ci		&mov	($inp,&wparam(0));
293e1051a39Sopenharmony_ci	}
294e1051a39Sopenharmony_ci
295e1051a39Sopenharmony_ci	&mov	(&DWP(12,$inp),$Zll);
296e1051a39Sopenharmony_ci	&mov	(&DWP(8,$inp),$Zlh);
297e1051a39Sopenharmony_ci	&mov	(&DWP(4,$inp),$Zhl);
298e1051a39Sopenharmony_ci	&mov	(&DWP(0,$inp),$Zhh);
299e1051a39Sopenharmony_ci	&stack_pop(16+4+1);
300e1051a39Sopenharmony_ci&function_end("gcm_gmult_4bit".$suffix);
301e1051a39Sopenharmony_ci
302e1051a39Sopenharmony_ci&function_begin("gcm_ghash_4bit".$suffix);
303e1051a39Sopenharmony_ci	&stack_push(16+4+1);			# +1 for 64-bit alignment
304e1051a39Sopenharmony_ci	&mov	($Zll,&wparam(0));		# load Xi
305e1051a39Sopenharmony_ci	&mov	($Htbl,&wparam(1));		# load Htable
306e1051a39Sopenharmony_ci	&mov	($inp,&wparam(2));		# load in
307e1051a39Sopenharmony_ci	&mov	("ecx",&wparam(3));		# load len
308e1051a39Sopenharmony_ci	&add	("ecx",$inp);
309e1051a39Sopenharmony_ci	&mov	(&wparam(3),"ecx");
310e1051a39Sopenharmony_ci
311e1051a39Sopenharmony_ci	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
312e1051a39Sopenharmony_ci	&mov	($Zhl,&DWP(4,$Zll));
313e1051a39Sopenharmony_ci	&mov	($Zlh,&DWP(8,$Zll));
314e1051a39Sopenharmony_ci	&mov	($Zll,&DWP(12,$Zll));
315e1051a39Sopenharmony_ci
316e1051a39Sopenharmony_ci	&deposit_rem_4bit(16);
317e1051a39Sopenharmony_ci
318e1051a39Sopenharmony_ci    &set_label("x86_outer_loop",16);
319e1051a39Sopenharmony_ci	&xor	($Zll,&DWP(12,$inp));		# xor with input
320e1051a39Sopenharmony_ci	&xor	($Zlh,&DWP(8,$inp));
321e1051a39Sopenharmony_ci	&xor	($Zhl,&DWP(4,$inp));
322e1051a39Sopenharmony_ci	&xor	($Zhh,&DWP(0,$inp));
323e1051a39Sopenharmony_ci	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
324e1051a39Sopenharmony_ci	&mov	(&DWP(8,"esp"),$Zlh);
325e1051a39Sopenharmony_ci	&mov	(&DWP(4,"esp"),$Zhl);
326e1051a39Sopenharmony_ci	&mov	(&DWP(0,"esp"),$Zhh);
327e1051a39Sopenharmony_ci
328e1051a39Sopenharmony_ci	&shr	($Zll,20);
329e1051a39Sopenharmony_ci	&and	($Zll,0xf0);
330e1051a39Sopenharmony_ci
331e1051a39Sopenharmony_ci	if ($unroll) {
332e1051a39Sopenharmony_ci		&call	("_x86_gmult_4bit_inner");
333e1051a39Sopenharmony_ci	} else {
334e1051a39Sopenharmony_ci		&x86_loop(0);
335e1051a39Sopenharmony_ci		&mov	($inp,&wparam(2));
336e1051a39Sopenharmony_ci	}
337e1051a39Sopenharmony_ci	&lea	($inp,&DWP(16,$inp));
338e1051a39Sopenharmony_ci	&cmp	($inp,&wparam(3));
339e1051a39Sopenharmony_ci	&mov	(&wparam(2),$inp)	if (!$unroll);
340e1051a39Sopenharmony_ci	&jb	(&label("x86_outer_loop"));
341e1051a39Sopenharmony_ci
342e1051a39Sopenharmony_ci	&mov	($inp,&wparam(0));	# load Xi
343e1051a39Sopenharmony_ci	&mov	(&DWP(12,$inp),$Zll);
344e1051a39Sopenharmony_ci	&mov	(&DWP(8,$inp),$Zlh);
345e1051a39Sopenharmony_ci	&mov	(&DWP(4,$inp),$Zhl);
346e1051a39Sopenharmony_ci	&mov	(&DWP(0,$inp),$Zhh);
347e1051a39Sopenharmony_ci	&stack_pop(16+4+1);
348e1051a39Sopenharmony_ci&function_end("gcm_ghash_4bit".$suffix);
349e1051a39Sopenharmony_ci
350e1051a39Sopenharmony_ciif (!$x86only) {{{
351e1051a39Sopenharmony_ci
352e1051a39Sopenharmony_ci&static_label("rem_4bit");
353e1051a39Sopenharmony_ci
354e1051a39Sopenharmony_ciif (!$sse2) {{	# pure-MMX "May" version...
355e1051a39Sopenharmony_ci
356e1051a39Sopenharmony_ci$S=12;		# shift factor for rem_4bit
357e1051a39Sopenharmony_ci
358e1051a39Sopenharmony_ci&function_begin_B("_mmx_gmult_4bit_inner");
359e1051a39Sopenharmony_ci# MMX version performs 3.5 times better on P4 (see comment in non-MMX
360e1051a39Sopenharmony_ci# routine for further details), 100% better on Opteron, ~70% better
361e1051a39Sopenharmony_ci# on Core2 and PIII... In other words effort is considered to be well
362e1051a39Sopenharmony_ci# spent... Since initial release the loop was unrolled in order to
363e1051a39Sopenharmony_ci# "liberate" register previously used as loop counter. Instead it's
364e1051a39Sopenharmony_ci# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
365e1051a39Sopenharmony_ci# The path involves move of Z.lo from MMX to integer register,
366e1051a39Sopenharmony_ci# effective address calculation and finally merge of value to Z.hi.
367e1051a39Sopenharmony_ci# Reference to rem_4bit is scheduled so late that I had to >>4
368e1051a39Sopenharmony_ci# rem_4bit elements. This resulted in 20-45% procent improvement
369e1051a39Sopenharmony_ci# on contemporary µ-archs.
370e1051a39Sopenharmony_ci{
371e1051a39Sopenharmony_ci    my $cnt;
372e1051a39Sopenharmony_ci    my $rem_4bit = "eax";
373e1051a39Sopenharmony_ci    my @rem = ($Zhh,$Zll);
374e1051a39Sopenharmony_ci    my $nhi = $Zhl;
375e1051a39Sopenharmony_ci    my $nlo = $Zlh;
376e1051a39Sopenharmony_ci
377e1051a39Sopenharmony_ci    my ($Zlo,$Zhi) = ("mm0","mm1");
378e1051a39Sopenharmony_ci    my $tmp = "mm2";
379e1051a39Sopenharmony_ci
380e1051a39Sopenharmony_ci	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
381e1051a39Sopenharmony_ci	&mov	($nhi,$Zll);
382e1051a39Sopenharmony_ci	&mov	(&LB($nlo),&LB($nhi));
383e1051a39Sopenharmony_ci	&shl	(&LB($nlo),4);
384e1051a39Sopenharmony_ci	&and	($nhi,0xf0);
385e1051a39Sopenharmony_ci	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
386e1051a39Sopenharmony_ci	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
387e1051a39Sopenharmony_ci	&movd	($rem[0],$Zlo);
388e1051a39Sopenharmony_ci
389e1051a39Sopenharmony_ci	for ($cnt=28;$cnt>=-2;$cnt--) {
390e1051a39Sopenharmony_ci	    my $odd = $cnt&1;
391e1051a39Sopenharmony_ci	    my $nix = $odd ? $nlo : $nhi;
392e1051a39Sopenharmony_ci
393e1051a39Sopenharmony_ci		&shl	(&LB($nlo),4)			if ($odd);
394e1051a39Sopenharmony_ci		&psrlq	($Zlo,4);
395e1051a39Sopenharmony_ci		&movq	($tmp,$Zhi);
396e1051a39Sopenharmony_ci		&psrlq	($Zhi,4);
397e1051a39Sopenharmony_ci		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
398e1051a39Sopenharmony_ci		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
399e1051a39Sopenharmony_ci		&psllq	($tmp,60);
400e1051a39Sopenharmony_ci		&and	($nhi,0xf0)			if ($odd);
401e1051a39Sopenharmony_ci		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
402e1051a39Sopenharmony_ci		&and	($rem[0],0xf);
403e1051a39Sopenharmony_ci		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
404e1051a39Sopenharmony_ci		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
405e1051a39Sopenharmony_ci		&movd	($rem[1],$Zlo);
406e1051a39Sopenharmony_ci		&pxor	($Zlo,$tmp);
407e1051a39Sopenharmony_ci
408e1051a39Sopenharmony_ci		push	(@rem,shift(@rem));		# "rotate" registers
409e1051a39Sopenharmony_ci	}
410e1051a39Sopenharmony_ci
411e1051a39Sopenharmony_ci	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]
412e1051a39Sopenharmony_ci
413e1051a39Sopenharmony_ci	&psrlq	($Zlo,32);	# lower part of Zlo is already there
414e1051a39Sopenharmony_ci	&movd	($Zhl,$Zhi);
415e1051a39Sopenharmony_ci	&psrlq	($Zhi,32);
416e1051a39Sopenharmony_ci	&movd	($Zlh,$Zlo);
417e1051a39Sopenharmony_ci	&movd	($Zhh,$Zhi);
418e1051a39Sopenharmony_ci	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4
419e1051a39Sopenharmony_ci
420e1051a39Sopenharmony_ci	&bswap	($Zll);
421e1051a39Sopenharmony_ci	&bswap	($Zhl);
422e1051a39Sopenharmony_ci	&bswap	($Zlh);
423e1051a39Sopenharmony_ci	&xor	($Zhh,$inp);
424e1051a39Sopenharmony_ci	&bswap	($Zhh);
425e1051a39Sopenharmony_ci
426e1051a39Sopenharmony_ci	&ret	();
427e1051a39Sopenharmony_ci}
428e1051a39Sopenharmony_ci&function_end_B("_mmx_gmult_4bit_inner");
429e1051a39Sopenharmony_ci
430e1051a39Sopenharmony_ci&function_begin("gcm_gmult_4bit_mmx");
431e1051a39Sopenharmony_ci	&mov	($inp,&wparam(0));	# load Xi
432e1051a39Sopenharmony_ci	&mov	($Htbl,&wparam(1));	# load Htable
433e1051a39Sopenharmony_ci
434e1051a39Sopenharmony_ci	&call	(&label("pic_point"));
435e1051a39Sopenharmony_ci	&set_label("pic_point");
436e1051a39Sopenharmony_ci	&blindpop("eax");
437e1051a39Sopenharmony_ci	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
438e1051a39Sopenharmony_ci
439e1051a39Sopenharmony_ci	&movz	($Zll,&BP(15,$inp));
440e1051a39Sopenharmony_ci
441e1051a39Sopenharmony_ci	&call	("_mmx_gmult_4bit_inner");
442e1051a39Sopenharmony_ci
443e1051a39Sopenharmony_ci	&mov	($inp,&wparam(0));	# load Xi
444e1051a39Sopenharmony_ci	&emms	();
445e1051a39Sopenharmony_ci	&mov	(&DWP(12,$inp),$Zll);
446e1051a39Sopenharmony_ci	&mov	(&DWP(4,$inp),$Zhl);
447e1051a39Sopenharmony_ci	&mov	(&DWP(8,$inp),$Zlh);
448e1051a39Sopenharmony_ci	&mov	(&DWP(0,$inp),$Zhh);
449e1051a39Sopenharmony_ci&function_end("gcm_gmult_4bit_mmx");
450e1051a39Sopenharmony_ci
451e1051a39Sopenharmony_ci# Streamed version performs 20% better on P4, 7% on Opteron,
452e1051a39Sopenharmony_ci# 10% on Core2 and PIII...
453e1051a39Sopenharmony_ci&function_begin("gcm_ghash_4bit_mmx");
454e1051a39Sopenharmony_ci	&mov	($Zhh,&wparam(0));	# load Xi
455e1051a39Sopenharmony_ci	&mov	($Htbl,&wparam(1));	# load Htable
456e1051a39Sopenharmony_ci	&mov	($inp,&wparam(2));	# load in
457e1051a39Sopenharmony_ci	&mov	($Zlh,&wparam(3));	# load len
458e1051a39Sopenharmony_ci
459e1051a39Sopenharmony_ci	&call	(&label("pic_point"));
460e1051a39Sopenharmony_ci	&set_label("pic_point");
461e1051a39Sopenharmony_ci	&blindpop("eax");
462e1051a39Sopenharmony_ci	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
463e1051a39Sopenharmony_ci
464e1051a39Sopenharmony_ci	&add	($Zlh,$inp);
465e1051a39Sopenharmony_ci	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
466e1051a39Sopenharmony_ci	&stack_push(4+1);		# +1 for stack alignment
467e1051a39Sopenharmony_ci
468e1051a39Sopenharmony_ci	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
469e1051a39Sopenharmony_ci	&mov	($Zhl,&DWP(4,$Zhh));
470e1051a39Sopenharmony_ci	&mov	($Zlh,&DWP(8,$Zhh));
471e1051a39Sopenharmony_ci	&mov	($Zhh,&DWP(0,$Zhh));
472e1051a39Sopenharmony_ci	&jmp	(&label("mmx_outer_loop"));
473e1051a39Sopenharmony_ci
474e1051a39Sopenharmony_ci    &set_label("mmx_outer_loop",16);
475e1051a39Sopenharmony_ci	&xor	($Zll,&DWP(12,$inp));
476e1051a39Sopenharmony_ci	&xor	($Zhl,&DWP(4,$inp));
477e1051a39Sopenharmony_ci	&xor	($Zlh,&DWP(8,$inp));
478e1051a39Sopenharmony_ci	&xor	($Zhh,&DWP(0,$inp));
479e1051a39Sopenharmony_ci	&mov	(&wparam(2),$inp);
480e1051a39Sopenharmony_ci	&mov	(&DWP(12,"esp"),$Zll);
481e1051a39Sopenharmony_ci	&mov	(&DWP(4,"esp"),$Zhl);
482e1051a39Sopenharmony_ci	&mov	(&DWP(8,"esp"),$Zlh);
483e1051a39Sopenharmony_ci	&mov	(&DWP(0,"esp"),$Zhh);
484e1051a39Sopenharmony_ci
485e1051a39Sopenharmony_ci	&mov	($inp,"esp");
486e1051a39Sopenharmony_ci	&shr	($Zll,24);
487e1051a39Sopenharmony_ci
488e1051a39Sopenharmony_ci	&call	("_mmx_gmult_4bit_inner");
489e1051a39Sopenharmony_ci
490e1051a39Sopenharmony_ci	&mov	($inp,&wparam(2));
491e1051a39Sopenharmony_ci	&lea	($inp,&DWP(16,$inp));
492e1051a39Sopenharmony_ci	&cmp	($inp,&wparam(3));
493e1051a39Sopenharmony_ci	&jb	(&label("mmx_outer_loop"));
494e1051a39Sopenharmony_ci
495e1051a39Sopenharmony_ci	&mov	($inp,&wparam(0));	# load Xi
496e1051a39Sopenharmony_ci	&emms	();
497e1051a39Sopenharmony_ci	&mov	(&DWP(12,$inp),$Zll);
498e1051a39Sopenharmony_ci	&mov	(&DWP(4,$inp),$Zhl);
499e1051a39Sopenharmony_ci	&mov	(&DWP(8,$inp),$Zlh);
500e1051a39Sopenharmony_ci	&mov	(&DWP(0,$inp),$Zhh);
501e1051a39Sopenharmony_ci
502e1051a39Sopenharmony_ci	&stack_pop(4+1);
503e1051a39Sopenharmony_ci&function_end("gcm_ghash_4bit_mmx");
504e1051a39Sopenharmony_ci
505e1051a39Sopenharmony_ci}} else {{	# "June" MMX version...
506e1051a39Sopenharmony_ci		# ... has slower "April" gcm_gmult_4bit_mmx with folded
507e1051a39Sopenharmony_ci		# loop. This is done to conserve code size...
508e1051a39Sopenharmony_ci$S=16;		# shift factor for rem_4bit
509e1051a39Sopenharmony_ci
510e1051a39Sopenharmony_cisub mmx_loop() {
511e1051a39Sopenharmony_ci# MMX version performs 2.8 times better on P4 (see comment in non-MMX
512e1051a39Sopenharmony_ci# routine for further details), 40% better on Opteron and Core2, 50%
513e1051a39Sopenharmony_ci# better on PIII... In other words effort is considered to be well
514e1051a39Sopenharmony_ci# spent...
515e1051a39Sopenharmony_ci    my $inp = shift;
516e1051a39Sopenharmony_ci    my $rem_4bit = shift;
517e1051a39Sopenharmony_ci    my $cnt = $Zhh;
518e1051a39Sopenharmony_ci    my $nhi = $Zhl;
519e1051a39Sopenharmony_ci    my $nlo = $Zlh;
520e1051a39Sopenharmony_ci    my $rem = $Zll;
521e1051a39Sopenharmony_ci
522e1051a39Sopenharmony_ci    my ($Zlo,$Zhi) = ("mm0","mm1");
523e1051a39Sopenharmony_ci    my $tmp = "mm2";
524e1051a39Sopenharmony_ci
525e1051a39Sopenharmony_ci	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
526e1051a39Sopenharmony_ci	&mov	($nhi,$Zll);
527e1051a39Sopenharmony_ci	&mov	(&LB($nlo),&LB($nhi));
528e1051a39Sopenharmony_ci	&mov	($cnt,14);
529e1051a39Sopenharmony_ci	&shl	(&LB($nlo),4);
530e1051a39Sopenharmony_ci	&and	($nhi,0xf0);
531e1051a39Sopenharmony_ci	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
532e1051a39Sopenharmony_ci	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
533e1051a39Sopenharmony_ci	&movd	($rem,$Zlo);
534e1051a39Sopenharmony_ci	&jmp	(&label("mmx_loop"));
535e1051a39Sopenharmony_ci
536e1051a39Sopenharmony_ci    &set_label("mmx_loop",16);
537e1051a39Sopenharmony_ci	&psrlq	($Zlo,4);
538e1051a39Sopenharmony_ci	&and	($rem,0xf);
539e1051a39Sopenharmony_ci	&movq	($tmp,$Zhi);
540e1051a39Sopenharmony_ci	&psrlq	($Zhi,4);
541e1051a39Sopenharmony_ci	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
542e1051a39Sopenharmony_ci	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
543e1051a39Sopenharmony_ci	&psllq	($tmp,60);
544e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
545e1051a39Sopenharmony_ci	&dec	($cnt);
546e1051a39Sopenharmony_ci	&movd	($rem,$Zlo);
547e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
548e1051a39Sopenharmony_ci	&mov	($nhi,$nlo);
549e1051a39Sopenharmony_ci	&pxor	($Zlo,$tmp);
550e1051a39Sopenharmony_ci	&js	(&label("mmx_break"));
551e1051a39Sopenharmony_ci
552e1051a39Sopenharmony_ci	&shl	(&LB($nlo),4);
553e1051a39Sopenharmony_ci	&and	($rem,0xf);
554e1051a39Sopenharmony_ci	&psrlq	($Zlo,4);
555e1051a39Sopenharmony_ci	&and	($nhi,0xf0);
556e1051a39Sopenharmony_ci	&movq	($tmp,$Zhi);
557e1051a39Sopenharmony_ci	&psrlq	($Zhi,4);
558e1051a39Sopenharmony_ci	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
559e1051a39Sopenharmony_ci	&psllq	($tmp,60);
560e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
561e1051a39Sopenharmony_ci	&movd	($rem,$Zlo);
562e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
563e1051a39Sopenharmony_ci	&pxor	($Zlo,$tmp);
564e1051a39Sopenharmony_ci	&jmp	(&label("mmx_loop"));
565e1051a39Sopenharmony_ci
566e1051a39Sopenharmony_ci    &set_label("mmx_break",16);
567e1051a39Sopenharmony_ci	&shl	(&LB($nlo),4);
568e1051a39Sopenharmony_ci	&and	($rem,0xf);
569e1051a39Sopenharmony_ci	&psrlq	($Zlo,4);
570e1051a39Sopenharmony_ci	&and	($nhi,0xf0);
571e1051a39Sopenharmony_ci	&movq	($tmp,$Zhi);
572e1051a39Sopenharmony_ci	&psrlq	($Zhi,4);
573e1051a39Sopenharmony_ci	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
574e1051a39Sopenharmony_ci	&psllq	($tmp,60);
575e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
576e1051a39Sopenharmony_ci	&movd	($rem,$Zlo);
577e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
578e1051a39Sopenharmony_ci	&pxor	($Zlo,$tmp);
579e1051a39Sopenharmony_ci
580e1051a39Sopenharmony_ci	&psrlq	($Zlo,4);
581e1051a39Sopenharmony_ci	&and	($rem,0xf);
582e1051a39Sopenharmony_ci	&movq	($tmp,$Zhi);
583e1051a39Sopenharmony_ci	&psrlq	($Zhi,4);
584e1051a39Sopenharmony_ci	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
585e1051a39Sopenharmony_ci	&psllq	($tmp,60);
586e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
587e1051a39Sopenharmony_ci	&movd	($rem,$Zlo);
588e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
589e1051a39Sopenharmony_ci	&pxor	($Zlo,$tmp);
590e1051a39Sopenharmony_ci
591e1051a39Sopenharmony_ci	&psrlq	($Zlo,32);	# lower part of Zlo is already there
592e1051a39Sopenharmony_ci	&movd	($Zhl,$Zhi);
593e1051a39Sopenharmony_ci	&psrlq	($Zhi,32);
594e1051a39Sopenharmony_ci	&movd	($Zlh,$Zlo);
595e1051a39Sopenharmony_ci	&movd	($Zhh,$Zhi);
596e1051a39Sopenharmony_ci
597e1051a39Sopenharmony_ci	&bswap	($Zll);
598e1051a39Sopenharmony_ci	&bswap	($Zhl);
599e1051a39Sopenharmony_ci	&bswap	($Zlh);
600e1051a39Sopenharmony_ci	&bswap	($Zhh);
601e1051a39Sopenharmony_ci}
602e1051a39Sopenharmony_ci
603e1051a39Sopenharmony_ci&function_begin("gcm_gmult_4bit_mmx");
604e1051a39Sopenharmony_ci	&mov	($inp,&wparam(0));	# load Xi
605e1051a39Sopenharmony_ci	&mov	($Htbl,&wparam(1));	# load Htable
606e1051a39Sopenharmony_ci
607e1051a39Sopenharmony_ci	&call	(&label("pic_point"));
608e1051a39Sopenharmony_ci	&set_label("pic_point");
609e1051a39Sopenharmony_ci	&blindpop("eax");
610e1051a39Sopenharmony_ci	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
611e1051a39Sopenharmony_ci
612e1051a39Sopenharmony_ci	&movz	($Zll,&BP(15,$inp));
613e1051a39Sopenharmony_ci
614e1051a39Sopenharmony_ci	&mmx_loop($inp,"eax");
615e1051a39Sopenharmony_ci
616e1051a39Sopenharmony_ci	&emms	();
617e1051a39Sopenharmony_ci	&mov	(&DWP(12,$inp),$Zll);
618e1051a39Sopenharmony_ci	&mov	(&DWP(4,$inp),$Zhl);
619e1051a39Sopenharmony_ci	&mov	(&DWP(8,$inp),$Zlh);
620e1051a39Sopenharmony_ci	&mov	(&DWP(0,$inp),$Zhh);
621e1051a39Sopenharmony_ci&function_end("gcm_gmult_4bit_mmx");
622e1051a39Sopenharmony_ci
623e1051a39Sopenharmony_ci######################################################################
624e1051a39Sopenharmony_ci# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
625e1051a39Sopenharmony_ci# (see gcm128.c for details). It provides further 20-40% performance
626e1051a39Sopenharmony_ci# improvement over above mentioned "May" version.
627e1051a39Sopenharmony_ci
628e1051a39Sopenharmony_ci&static_label("rem_8bit");
629e1051a39Sopenharmony_ci
630e1051a39Sopenharmony_ci&function_begin("gcm_ghash_4bit_mmx");
631e1051a39Sopenharmony_ci{ my ($Zlo,$Zhi) = ("mm7","mm6");
632e1051a39Sopenharmony_ci  my $rem_8bit = "esi";
633e1051a39Sopenharmony_ci  my $Htbl = "ebx";
634e1051a39Sopenharmony_ci
635e1051a39Sopenharmony_ci    # parameter block
636e1051a39Sopenharmony_ci    &mov	("eax",&wparam(0));		# Xi
637e1051a39Sopenharmony_ci    &mov	("ebx",&wparam(1));		# Htable
638e1051a39Sopenharmony_ci    &mov	("ecx",&wparam(2));		# inp
639e1051a39Sopenharmony_ci    &mov	("edx",&wparam(3));		# len
640e1051a39Sopenharmony_ci    &mov	("ebp","esp");			# original %esp
641e1051a39Sopenharmony_ci    &call	(&label("pic_point"));
642e1051a39Sopenharmony_ci    &set_label	("pic_point");
643e1051a39Sopenharmony_ci    &blindpop	($rem_8bit);
644e1051a39Sopenharmony_ci    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
645e1051a39Sopenharmony_ci
646e1051a39Sopenharmony_ci    &sub	("esp",512+16+16);		# allocate stack frame...
647e1051a39Sopenharmony_ci    &and	("esp",-64);			# ...and align it
648e1051a39Sopenharmony_ci    &sub	("esp",16);			# place for (u8)(H[]<<4)
649e1051a39Sopenharmony_ci
650e1051a39Sopenharmony_ci    &add	("edx","ecx");			# pointer to the end of input
651e1051a39Sopenharmony_ci    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
652e1051a39Sopenharmony_ci    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
653e1051a39Sopenharmony_ci    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
654e1051a39Sopenharmony_ci
655e1051a39Sopenharmony_ci    { my @lo  = ("mm0","mm1","mm2");
656e1051a39Sopenharmony_ci      my @hi  = ("mm3","mm4","mm5");
657e1051a39Sopenharmony_ci      my @tmp = ("mm6","mm7");
658e1051a39Sopenharmony_ci      my ($off1,$off2,$i) = (0,0,);
659e1051a39Sopenharmony_ci
660e1051a39Sopenharmony_ci      &add	($Htbl,128);			# optimize for size
661e1051a39Sopenharmony_ci      &lea	("edi",&DWP(16+128,"esp"));
662e1051a39Sopenharmony_ci      &lea	("ebp",&DWP(16+256+128,"esp"));
663e1051a39Sopenharmony_ci
664e1051a39Sopenharmony_ci      # decompose Htable (low and high parts are kept separately),
665e1051a39Sopenharmony_ci      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
666e1051a39Sopenharmony_ci      for ($i=0;$i<18;$i++) {
667e1051a39Sopenharmony_ci
668e1051a39Sopenharmony_ci	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
669e1051a39Sopenharmony_ci	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
670e1051a39Sopenharmony_ci	&psllq	($tmp[1],60)				if ($i>1);
671e1051a39Sopenharmony_ci	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
672e1051a39Sopenharmony_ci	&por	($lo[2],$tmp[1])			if ($i>1);
673e1051a39Sopenharmony_ci	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
674e1051a39Sopenharmony_ci	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
675e1051a39Sopenharmony_ci	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
676e1051a39Sopenharmony_ci	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
677e1051a39Sopenharmony_ci	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
678e1051a39Sopenharmony_ci	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
679e1051a39Sopenharmony_ci	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
680e1051a39Sopenharmony_ci	&shl	("edx",4)				if ($i<16);
681e1051a39Sopenharmony_ci	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
682e1051a39Sopenharmony_ci
683e1051a39Sopenharmony_ci	unshift	(@lo,pop(@lo));			# "rotate" registers
684e1051a39Sopenharmony_ci	unshift	(@hi,pop(@hi));
685e1051a39Sopenharmony_ci	unshift	(@tmp,pop(@tmp));
686e1051a39Sopenharmony_ci	$off1 += 8	if ($i>0);
687e1051a39Sopenharmony_ci	$off2 += 8	if ($i>1);
688e1051a39Sopenharmony_ci      }
689e1051a39Sopenharmony_ci    }
690e1051a39Sopenharmony_ci
691e1051a39Sopenharmony_ci    &movq	($Zhi,&QWP(0,"eax"));
692e1051a39Sopenharmony_ci    &mov	("ebx",&DWP(8,"eax"));
693e1051a39Sopenharmony_ci    &mov	("edx",&DWP(12,"eax"));		# load Xi
694e1051a39Sopenharmony_ci
695e1051a39Sopenharmony_ci&set_label("outer",16);
696e1051a39Sopenharmony_ci  { my $nlo = "eax";
697e1051a39Sopenharmony_ci    my $dat = "edx";
698e1051a39Sopenharmony_ci    my @nhi = ("edi","ebp");
699e1051a39Sopenharmony_ci    my @rem = ("ebx","ecx");
700e1051a39Sopenharmony_ci    my @red = ("mm0","mm1","mm2");
701e1051a39Sopenharmony_ci    my $tmp = "mm3";
702e1051a39Sopenharmony_ci
703e1051a39Sopenharmony_ci    &xor	($dat,&DWP(12,"ecx"));		# merge input data
704e1051a39Sopenharmony_ci    &xor	("ebx",&DWP(8,"ecx"));
705e1051a39Sopenharmony_ci    &pxor	($Zhi,&QWP(0,"ecx"));
706e1051a39Sopenharmony_ci    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
707e1051a39Sopenharmony_ci    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
708e1051a39Sopenharmony_ci    &mov	(&DWP(528+8,"esp"),"ebx");
709e1051a39Sopenharmony_ci    &movq	(&QWP(528+0,"esp"),$Zhi);
710e1051a39Sopenharmony_ci    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
711e1051a39Sopenharmony_ci
712e1051a39Sopenharmony_ci    &xor	($nlo,$nlo);
713e1051a39Sopenharmony_ci    &rol	($dat,8);
714e1051a39Sopenharmony_ci    &mov	(&LB($nlo),&LB($dat));
715e1051a39Sopenharmony_ci    &mov	($nhi[1],$nlo);
716e1051a39Sopenharmony_ci    &and	(&LB($nlo),0x0f);
717e1051a39Sopenharmony_ci    &shr	($nhi[1],4);
718e1051a39Sopenharmony_ci    &pxor	($red[0],$red[0]);
719e1051a39Sopenharmony_ci    &rol	($dat,8);			# next byte
720e1051a39Sopenharmony_ci    &pxor	($red[1],$red[1]);
721e1051a39Sopenharmony_ci    &pxor	($red[2],$red[2]);
722e1051a39Sopenharmony_ci
723e1051a39Sopenharmony_ci    # Just like in "May" version modulo-schedule for critical path in
724e1051a39Sopenharmony_ci    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
725e1051a39Sopenharmony_ci    # is scheduled so late that rem_8bit[] has to be shifted *right*
726e1051a39Sopenharmony_ci    # by 16, which is why last argument to pinsrw is 2, which
727e1051a39Sopenharmony_ci    # corresponds to <<32=<<48>>16...
728e1051a39Sopenharmony_ci    for ($j=11,$i=0;$i<15;$i++) {
729e1051a39Sopenharmony_ci
730e1051a39Sopenharmony_ci      if ($i>0) {
731e1051a39Sopenharmony_ci	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
732e1051a39Sopenharmony_ci	&rol	($dat,8);				# next byte
733e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
734e1051a39Sopenharmony_ci
735e1051a39Sopenharmony_ci	&pxor	($Zlo,$tmp);
736e1051a39Sopenharmony_ci	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
737e1051a39Sopenharmony_ci	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
738e1051a39Sopenharmony_ci      } else {
739e1051a39Sopenharmony_ci	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
740e1051a39Sopenharmony_ci	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
741e1051a39Sopenharmony_ci      }
742e1051a39Sopenharmony_ci
743e1051a39Sopenharmony_ci	&mov	(&LB($nlo),&LB($dat));
744e1051a39Sopenharmony_ci	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
745e1051a39Sopenharmony_ci
746e1051a39Sopenharmony_ci	&movd	($rem[0],$Zlo);
747e1051a39Sopenharmony_ci	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
748e1051a39Sopenharmony_ci	&psrlq	($Zlo,8);				# Z>>=8
749e1051a39Sopenharmony_ci
750e1051a39Sopenharmony_ci	&movq	($tmp,$Zhi);
751e1051a39Sopenharmony_ci	&mov	($nhi[0],$nlo);
752e1051a39Sopenharmony_ci	&psrlq	($Zhi,8);
753e1051a39Sopenharmony_ci
754e1051a39Sopenharmony_ci	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
755e1051a39Sopenharmony_ci	&and	(&LB($nlo),0x0f);
756e1051a39Sopenharmony_ci	&psllq	($tmp,56);
757e1051a39Sopenharmony_ci
758e1051a39Sopenharmony_ci	&pxor	($Zhi,$red[1])				if ($i>1);
759e1051a39Sopenharmony_ci	&shr	($nhi[0],4);
760e1051a39Sopenharmony_ci	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
761e1051a39Sopenharmony_ci
762e1051a39Sopenharmony_ci	unshift	(@red,pop(@red));			# "rotate" registers
763e1051a39Sopenharmony_ci	unshift	(@rem,pop(@rem));
764e1051a39Sopenharmony_ci	unshift	(@nhi,pop(@nhi));
765e1051a39Sopenharmony_ci    }
766e1051a39Sopenharmony_ci
767e1051a39Sopenharmony_ci    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
768e1051a39Sopenharmony_ci    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
769e1051a39Sopenharmony_ci    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
770e1051a39Sopenharmony_ci
771e1051a39Sopenharmony_ci    &pxor	($Zlo,$tmp);
772e1051a39Sopenharmony_ci    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
773e1051a39Sopenharmony_ci    &movz	($rem[1],&LB($rem[1]));
774e1051a39Sopenharmony_ci
775e1051a39Sopenharmony_ci    &pxor	($red[2],$red[2]);			# clear 2nd word
776e1051a39Sopenharmony_ci    &psllq	($red[1],4);
777e1051a39Sopenharmony_ci
778e1051a39Sopenharmony_ci    &movd	($rem[0],$Zlo);
779e1051a39Sopenharmony_ci    &psrlq	($Zlo,4);				# Z>>=4
780e1051a39Sopenharmony_ci
781e1051a39Sopenharmony_ci    &movq	($tmp,$Zhi);
782e1051a39Sopenharmony_ci    &psrlq	($Zhi,4);
783e1051a39Sopenharmony_ci    &shl	($rem[0],4);				# rem<<4
784e1051a39Sopenharmony_ci
785e1051a39Sopenharmony_ci    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
786e1051a39Sopenharmony_ci    &psllq	($tmp,60);
787e1051a39Sopenharmony_ci    &movz	($rem[0],&LB($rem[0]));
788e1051a39Sopenharmony_ci
789e1051a39Sopenharmony_ci    &pxor	($Zlo,$tmp);
790e1051a39Sopenharmony_ci    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
791e1051a39Sopenharmony_ci
792e1051a39Sopenharmony_ci    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
793e1051a39Sopenharmony_ci    &pxor	($Zhi,$red[1]);
794e1051a39Sopenharmony_ci
795e1051a39Sopenharmony_ci    &movd	($dat,$Zlo);
796e1051a39Sopenharmony_ci    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
797e1051a39Sopenharmony_ci
798e1051a39Sopenharmony_ci    &psllq	($red[0],12);				# correct by <<16>>4
799e1051a39Sopenharmony_ci    &pxor	($Zhi,$red[0]);
800e1051a39Sopenharmony_ci    &psrlq	($Zlo,32);
801e1051a39Sopenharmony_ci    &pxor	($Zhi,$red[2]);
802e1051a39Sopenharmony_ci
803e1051a39Sopenharmony_ci    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
804e1051a39Sopenharmony_ci    &movd	("ebx",$Zlo);
805e1051a39Sopenharmony_ci    &movq	($tmp,$Zhi);			# 01234567
806e1051a39Sopenharmony_ci    &psllw	($Zhi,8);			# 1.3.5.7.
807e1051a39Sopenharmony_ci    &psrlw	($tmp,8);			# .0.2.4.6
808e1051a39Sopenharmony_ci    &por	($Zhi,$tmp);			# 10325476
809e1051a39Sopenharmony_ci    &bswap	($dat);
810e1051a39Sopenharmony_ci    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
811e1051a39Sopenharmony_ci    &bswap	("ebx");
812e1051a39Sopenharmony_ci
813e1051a39Sopenharmony_ci    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
814e1051a39Sopenharmony_ci    &jne	(&label("outer"));
815e1051a39Sopenharmony_ci  }
816e1051a39Sopenharmony_ci
817e1051a39Sopenharmony_ci    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
818e1051a39Sopenharmony_ci    &mov	(&DWP(12,"eax"),"edx");
819e1051a39Sopenharmony_ci    &mov	(&DWP(8,"eax"),"ebx");
820e1051a39Sopenharmony_ci    &movq	(&QWP(0,"eax"),$Zhi);
821e1051a39Sopenharmony_ci
822e1051a39Sopenharmony_ci    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
823e1051a39Sopenharmony_ci    &emms	();
824e1051a39Sopenharmony_ci}
825e1051a39Sopenharmony_ci&function_end("gcm_ghash_4bit_mmx");
826e1051a39Sopenharmony_ci}}
827e1051a39Sopenharmony_ci
828e1051a39Sopenharmony_ciif ($sse2) {{
829e1051a39Sopenharmony_ci######################################################################
830e1051a39Sopenharmony_ci# PCLMULQDQ version.
831e1051a39Sopenharmony_ci
832e1051a39Sopenharmony_ci$Xip="eax";
833e1051a39Sopenharmony_ci$Htbl="edx";
834e1051a39Sopenharmony_ci$const="ecx";
835e1051a39Sopenharmony_ci$inp="esi";
836e1051a39Sopenharmony_ci$len="ebx";
837e1051a39Sopenharmony_ci
838e1051a39Sopenharmony_ci($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
839e1051a39Sopenharmony_ci($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
840e1051a39Sopenharmony_ci($Xn,$Xhn)=("xmm6","xmm7");
841e1051a39Sopenharmony_ci
842e1051a39Sopenharmony_ci&static_label("bswap");
843e1051a39Sopenharmony_ci
844e1051a39Sopenharmony_cisub clmul64x64_T2 {	# minimal "register" pressure
845e1051a39Sopenharmony_cimy ($Xhi,$Xi,$Hkey,$HK)=@_;
846e1051a39Sopenharmony_ci
847e1051a39Sopenharmony_ci	&movdqa		($Xhi,$Xi);		#
848e1051a39Sopenharmony_ci	&pshufd		($T1,$Xi,0b01001110);
849e1051a39Sopenharmony_ci	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
850e1051a39Sopenharmony_ci	&pxor		($T1,$Xi);		#
851e1051a39Sopenharmony_ci	&pxor		($T2,$Hkey)		if (!defined($HK));
852e1051a39Sopenharmony_ci			$HK=$T2			if (!defined($HK));
853e1051a39Sopenharmony_ci
854e1051a39Sopenharmony_ci	&pclmulqdq	($Xi,$Hkey,0x00);	#######
855e1051a39Sopenharmony_ci	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
856e1051a39Sopenharmony_ci	&pclmulqdq	($T1,$HK,0x00);		#######
857e1051a39Sopenharmony_ci	&xorps		($T1,$Xi);		#
858e1051a39Sopenharmony_ci	&xorps		($T1,$Xhi);		#
859e1051a39Sopenharmony_ci
860e1051a39Sopenharmony_ci	&movdqa		($T2,$T1);		#
861e1051a39Sopenharmony_ci	&psrldq		($T1,8);
862e1051a39Sopenharmony_ci	&pslldq		($T2,8);		#
863e1051a39Sopenharmony_ci	&pxor		($Xhi,$T1);
864e1051a39Sopenharmony_ci	&pxor		($Xi,$T2);		#
865e1051a39Sopenharmony_ci}
866e1051a39Sopenharmony_ci
867e1051a39Sopenharmony_cisub clmul64x64_T3 {
868e1051a39Sopenharmony_ci# Even though this subroutine offers visually better ILP, it
869e1051a39Sopenharmony_ci# was empirically found to be a tad slower than above version.
870e1051a39Sopenharmony_ci# At least in gcm_ghash_clmul context. But it's just as well,
871e1051a39Sopenharmony_ci# because loop modulo-scheduling is possible only thanks to
872e1051a39Sopenharmony_ci# minimized "register" pressure...
873e1051a39Sopenharmony_cimy ($Xhi,$Xi,$Hkey)=@_;
874e1051a39Sopenharmony_ci
875e1051a39Sopenharmony_ci	&movdqa		($T1,$Xi);		#
876e1051a39Sopenharmony_ci	&movdqa		($Xhi,$Xi);
877e1051a39Sopenharmony_ci	&pclmulqdq	($Xi,$Hkey,0x00);	#######
878e1051a39Sopenharmony_ci	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
879e1051a39Sopenharmony_ci	&pshufd		($T2,$T1,0b01001110);	#
880e1051a39Sopenharmony_ci	&pshufd		($T3,$Hkey,0b01001110);
881e1051a39Sopenharmony_ci	&pxor		($T2,$T1);		#
882e1051a39Sopenharmony_ci	&pxor		($T3,$Hkey);
883e1051a39Sopenharmony_ci	&pclmulqdq	($T2,$T3,0x00);		#######
884e1051a39Sopenharmony_ci	&pxor		($T2,$Xi);		#
885e1051a39Sopenharmony_ci	&pxor		($T2,$Xhi);		#
886e1051a39Sopenharmony_ci
887e1051a39Sopenharmony_ci	&movdqa		($T3,$T2);		#
888e1051a39Sopenharmony_ci	&psrldq		($T2,8);
889e1051a39Sopenharmony_ci	&pslldq		($T3,8);		#
890e1051a39Sopenharmony_ci	&pxor		($Xhi,$T2);
891e1051a39Sopenharmony_ci	&pxor		($Xi,$T3);		#
892e1051a39Sopenharmony_ci}
893e1051a39Sopenharmony_ci
894e1051a39Sopenharmony_ciif (1) {		# Algorithm 9 with <<1 twist.
895e1051a39Sopenharmony_ci			# Reduction is shorter and uses only two
896e1051a39Sopenharmony_ci			# temporary registers, which makes it better
897e1051a39Sopenharmony_ci			# candidate for interleaving with 64x64
898e1051a39Sopenharmony_ci			# multiplication. Pre-modulo-scheduled loop
899e1051a39Sopenharmony_ci			# was found to be ~20% faster than Algorithm 5
900e1051a39Sopenharmony_ci			# below. Algorithm 9 was therefore chosen for
901e1051a39Sopenharmony_ci			# further optimization...
902e1051a39Sopenharmony_ci
903e1051a39Sopenharmony_cisub reduction_alg9 {	# 17/11 times faster than Intel version
904e1051a39Sopenharmony_cimy ($Xhi,$Xi) = @_;
905e1051a39Sopenharmony_ci
906e1051a39Sopenharmony_ci	# 1st phase
907e1051a39Sopenharmony_ci	&movdqa		($T2,$Xi);		#
908e1051a39Sopenharmony_ci	&movdqa		($T1,$Xi);
909e1051a39Sopenharmony_ci	&psllq		($Xi,5);
910e1051a39Sopenharmony_ci	&pxor		($T1,$Xi);		#
911e1051a39Sopenharmony_ci	&psllq		($Xi,1);
912e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		#
913e1051a39Sopenharmony_ci	&psllq		($Xi,57);		#
914e1051a39Sopenharmony_ci	&movdqa		($T1,$Xi);		#
915e1051a39Sopenharmony_ci	&pslldq		($Xi,8);
916e1051a39Sopenharmony_ci	&psrldq		($T1,8);		#
917e1051a39Sopenharmony_ci	&pxor		($Xi,$T2);
918e1051a39Sopenharmony_ci	&pxor		($Xhi,$T1);		#
919e1051a39Sopenharmony_ci
920e1051a39Sopenharmony_ci	# 2nd phase
921e1051a39Sopenharmony_ci	&movdqa		($T2,$Xi);
922e1051a39Sopenharmony_ci	&psrlq		($Xi,1);
923e1051a39Sopenharmony_ci	&pxor		($Xhi,$T2);		#
924e1051a39Sopenharmony_ci	&pxor		($T2,$Xi);
925e1051a39Sopenharmony_ci	&psrlq		($Xi,5);
926e1051a39Sopenharmony_ci	&pxor		($Xi,$T2);		#
927e1051a39Sopenharmony_ci	&psrlq		($Xi,1);		#
928e1051a39Sopenharmony_ci	&pxor		($Xi,$Xhi)		#
929e1051a39Sopenharmony_ci}
930e1051a39Sopenharmony_ci
931e1051a39Sopenharmony_ci&function_begin_B("gcm_init_clmul");
932e1051a39Sopenharmony_ci	&mov		($Htbl,&wparam(0));
933e1051a39Sopenharmony_ci	&mov		($Xip,&wparam(1));
934e1051a39Sopenharmony_ci
935e1051a39Sopenharmony_ci	&call		(&label("pic"));
936e1051a39Sopenharmony_ci&set_label("pic");
937e1051a39Sopenharmony_ci	&blindpop	($const);
938e1051a39Sopenharmony_ci	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
939e1051a39Sopenharmony_ci
940e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Xip));
941e1051a39Sopenharmony_ci	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
942e1051a39Sopenharmony_ci
943e1051a39Sopenharmony_ci	# <<1 twist
944e1051a39Sopenharmony_ci	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
945e1051a39Sopenharmony_ci	&movdqa		($T1,$Hkey);
946e1051a39Sopenharmony_ci	&psllq		($Hkey,1);
947e1051a39Sopenharmony_ci	&pxor		($T3,$T3);		#
948e1051a39Sopenharmony_ci	&psrlq		($T1,63);
949e1051a39Sopenharmony_ci	&pcmpgtd	($T3,$T2);		# broadcast carry bit
950e1051a39Sopenharmony_ci	&pslldq		($T1,8);
951e1051a39Sopenharmony_ci	&por		($Hkey,$T1);		# H<<=1
952e1051a39Sopenharmony_ci
953e1051a39Sopenharmony_ci	# magic reduction
954e1051a39Sopenharmony_ci	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
955e1051a39Sopenharmony_ci	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
956e1051a39Sopenharmony_ci
957e1051a39Sopenharmony_ci	# calculate H^2
958e1051a39Sopenharmony_ci	&movdqa		($Xi,$Hkey);
959e1051a39Sopenharmony_ci	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
960e1051a39Sopenharmony_ci	&reduction_alg9	($Xhi,$Xi);
961e1051a39Sopenharmony_ci
962e1051a39Sopenharmony_ci	&pshufd		($T1,$Hkey,0b01001110);
963e1051a39Sopenharmony_ci	&pshufd		($T2,$Xi,0b01001110);
964e1051a39Sopenharmony_ci	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
965e1051a39Sopenharmony_ci	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
966e1051a39Sopenharmony_ci	&pxor		($T2,$Xi);		# Karatsuba pre-processing
967e1051a39Sopenharmony_ci	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
968e1051a39Sopenharmony_ci	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
969e1051a39Sopenharmony_ci	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
970e1051a39Sopenharmony_ci
971e1051a39Sopenharmony_ci	&ret		();
972e1051a39Sopenharmony_ci&function_end_B("gcm_init_clmul");
973e1051a39Sopenharmony_ci
974e1051a39Sopenharmony_ci&function_begin_B("gcm_gmult_clmul");
975e1051a39Sopenharmony_ci	&mov		($Xip,&wparam(0));
976e1051a39Sopenharmony_ci	&mov		($Htbl,&wparam(1));
977e1051a39Sopenharmony_ci
978e1051a39Sopenharmony_ci	&call		(&label("pic"));
979e1051a39Sopenharmony_ci&set_label("pic");
980e1051a39Sopenharmony_ci	&blindpop	($const);
981e1051a39Sopenharmony_ci	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
982e1051a39Sopenharmony_ci
983e1051a39Sopenharmony_ci	&movdqu		($Xi,&QWP(0,$Xip));
984e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
985e1051a39Sopenharmony_ci	&movups		($Hkey,&QWP(0,$Htbl));
986e1051a39Sopenharmony_ci	&pshufb		($Xi,$T3);
987e1051a39Sopenharmony_ci	&movups		($T2,&QWP(32,$Htbl));
988e1051a39Sopenharmony_ci
989e1051a39Sopenharmony_ci	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
990e1051a39Sopenharmony_ci	&reduction_alg9	($Xhi,$Xi);
991e1051a39Sopenharmony_ci
992e1051a39Sopenharmony_ci	&pshufb		($Xi,$T3);
993e1051a39Sopenharmony_ci	&movdqu		(&QWP(0,$Xip),$Xi);
994e1051a39Sopenharmony_ci
995e1051a39Sopenharmony_ci	&ret	();
996e1051a39Sopenharmony_ci&function_end_B("gcm_gmult_clmul");
997e1051a39Sopenharmony_ci
998e1051a39Sopenharmony_ci&function_begin("gcm_ghash_clmul");
999e1051a39Sopenharmony_ci	&mov		($Xip,&wparam(0));
1000e1051a39Sopenharmony_ci	&mov		($Htbl,&wparam(1));
1001e1051a39Sopenharmony_ci	&mov		($inp,&wparam(2));
1002e1051a39Sopenharmony_ci	&mov		($len,&wparam(3));
1003e1051a39Sopenharmony_ci
1004e1051a39Sopenharmony_ci	&call		(&label("pic"));
1005e1051a39Sopenharmony_ci&set_label("pic");
1006e1051a39Sopenharmony_ci	&blindpop	($const);
1007e1051a39Sopenharmony_ci	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1008e1051a39Sopenharmony_ci
1009e1051a39Sopenharmony_ci	&movdqu		($Xi,&QWP(0,$Xip));
1010e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1011e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Htbl));
1012e1051a39Sopenharmony_ci	&pshufb		($Xi,$T3);
1013e1051a39Sopenharmony_ci
1014e1051a39Sopenharmony_ci	&sub		($len,0x10);
1015e1051a39Sopenharmony_ci	&jz		(&label("odd_tail"));
1016e1051a39Sopenharmony_ci
1017e1051a39Sopenharmony_ci	#######
1018e1051a39Sopenharmony_ci	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1019e1051a39Sopenharmony_ci	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1020e1051a39Sopenharmony_ci	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1021e1051a39Sopenharmony_ci	#
1022e1051a39Sopenharmony_ci	&movdqu		($T1,&QWP(0,$inp));	# Ii
1023e1051a39Sopenharmony_ci	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1024e1051a39Sopenharmony_ci	&pshufb		($T1,$T3);
1025e1051a39Sopenharmony_ci	&pshufb		($Xn,$T3);
1026e1051a39Sopenharmony_ci	&movdqu		($T3,&QWP(32,$Htbl));
1027e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		# Ii+Xi
1028e1051a39Sopenharmony_ci
1029e1051a39Sopenharmony_ci	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
1030e1051a39Sopenharmony_ci	&movdqa		($Xhn,$Xn);
1031e1051a39Sopenharmony_ci	&pxor		($T1,$Xn);		#
1032e1051a39Sopenharmony_ci	&lea		($inp,&DWP(32,$inp));	# i+=2
1033e1051a39Sopenharmony_ci
1034e1051a39Sopenharmony_ci	&pclmulqdq	($Xn,$Hkey,0x00);	#######
1035e1051a39Sopenharmony_ci	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
1036e1051a39Sopenharmony_ci	&pclmulqdq	($T1,$T3,0x00);		#######
1037e1051a39Sopenharmony_ci	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
1038e1051a39Sopenharmony_ci	&nop		();
1039e1051a39Sopenharmony_ci
1040e1051a39Sopenharmony_ci	&sub		($len,0x20);
1041e1051a39Sopenharmony_ci	&jbe		(&label("even_tail"));
1042e1051a39Sopenharmony_ci	&jmp		(&label("mod_loop"));
1043e1051a39Sopenharmony_ci
1044e1051a39Sopenharmony_ci&set_label("mod_loop",32);
1045e1051a39Sopenharmony_ci	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
1046e1051a39Sopenharmony_ci	&movdqa		($Xhi,$Xi);
1047e1051a39Sopenharmony_ci	&pxor		($T2,$Xi);		#
1048e1051a39Sopenharmony_ci	&nop		();
1049e1051a39Sopenharmony_ci
1050e1051a39Sopenharmony_ci	&pclmulqdq	($Xi,$Hkey,0x00);	#######
1051e1051a39Sopenharmony_ci	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
1052e1051a39Sopenharmony_ci	&pclmulqdq	($T2,$T3,0x10);		#######
1053e1051a39Sopenharmony_ci	&movups		($Hkey,&QWP(0,$Htbl));	# load H
1054e1051a39Sopenharmony_ci
1055e1051a39Sopenharmony_ci	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1056e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1057e1051a39Sopenharmony_ci	&xorps		($Xhi,$Xhn);
1058e1051a39Sopenharmony_ci	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
1059e1051a39Sopenharmony_ci	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
1060e1051a39Sopenharmony_ci	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
1061e1051a39Sopenharmony_ci	&pxor		($T1,$Xhi);		#
1062e1051a39Sopenharmony_ci
1063e1051a39Sopenharmony_ci	 &pshufb	($Xhn,$T3);
1064e1051a39Sopenharmony_ci	&pxor		($T2,$T1);		#
1065e1051a39Sopenharmony_ci
1066e1051a39Sopenharmony_ci	&movdqa		($T1,$T2);		#
1067e1051a39Sopenharmony_ci	&psrldq		($T2,8);
1068e1051a39Sopenharmony_ci	&pslldq		($T1,8);		#
1069e1051a39Sopenharmony_ci	&pxor		($Xhi,$T2);
1070e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		#
1071e1051a39Sopenharmony_ci	 &pshufb	($Xn,$T3);
1072e1051a39Sopenharmony_ci	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
1073e1051a39Sopenharmony_ci
1074e1051a39Sopenharmony_ci	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
1075e1051a39Sopenharmony_ci	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
1076e1051a39Sopenharmony_ci	  &movdqa	($T1,$Xi);
1077e1051a39Sopenharmony_ci	  &psllq	($Xi,5);
1078e1051a39Sopenharmony_ci	  &pxor		($T1,$Xi);		#
1079e1051a39Sopenharmony_ci	  &psllq	($Xi,1);
1080e1051a39Sopenharmony_ci	  &pxor		($Xi,$T1);		#
1081e1051a39Sopenharmony_ci	&pclmulqdq	($Xn,$Hkey,0x00);	#######
1082e1051a39Sopenharmony_ci	&movups		($T3,&QWP(32,$Htbl));
1083e1051a39Sopenharmony_ci	  &psllq	($Xi,57);		#
1084e1051a39Sopenharmony_ci	  &movdqa	($T1,$Xi);		#
1085e1051a39Sopenharmony_ci	  &pslldq	($Xi,8);
1086e1051a39Sopenharmony_ci	  &psrldq	($T1,8);		#
1087e1051a39Sopenharmony_ci	  &pxor		($Xi,$T2);
1088e1051a39Sopenharmony_ci	  &pxor		($Xhi,$T1);		#
1089e1051a39Sopenharmony_ci	&pshufd		($T1,$Xhn,0b01001110);
1090e1051a39Sopenharmony_ci	  &movdqa	($T2,$Xi);		# 2nd phase
1091e1051a39Sopenharmony_ci	  &psrlq	($Xi,1);
1092e1051a39Sopenharmony_ci	&pxor		($T1,$Xhn);
1093e1051a39Sopenharmony_ci	  &pxor		($Xhi,$T2);		#
1094e1051a39Sopenharmony_ci	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
1095e1051a39Sopenharmony_ci	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
1096e1051a39Sopenharmony_ci	  &pxor		($T2,$Xi);
1097e1051a39Sopenharmony_ci	  &psrlq	($Xi,5);
1098e1051a39Sopenharmony_ci	  &pxor		($Xi,$T2);		#
1099e1051a39Sopenharmony_ci	  &psrlq	($Xi,1);		#
1100e1051a39Sopenharmony_ci	  &pxor		($Xi,$Xhi)		#
1101e1051a39Sopenharmony_ci	&pclmulqdq	($T1,$T3,0x00);		#######
1102e1051a39Sopenharmony_ci
1103e1051a39Sopenharmony_ci	&lea		($inp,&DWP(32,$inp));
1104e1051a39Sopenharmony_ci	&sub		($len,0x20);
1105e1051a39Sopenharmony_ci	&ja		(&label("mod_loop"));
1106e1051a39Sopenharmony_ci
1107e1051a39Sopenharmony_ci&set_label("even_tail");
1108e1051a39Sopenharmony_ci	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
1109e1051a39Sopenharmony_ci	&movdqa		($Xhi,$Xi);
1110e1051a39Sopenharmony_ci	&pxor		($T2,$Xi);		#
1111e1051a39Sopenharmony_ci
1112e1051a39Sopenharmony_ci	&pclmulqdq	($Xi,$Hkey,0x00);	#######
1113e1051a39Sopenharmony_ci	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
1114e1051a39Sopenharmony_ci	&pclmulqdq	($T2,$T3,0x10);		#######
1115e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1116e1051a39Sopenharmony_ci
1117e1051a39Sopenharmony_ci	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1118e1051a39Sopenharmony_ci	&xorps		($Xhi,$Xhn);
1119e1051a39Sopenharmony_ci	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
1120e1051a39Sopenharmony_ci	&pxor		($T1,$Xhi);		#
1121e1051a39Sopenharmony_ci
1122e1051a39Sopenharmony_ci	&pxor		($T2,$T1);		#
1123e1051a39Sopenharmony_ci
1124e1051a39Sopenharmony_ci	&movdqa		($T1,$T2);		#
1125e1051a39Sopenharmony_ci	&psrldq		($T2,8);
1126e1051a39Sopenharmony_ci	&pslldq		($T1,8);		#
1127e1051a39Sopenharmony_ci	&pxor		($Xhi,$T2);
1128e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		#
1129e1051a39Sopenharmony_ci
1130e1051a39Sopenharmony_ci	&reduction_alg9	($Xhi,$Xi);
1131e1051a39Sopenharmony_ci
1132e1051a39Sopenharmony_ci	&test		($len,$len);
1133e1051a39Sopenharmony_ci	&jnz		(&label("done"));
1134e1051a39Sopenharmony_ci
1135e1051a39Sopenharmony_ci	&movups		($Hkey,&QWP(0,$Htbl));	# load H
1136e1051a39Sopenharmony_ci&set_label("odd_tail");
1137e1051a39Sopenharmony_ci	&movdqu		($T1,&QWP(0,$inp));	# Ii
1138e1051a39Sopenharmony_ci	&pshufb		($T1,$T3);
1139e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		# Ii+Xi
1140e1051a39Sopenharmony_ci
1141e1051a39Sopenharmony_ci	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1142e1051a39Sopenharmony_ci	&reduction_alg9	($Xhi,$Xi);
1143e1051a39Sopenharmony_ci
1144e1051a39Sopenharmony_ci&set_label("done");
1145e1051a39Sopenharmony_ci	&pshufb		($Xi,$T3);
1146e1051a39Sopenharmony_ci	&movdqu		(&QWP(0,$Xip),$Xi);
1147e1051a39Sopenharmony_ci&function_end("gcm_ghash_clmul");
1148e1051a39Sopenharmony_ci
1149e1051a39Sopenharmony_ci} else {		# Algorithm 5. Kept for reference purposes.
1150e1051a39Sopenharmony_ci
1151e1051a39Sopenharmony_cisub reduction_alg5 {	# 19/16 times faster than Intel version
1152e1051a39Sopenharmony_cimy ($Xhi,$Xi)=@_;
1153e1051a39Sopenharmony_ci
1154e1051a39Sopenharmony_ci	# <<1
1155e1051a39Sopenharmony_ci	&movdqa		($T1,$Xi);		#
1156e1051a39Sopenharmony_ci	&movdqa		($T2,$Xhi);
1157e1051a39Sopenharmony_ci	&pslld		($Xi,1);
1158e1051a39Sopenharmony_ci	&pslld		($Xhi,1);		#
1159e1051a39Sopenharmony_ci	&psrld		($T1,31);
1160e1051a39Sopenharmony_ci	&psrld		($T2,31);		#
1161e1051a39Sopenharmony_ci	&movdqa		($T3,$T1);
1162e1051a39Sopenharmony_ci	&pslldq		($T1,4);
1163e1051a39Sopenharmony_ci	&psrldq		($T3,12);		#
1164e1051a39Sopenharmony_ci	&pslldq		($T2,4);
1165e1051a39Sopenharmony_ci	&por		($Xhi,$T3);		#
1166e1051a39Sopenharmony_ci	&por		($Xi,$T1);
1167e1051a39Sopenharmony_ci	&por		($Xhi,$T2);		#
1168e1051a39Sopenharmony_ci
1169e1051a39Sopenharmony_ci	# 1st phase
1170e1051a39Sopenharmony_ci	&movdqa		($T1,$Xi);
1171e1051a39Sopenharmony_ci	&movdqa		($T2,$Xi);
1172e1051a39Sopenharmony_ci	&movdqa		($T3,$Xi);		#
1173e1051a39Sopenharmony_ci	&pslld		($T1,31);
1174e1051a39Sopenharmony_ci	&pslld		($T2,30);
1175e1051a39Sopenharmony_ci	&pslld		($Xi,25);		#
1176e1051a39Sopenharmony_ci	&pxor		($T1,$T2);
1177e1051a39Sopenharmony_ci	&pxor		($T1,$Xi);		#
1178e1051a39Sopenharmony_ci	&movdqa		($T2,$T1);		#
1179e1051a39Sopenharmony_ci	&pslldq		($T1,12);
1180e1051a39Sopenharmony_ci	&psrldq		($T2,4);		#
1181e1051a39Sopenharmony_ci	&pxor		($T3,$T1);
1182e1051a39Sopenharmony_ci
1183e1051a39Sopenharmony_ci	# 2nd phase
1184e1051a39Sopenharmony_ci	&pxor		($Xhi,$T3);		#
1185e1051a39Sopenharmony_ci	&movdqa		($Xi,$T3);
1186e1051a39Sopenharmony_ci	&movdqa		($T1,$T3);
1187e1051a39Sopenharmony_ci	&psrld		($Xi,1);		#
1188e1051a39Sopenharmony_ci	&psrld		($T1,2);
1189e1051a39Sopenharmony_ci	&psrld		($T3,7);		#
1190e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);
1191e1051a39Sopenharmony_ci	&pxor		($Xhi,$T2);
1192e1051a39Sopenharmony_ci	&pxor		($Xi,$T3);		#
1193e1051a39Sopenharmony_ci	&pxor		($Xi,$Xhi);		#
1194e1051a39Sopenharmony_ci}
1195e1051a39Sopenharmony_ci
1196e1051a39Sopenharmony_ci&function_begin_B("gcm_init_clmul");
1197e1051a39Sopenharmony_ci	&mov		($Htbl,&wparam(0));
1198e1051a39Sopenharmony_ci	&mov		($Xip,&wparam(1));
1199e1051a39Sopenharmony_ci
1200e1051a39Sopenharmony_ci	&call		(&label("pic"));
1201e1051a39Sopenharmony_ci&set_label("pic");
1202e1051a39Sopenharmony_ci	&blindpop	($const);
1203e1051a39Sopenharmony_ci	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1204e1051a39Sopenharmony_ci
1205e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Xip));
1206e1051a39Sopenharmony_ci	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
1207e1051a39Sopenharmony_ci
1208e1051a39Sopenharmony_ci	# calculate H^2
1209e1051a39Sopenharmony_ci	&movdqa		($Xi,$Hkey);
1210e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1211e1051a39Sopenharmony_ci	&reduction_alg5	($Xhi,$Xi);
1212e1051a39Sopenharmony_ci
1213e1051a39Sopenharmony_ci	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
1214e1051a39Sopenharmony_ci	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
1215e1051a39Sopenharmony_ci
1216e1051a39Sopenharmony_ci	&ret		();
1217e1051a39Sopenharmony_ci&function_end_B("gcm_init_clmul");
1218e1051a39Sopenharmony_ci
1219e1051a39Sopenharmony_ci&function_begin_B("gcm_gmult_clmul");
1220e1051a39Sopenharmony_ci	&mov		($Xip,&wparam(0));
1221e1051a39Sopenharmony_ci	&mov		($Htbl,&wparam(1));
1222e1051a39Sopenharmony_ci
1223e1051a39Sopenharmony_ci	&call		(&label("pic"));
1224e1051a39Sopenharmony_ci&set_label("pic");
1225e1051a39Sopenharmony_ci	&blindpop	($const);
1226e1051a39Sopenharmony_ci	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1227e1051a39Sopenharmony_ci
1228e1051a39Sopenharmony_ci	&movdqu		($Xi,&QWP(0,$Xip));
1229e1051a39Sopenharmony_ci	&movdqa		($Xn,&QWP(0,$const));
1230e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Htbl));
1231e1051a39Sopenharmony_ci	&pshufb		($Xi,$Xn);
1232e1051a39Sopenharmony_ci
1233e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1234e1051a39Sopenharmony_ci	&reduction_alg5	($Xhi,$Xi);
1235e1051a39Sopenharmony_ci
1236e1051a39Sopenharmony_ci	&pshufb		($Xi,$Xn);
1237e1051a39Sopenharmony_ci	&movdqu		(&QWP(0,$Xip),$Xi);
1238e1051a39Sopenharmony_ci
1239e1051a39Sopenharmony_ci	&ret	();
1240e1051a39Sopenharmony_ci&function_end_B("gcm_gmult_clmul");
1241e1051a39Sopenharmony_ci
1242e1051a39Sopenharmony_ci&function_begin("gcm_ghash_clmul");
1243e1051a39Sopenharmony_ci	&mov		($Xip,&wparam(0));
1244e1051a39Sopenharmony_ci	&mov		($Htbl,&wparam(1));
1245e1051a39Sopenharmony_ci	&mov		($inp,&wparam(2));
1246e1051a39Sopenharmony_ci	&mov		($len,&wparam(3));
1247e1051a39Sopenharmony_ci
1248e1051a39Sopenharmony_ci	&call		(&label("pic"));
1249e1051a39Sopenharmony_ci&set_label("pic");
1250e1051a39Sopenharmony_ci	&blindpop	($const);
1251e1051a39Sopenharmony_ci	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1252e1051a39Sopenharmony_ci
1253e1051a39Sopenharmony_ci	&movdqu		($Xi,&QWP(0,$Xip));
1254e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1255e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Htbl));
1256e1051a39Sopenharmony_ci	&pshufb		($Xi,$T3);
1257e1051a39Sopenharmony_ci
1258e1051a39Sopenharmony_ci	&sub		($len,0x10);
1259e1051a39Sopenharmony_ci	&jz		(&label("odd_tail"));
1260e1051a39Sopenharmony_ci
1261e1051a39Sopenharmony_ci	#######
1262e1051a39Sopenharmony_ci	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1263e1051a39Sopenharmony_ci	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1264e1051a39Sopenharmony_ci	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1265e1051a39Sopenharmony_ci	#
1266e1051a39Sopenharmony_ci	&movdqu		($T1,&QWP(0,$inp));	# Ii
1267e1051a39Sopenharmony_ci	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1268e1051a39Sopenharmony_ci	&pshufb		($T1,$T3);
1269e1051a39Sopenharmony_ci	&pshufb		($Xn,$T3);
1270e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		# Ii+Xi
1271e1051a39Sopenharmony_ci
1272e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1273e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1274e1051a39Sopenharmony_ci
1275e1051a39Sopenharmony_ci	&sub		($len,0x20);
1276e1051a39Sopenharmony_ci	&lea		($inp,&DWP(32,$inp));	# i+=2
1277e1051a39Sopenharmony_ci	&jbe		(&label("even_tail"));
1278e1051a39Sopenharmony_ci
1279e1051a39Sopenharmony_ci&set_label("mod_loop");
1280e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1281e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1282e1051a39Sopenharmony_ci
1283e1051a39Sopenharmony_ci	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1284e1051a39Sopenharmony_ci	&pxor		($Xhi,$Xhn);
1285e1051a39Sopenharmony_ci
1286e1051a39Sopenharmony_ci	&reduction_alg5	($Xhi,$Xi);
1287e1051a39Sopenharmony_ci
1288e1051a39Sopenharmony_ci	#######
1289e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1290e1051a39Sopenharmony_ci	&movdqu		($T1,&QWP(0,$inp));	# Ii
1291e1051a39Sopenharmony_ci	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1292e1051a39Sopenharmony_ci	&pshufb		($T1,$T3);
1293e1051a39Sopenharmony_ci	&pshufb		($Xn,$T3);
1294e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		# Ii+Xi
1295e1051a39Sopenharmony_ci
1296e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1297e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1298e1051a39Sopenharmony_ci
1299e1051a39Sopenharmony_ci	&sub		($len,0x20);
1300e1051a39Sopenharmony_ci	&lea		($inp,&DWP(32,$inp));
1301e1051a39Sopenharmony_ci	&ja		(&label("mod_loop"));
1302e1051a39Sopenharmony_ci
1303e1051a39Sopenharmony_ci&set_label("even_tail");
1304e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1305e1051a39Sopenharmony_ci
1306e1051a39Sopenharmony_ci	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1307e1051a39Sopenharmony_ci	&pxor		($Xhi,$Xhn);
1308e1051a39Sopenharmony_ci
1309e1051a39Sopenharmony_ci	&reduction_alg5	($Xhi,$Xi);
1310e1051a39Sopenharmony_ci
1311e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1312e1051a39Sopenharmony_ci	&test		($len,$len);
1313e1051a39Sopenharmony_ci	&jnz		(&label("done"));
1314e1051a39Sopenharmony_ci
1315e1051a39Sopenharmony_ci	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1316e1051a39Sopenharmony_ci&set_label("odd_tail");
1317e1051a39Sopenharmony_ci	&movdqu		($T1,&QWP(0,$inp));	# Ii
1318e1051a39Sopenharmony_ci	&pshufb		($T1,$T3);
1319e1051a39Sopenharmony_ci	&pxor		($Xi,$T1);		# Ii+Xi
1320e1051a39Sopenharmony_ci
1321e1051a39Sopenharmony_ci	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1322e1051a39Sopenharmony_ci	&reduction_alg5	($Xhi,$Xi);
1323e1051a39Sopenharmony_ci
1324e1051a39Sopenharmony_ci	&movdqa		($T3,&QWP(0,$const));
1325e1051a39Sopenharmony_ci&set_label("done");
1326e1051a39Sopenharmony_ci	&pshufb		($Xi,$T3);
1327e1051a39Sopenharmony_ci	&movdqu		(&QWP(0,$Xip),$Xi);
1328e1051a39Sopenharmony_ci&function_end("gcm_ghash_clmul");
1329e1051a39Sopenharmony_ci
1330e1051a39Sopenharmony_ci}
1331e1051a39Sopenharmony_ci
1332e1051a39Sopenharmony_ci&set_label("bswap",64);
1333e1051a39Sopenharmony_ci	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1334e1051a39Sopenharmony_ci	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
1335e1051a39Sopenharmony_ci&set_label("rem_8bit",64);
1336e1051a39Sopenharmony_ci	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1337e1051a39Sopenharmony_ci	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1338e1051a39Sopenharmony_ci	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1339e1051a39Sopenharmony_ci	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1340e1051a39Sopenharmony_ci	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1341e1051a39Sopenharmony_ci	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1342e1051a39Sopenharmony_ci	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1343e1051a39Sopenharmony_ci	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1344e1051a39Sopenharmony_ci	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1345e1051a39Sopenharmony_ci	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1346e1051a39Sopenharmony_ci	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1347e1051a39Sopenharmony_ci	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1348e1051a39Sopenharmony_ci	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1349e1051a39Sopenharmony_ci	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1350e1051a39Sopenharmony_ci	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1351e1051a39Sopenharmony_ci	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1352e1051a39Sopenharmony_ci	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1353e1051a39Sopenharmony_ci	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1354e1051a39Sopenharmony_ci	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1355e1051a39Sopenharmony_ci	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1356e1051a39Sopenharmony_ci	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1357e1051a39Sopenharmony_ci	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1358e1051a39Sopenharmony_ci	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1359e1051a39Sopenharmony_ci	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1360e1051a39Sopenharmony_ci	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1361e1051a39Sopenharmony_ci	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1362e1051a39Sopenharmony_ci	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1363e1051a39Sopenharmony_ci	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1364e1051a39Sopenharmony_ci	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1365e1051a39Sopenharmony_ci	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1366e1051a39Sopenharmony_ci	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1367e1051a39Sopenharmony_ci	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1368e1051a39Sopenharmony_ci}}	# $sse2
1369e1051a39Sopenharmony_ci
1370e1051a39Sopenharmony_ci&set_label("rem_4bit",64);
1371e1051a39Sopenharmony_ci	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1372e1051a39Sopenharmony_ci	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1373e1051a39Sopenharmony_ci	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1374e1051a39Sopenharmony_ci	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1375e1051a39Sopenharmony_ci}}}	# !$x86only
1376e1051a39Sopenharmony_ci
1377e1051a39Sopenharmony_ci&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1378e1051a39Sopenharmony_ci&asm_finish();
1379e1051a39Sopenharmony_ci
1380e1051a39Sopenharmony_ciclose STDOUT or die "error closing STDOUT: $!";
1381e1051a39Sopenharmony_ci
1382e1051a39Sopenharmony_ci# A question was risen about choice of vanilla MMX. Or rather why wasn't
1383e1051a39Sopenharmony_ci# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1384e1051a39Sopenharmony_ci# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1385e1051a39Sopenharmony_ci# performance than *corresponding* SSE2 one even on contemporary CPUs.
1386e1051a39Sopenharmony_ci# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1387e1051a39Sopenharmony_ci# implementation featuring full range of lookup-table sizes, but with
1388e1051a39Sopenharmony_ci# per-invocation lookup table setup. Latter means that table size is
1389e1051a39Sopenharmony_ci# chosen depending on how much data is to be hashed in every given call,
1390e1051a39Sopenharmony_ci# more data - larger table. Best reported result for Core2 is ~4 cycles
1391e1051a39Sopenharmony_ci# per processed byte out of 64KB block. This number accounts even for
1392e1051a39Sopenharmony_ci# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1393e1051a39Sopenharmony_ci# more conservative in respect to lookup table sizes, but how do the
1394e1051a39Sopenharmony_ci# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1395e1051a39Sopenharmony_ci# on same platform. As also discussed in gcm128.c, next in line "8-bit
1396e1051a39Sopenharmony_ci# Shoup's" or "4KB" method should deliver twice the performance of
1397e1051a39Sopenharmony_ci# "256B" one, in other words not worse than ~6 cycles per byte. It
1398e1051a39Sopenharmony_ci# should be also be noted that in SSE2 case improvement can be "super-
1399e1051a39Sopenharmony_ci# linear," i.e. more than twice, mostly because >>8 maps to single
1400e1051a39Sopenharmony_ci# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1401e1051a39Sopenharmony_ci# maps to same amount of instructions in both MMX and SSE2 cases.
1402e1051a39Sopenharmony_ci# Bottom line is that switch to SSE2 is considered to be justifiable
1403e1051a39Sopenharmony_ci# only in case we choose to implement "8-bit" method...
1404