1e1051a39Sopenharmony_ci/*
2e1051a39Sopenharmony_ci * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci *
4e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License").  You may not use
5e1051a39Sopenharmony_ci * this file except in compliance with the License.  You can obtain a copy
6e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at
7e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html
8e1051a39Sopenharmony_ci */
9e1051a39Sopenharmony_ci
10e1051a39Sopenharmony_ci/* Copyright 2011 Google Inc.
11e1051a39Sopenharmony_ci *
12e1051a39Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License");
13e1051a39Sopenharmony_ci *
14e1051a39Sopenharmony_ci * you may not use this file except in compliance with the License.
15e1051a39Sopenharmony_ci * You may obtain a copy of the License at
16e1051a39Sopenharmony_ci *
17e1051a39Sopenharmony_ci *     http://www.apache.org/licenses/LICENSE-2.0
18e1051a39Sopenharmony_ci *
19e1051a39Sopenharmony_ci *  Unless required by applicable law or agreed to in writing, software
20e1051a39Sopenharmony_ci *  distributed under the License is distributed on an "AS IS" BASIS,
21e1051a39Sopenharmony_ci *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22e1051a39Sopenharmony_ci *  See the License for the specific language governing permissions and
23e1051a39Sopenharmony_ci *  limitations under the License.
24e1051a39Sopenharmony_ci */
25e1051a39Sopenharmony_ci
26e1051a39Sopenharmony_ci/*
27e1051a39Sopenharmony_ci * ECDSA low level APIs are deprecated for public use, but still ok for
28e1051a39Sopenharmony_ci * internal use.
29e1051a39Sopenharmony_ci */
30e1051a39Sopenharmony_ci#include "internal/deprecated.h"
31e1051a39Sopenharmony_ci
32e1051a39Sopenharmony_ci/*
33e1051a39Sopenharmony_ci * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
34e1051a39Sopenharmony_ci *
35e1051a39Sopenharmony_ci * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
36e1051a39Sopenharmony_ci * and Adam Langley's public domain 64-bit C implementation of curve25519
37e1051a39Sopenharmony_ci */
38e1051a39Sopenharmony_ci
39e1051a39Sopenharmony_ci#include <openssl/opensslconf.h>
40e1051a39Sopenharmony_ci
41e1051a39Sopenharmony_ci#include <stdint.h>
42e1051a39Sopenharmony_ci#include <string.h>
43e1051a39Sopenharmony_ci#include <openssl/err.h>
44e1051a39Sopenharmony_ci#include "ec_local.h"
45e1051a39Sopenharmony_ci
46e1051a39Sopenharmony_ci#include "internal/numbers.h"
47e1051a39Sopenharmony_ci
48e1051a39Sopenharmony_ci#ifndef INT128_MAX
49e1051a39Sopenharmony_ci# error "Your compiler doesn't appear to support 128-bit integer types"
50e1051a39Sopenharmony_ci#endif
51e1051a39Sopenharmony_ci
52e1051a39Sopenharmony_citypedef uint8_t u8;
53e1051a39Sopenharmony_citypedef uint64_t u64;
54e1051a39Sopenharmony_ci
55e1051a39Sopenharmony_ci/******************************************************************************/
56e1051a39Sopenharmony_ci/*-
57e1051a39Sopenharmony_ci * INTERNAL REPRESENTATION OF FIELD ELEMENTS
58e1051a39Sopenharmony_ci *
59e1051a39Sopenharmony_ci * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
60e1051a39Sopenharmony_ci * using 64-bit coefficients called 'limbs',
61e1051a39Sopenharmony_ci * and sometimes (for multiplication results) as
62e1051a39Sopenharmony_ci * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6
63e1051a39Sopenharmony_ci * using 128-bit coefficients called 'widelimbs'.
64e1051a39Sopenharmony_ci * A 4-limb representation is an 'felem';
65e1051a39Sopenharmony_ci * a 7-widelimb representation is a 'widefelem'.
66e1051a39Sopenharmony_ci * Even within felems, bits of adjacent limbs overlap, and we don't always
67e1051a39Sopenharmony_ci * reduce the representations: we ensure that inputs to each felem
68e1051a39Sopenharmony_ci * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60,
69e1051a39Sopenharmony_ci * and fit into a 128-bit word without overflow. The coefficients are then
70e1051a39Sopenharmony_ci * again partially reduced to obtain an felem satisfying a_i < 2^57.
71e1051a39Sopenharmony_ci * We only reduce to the unique minimal representation at the end of the
72e1051a39Sopenharmony_ci * computation.
73e1051a39Sopenharmony_ci */
74e1051a39Sopenharmony_ci
75e1051a39Sopenharmony_citypedef uint64_t limb;
76e1051a39Sopenharmony_citypedef uint64_t limb_aX __attribute((__aligned__(1)));
77e1051a39Sopenharmony_citypedef uint128_t widelimb;
78e1051a39Sopenharmony_ci
79e1051a39Sopenharmony_citypedef limb felem[4];
80e1051a39Sopenharmony_citypedef widelimb widefelem[7];
81e1051a39Sopenharmony_ci
82e1051a39Sopenharmony_ci/*
83e1051a39Sopenharmony_ci * Field element represented as a byte array. 28*8 = 224 bits is also the
84e1051a39Sopenharmony_ci * group order size for the elliptic curve, and we also use this type for
85e1051a39Sopenharmony_ci * scalars for point multiplication.
86e1051a39Sopenharmony_ci */
87e1051a39Sopenharmony_citypedef u8 felem_bytearray[28];
88e1051a39Sopenharmony_ci
89e1051a39Sopenharmony_cistatic const felem_bytearray nistp224_curve_params[5] = {
90e1051a39Sopenharmony_ci    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
91e1051a39Sopenharmony_ci     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
92e1051a39Sopenharmony_ci     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
93e1051a39Sopenharmony_ci    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
94e1051a39Sopenharmony_ci     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
95e1051a39Sopenharmony_ci     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
96e1051a39Sopenharmony_ci    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
97e1051a39Sopenharmony_ci     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA,
98e1051a39Sopenharmony_ci     0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
99e1051a39Sopenharmony_ci    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
100e1051a39Sopenharmony_ci     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22,
101e1051a39Sopenharmony_ci     0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
102e1051a39Sopenharmony_ci    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
103e1051a39Sopenharmony_ci     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64,
104e1051a39Sopenharmony_ci     0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}
105e1051a39Sopenharmony_ci};
106e1051a39Sopenharmony_ci
107e1051a39Sopenharmony_ci/*-
108e1051a39Sopenharmony_ci * Precomputed multiples of the standard generator
109e1051a39Sopenharmony_ci * Points are given in coordinates (X, Y, Z) where Z normally is 1
110e1051a39Sopenharmony_ci * (0 for the point at infinity).
111e1051a39Sopenharmony_ci * For each field element, slice a_0 is word 0, etc.
112e1051a39Sopenharmony_ci *
113e1051a39Sopenharmony_ci * The table has 2 * 16 elements, starting with the following:
114e1051a39Sopenharmony_ci * index | bits    | point
115e1051a39Sopenharmony_ci * ------+---------+------------------------------
116e1051a39Sopenharmony_ci *     0 | 0 0 0 0 | 0G
117e1051a39Sopenharmony_ci *     1 | 0 0 0 1 | 1G
118e1051a39Sopenharmony_ci *     2 | 0 0 1 0 | 2^56G
119e1051a39Sopenharmony_ci *     3 | 0 0 1 1 | (2^56 + 1)G
120e1051a39Sopenharmony_ci *     4 | 0 1 0 0 | 2^112G
121e1051a39Sopenharmony_ci *     5 | 0 1 0 1 | (2^112 + 1)G
122e1051a39Sopenharmony_ci *     6 | 0 1 1 0 | (2^112 + 2^56)G
123e1051a39Sopenharmony_ci *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
124e1051a39Sopenharmony_ci *     8 | 1 0 0 0 | 2^168G
125e1051a39Sopenharmony_ci *     9 | 1 0 0 1 | (2^168 + 1)G
126e1051a39Sopenharmony_ci *    10 | 1 0 1 0 | (2^168 + 2^56)G
127e1051a39Sopenharmony_ci *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
128e1051a39Sopenharmony_ci *    12 | 1 1 0 0 | (2^168 + 2^112)G
129e1051a39Sopenharmony_ci *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
130e1051a39Sopenharmony_ci *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
131e1051a39Sopenharmony_ci *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
132e1051a39Sopenharmony_ci * followed by a copy of this with each element multiplied by 2^28.
133e1051a39Sopenharmony_ci *
134e1051a39Sopenharmony_ci * The reason for this is so that we can clock bits into four different
135e1051a39Sopenharmony_ci * locations when doing simple scalar multiplies against the base point,
136e1051a39Sopenharmony_ci * and then another four locations using the second 16 elements.
137e1051a39Sopenharmony_ci */
138e1051a39Sopenharmony_cistatic const felem gmul[2][16][3] = {
139e1051a39Sopenharmony_ci{{{0, 0, 0, 0},
140e1051a39Sopenharmony_ci  {0, 0, 0, 0},
141e1051a39Sopenharmony_ci  {0, 0, 0, 0}},
142e1051a39Sopenharmony_ci {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
143e1051a39Sopenharmony_ci  {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
144e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
145e1051a39Sopenharmony_ci {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
146e1051a39Sopenharmony_ci  {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
147e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
148e1051a39Sopenharmony_ci {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
149e1051a39Sopenharmony_ci  {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
150e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
151e1051a39Sopenharmony_ci {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
152e1051a39Sopenharmony_ci  {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
153e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
154e1051a39Sopenharmony_ci {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
155e1051a39Sopenharmony_ci  {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
156e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
157e1051a39Sopenharmony_ci {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
158e1051a39Sopenharmony_ci  {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
159e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
160e1051a39Sopenharmony_ci {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
161e1051a39Sopenharmony_ci  {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
162e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
163e1051a39Sopenharmony_ci {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
164e1051a39Sopenharmony_ci  {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
165e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
166e1051a39Sopenharmony_ci {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
167e1051a39Sopenharmony_ci  {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
168e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
169e1051a39Sopenharmony_ci {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
170e1051a39Sopenharmony_ci  {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
171e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
172e1051a39Sopenharmony_ci {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
173e1051a39Sopenharmony_ci  {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
174e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
175e1051a39Sopenharmony_ci {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
176e1051a39Sopenharmony_ci  {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
177e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
178e1051a39Sopenharmony_ci {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
179e1051a39Sopenharmony_ci  {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
180e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
181e1051a39Sopenharmony_ci {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
182e1051a39Sopenharmony_ci  {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
183e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
184e1051a39Sopenharmony_ci {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
185e1051a39Sopenharmony_ci  {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
186e1051a39Sopenharmony_ci  {1, 0, 0, 0}}},
187e1051a39Sopenharmony_ci{{{0, 0, 0, 0},
188e1051a39Sopenharmony_ci  {0, 0, 0, 0},
189e1051a39Sopenharmony_ci  {0, 0, 0, 0}},
190e1051a39Sopenharmony_ci {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
191e1051a39Sopenharmony_ci  {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
192e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
193e1051a39Sopenharmony_ci {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
194e1051a39Sopenharmony_ci  {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
195e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
196e1051a39Sopenharmony_ci {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
197e1051a39Sopenharmony_ci  {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
198e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
199e1051a39Sopenharmony_ci {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
200e1051a39Sopenharmony_ci  {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
201e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
202e1051a39Sopenharmony_ci {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
203e1051a39Sopenharmony_ci  {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
204e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
205e1051a39Sopenharmony_ci {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
206e1051a39Sopenharmony_ci  {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
207e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
208e1051a39Sopenharmony_ci {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
209e1051a39Sopenharmony_ci  {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
210e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
211e1051a39Sopenharmony_ci {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
212e1051a39Sopenharmony_ci  {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
213e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
214e1051a39Sopenharmony_ci {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
215e1051a39Sopenharmony_ci  {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
216e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
217e1051a39Sopenharmony_ci {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
218e1051a39Sopenharmony_ci  {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
219e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
220e1051a39Sopenharmony_ci {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
221e1051a39Sopenharmony_ci  {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
222e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
223e1051a39Sopenharmony_ci {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
224e1051a39Sopenharmony_ci  {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
225e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
226e1051a39Sopenharmony_ci {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
227e1051a39Sopenharmony_ci  {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
228e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
229e1051a39Sopenharmony_ci {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
230e1051a39Sopenharmony_ci  {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
231e1051a39Sopenharmony_ci  {1, 0, 0, 0}},
232e1051a39Sopenharmony_ci {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
233e1051a39Sopenharmony_ci  {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
234e1051a39Sopenharmony_ci  {1, 0, 0, 0}}}
235e1051a39Sopenharmony_ci};
236e1051a39Sopenharmony_ci
237e1051a39Sopenharmony_ci/* Precomputation for the group generator. */
238e1051a39Sopenharmony_cistruct nistp224_pre_comp_st {
239e1051a39Sopenharmony_ci    felem g_pre_comp[2][16][3];
240e1051a39Sopenharmony_ci    CRYPTO_REF_COUNT references;
241e1051a39Sopenharmony_ci    CRYPTO_RWLOCK *lock;
242e1051a39Sopenharmony_ci};
243e1051a39Sopenharmony_ci
244e1051a39Sopenharmony_ciconst EC_METHOD *EC_GFp_nistp224_method(void)
245e1051a39Sopenharmony_ci{
246e1051a39Sopenharmony_ci    static const EC_METHOD ret = {
247e1051a39Sopenharmony_ci        EC_FLAGS_DEFAULT_OCT,
248e1051a39Sopenharmony_ci        NID_X9_62_prime_field,
249e1051a39Sopenharmony_ci        ossl_ec_GFp_nistp224_group_init,
250e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_group_finish,
251e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_group_clear_finish,
252e1051a39Sopenharmony_ci        ossl_ec_GFp_nist_group_copy,
253e1051a39Sopenharmony_ci        ossl_ec_GFp_nistp224_group_set_curve,
254e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_group_get_curve,
255e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_group_get_degree,
256e1051a39Sopenharmony_ci        ossl_ec_group_simple_order_bits,
257e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_group_check_discriminant,
258e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_point_init,
259e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_point_finish,
260e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_point_clear_finish,
261e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_point_copy,
262e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_point_set_to_infinity,
263e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_point_set_affine_coordinates,
264e1051a39Sopenharmony_ci        ossl_ec_GFp_nistp224_point_get_affine_coordinates,
265e1051a39Sopenharmony_ci        0 /* point_set_compressed_coordinates */ ,
266e1051a39Sopenharmony_ci        0 /* point2oct */ ,
267e1051a39Sopenharmony_ci        0 /* oct2point */ ,
268e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_add,
269e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_dbl,
270e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_invert,
271e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_is_at_infinity,
272e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_is_on_curve,
273e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_cmp,
274e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_make_affine,
275e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_points_make_affine,
276e1051a39Sopenharmony_ci        ossl_ec_GFp_nistp224_points_mul,
277e1051a39Sopenharmony_ci        ossl_ec_GFp_nistp224_precompute_mult,
278e1051a39Sopenharmony_ci        ossl_ec_GFp_nistp224_have_precompute_mult,
279e1051a39Sopenharmony_ci        ossl_ec_GFp_nist_field_mul,
280e1051a39Sopenharmony_ci        ossl_ec_GFp_nist_field_sqr,
281e1051a39Sopenharmony_ci        0 /* field_div */ ,
282e1051a39Sopenharmony_ci        ossl_ec_GFp_simple_field_inv,
283e1051a39Sopenharmony_ci        0 /* field_encode */ ,
284e1051a39Sopenharmony_ci        0 /* field_decode */ ,
285e1051a39Sopenharmony_ci        0,                      /* field_set_to_one */
286e1051a39Sopenharmony_ci        ossl_ec_key_simple_priv2oct,
287e1051a39Sopenharmony_ci        ossl_ec_key_simple_oct2priv,
288e1051a39Sopenharmony_ci        0, /* set private */
289e1051a39Sopenharmony_ci        ossl_ec_key_simple_generate_key,
290e1051a39Sopenharmony_ci        ossl_ec_key_simple_check_key,
291e1051a39Sopenharmony_ci        ossl_ec_key_simple_generate_public_key,
292e1051a39Sopenharmony_ci        0, /* keycopy */
293e1051a39Sopenharmony_ci        0, /* keyfinish */
294e1051a39Sopenharmony_ci        ossl_ecdh_simple_compute_key,
295e1051a39Sopenharmony_ci        ossl_ecdsa_simple_sign_setup,
296e1051a39Sopenharmony_ci        ossl_ecdsa_simple_sign_sig,
297e1051a39Sopenharmony_ci        ossl_ecdsa_simple_verify_sig,
298e1051a39Sopenharmony_ci        0, /* field_inverse_mod_ord */
299e1051a39Sopenharmony_ci        0, /* blind_coordinates */
300e1051a39Sopenharmony_ci        0, /* ladder_pre */
301e1051a39Sopenharmony_ci        0, /* ladder_step */
302e1051a39Sopenharmony_ci        0  /* ladder_post */
303e1051a39Sopenharmony_ci    };
304e1051a39Sopenharmony_ci
305e1051a39Sopenharmony_ci    return &ret;
306e1051a39Sopenharmony_ci}
307e1051a39Sopenharmony_ci
308e1051a39Sopenharmony_ci/*
309e1051a39Sopenharmony_ci * Helper functions to convert field elements to/from internal representation
310e1051a39Sopenharmony_ci */
311e1051a39Sopenharmony_cistatic void bin28_to_felem(felem out, const u8 in[28])
312e1051a39Sopenharmony_ci{
313e1051a39Sopenharmony_ci    out[0] = *((const limb *)(in)) & 0x00ffffffffffffff;
314e1051a39Sopenharmony_ci    out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff;
315e1051a39Sopenharmony_ci    out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff;
316e1051a39Sopenharmony_ci    out[3] = (*((const limb_aX *)(in + 20))) >> 8;
317e1051a39Sopenharmony_ci}
318e1051a39Sopenharmony_ci
319e1051a39Sopenharmony_cistatic void felem_to_bin28(u8 out[28], const felem in)
320e1051a39Sopenharmony_ci{
321e1051a39Sopenharmony_ci    unsigned i;
322e1051a39Sopenharmony_ci    for (i = 0; i < 7; ++i) {
323e1051a39Sopenharmony_ci        out[i] = in[0] >> (8 * i);
324e1051a39Sopenharmony_ci        out[i + 7] = in[1] >> (8 * i);
325e1051a39Sopenharmony_ci        out[i + 14] = in[2] >> (8 * i);
326e1051a39Sopenharmony_ci        out[i + 21] = in[3] >> (8 * i);
327e1051a39Sopenharmony_ci    }
328e1051a39Sopenharmony_ci}
329e1051a39Sopenharmony_ci
330e1051a39Sopenharmony_ci/* From OpenSSL BIGNUM to internal representation */
331e1051a39Sopenharmony_cistatic int BN_to_felem(felem out, const BIGNUM *bn)
332e1051a39Sopenharmony_ci{
333e1051a39Sopenharmony_ci    felem_bytearray b_out;
334e1051a39Sopenharmony_ci    int num_bytes;
335e1051a39Sopenharmony_ci
336e1051a39Sopenharmony_ci    if (BN_is_negative(bn)) {
337e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
338e1051a39Sopenharmony_ci        return 0;
339e1051a39Sopenharmony_ci    }
340e1051a39Sopenharmony_ci    num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
341e1051a39Sopenharmony_ci    if (num_bytes < 0) {
342e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
343e1051a39Sopenharmony_ci        return 0;
344e1051a39Sopenharmony_ci    }
345e1051a39Sopenharmony_ci    bin28_to_felem(out, b_out);
346e1051a39Sopenharmony_ci    return 1;
347e1051a39Sopenharmony_ci}
348e1051a39Sopenharmony_ci
349e1051a39Sopenharmony_ci/* From internal representation to OpenSSL BIGNUM */
350e1051a39Sopenharmony_cistatic BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
351e1051a39Sopenharmony_ci{
352e1051a39Sopenharmony_ci    felem_bytearray b_out;
353e1051a39Sopenharmony_ci    felem_to_bin28(b_out, in);
354e1051a39Sopenharmony_ci    return BN_lebin2bn(b_out, sizeof(b_out), out);
355e1051a39Sopenharmony_ci}
356e1051a39Sopenharmony_ci
357e1051a39Sopenharmony_ci/******************************************************************************/
358e1051a39Sopenharmony_ci/*-
359e1051a39Sopenharmony_ci *                              FIELD OPERATIONS
360e1051a39Sopenharmony_ci *
361e1051a39Sopenharmony_ci * Field operations, using the internal representation of field elements.
362e1051a39Sopenharmony_ci * NB! These operations are specific to our point multiplication and cannot be
363e1051a39Sopenharmony_ci * expected to be correct in general - e.g., multiplication with a large scalar
364e1051a39Sopenharmony_ci * will cause an overflow.
365e1051a39Sopenharmony_ci *
366e1051a39Sopenharmony_ci */
367e1051a39Sopenharmony_ci
368e1051a39Sopenharmony_cistatic void felem_one(felem out)
369e1051a39Sopenharmony_ci{
370e1051a39Sopenharmony_ci    out[0] = 1;
371e1051a39Sopenharmony_ci    out[1] = 0;
372e1051a39Sopenharmony_ci    out[2] = 0;
373e1051a39Sopenharmony_ci    out[3] = 0;
374e1051a39Sopenharmony_ci}
375e1051a39Sopenharmony_ci
376e1051a39Sopenharmony_cistatic void felem_assign(felem out, const felem in)
377e1051a39Sopenharmony_ci{
378e1051a39Sopenharmony_ci    out[0] = in[0];
379e1051a39Sopenharmony_ci    out[1] = in[1];
380e1051a39Sopenharmony_ci    out[2] = in[2];
381e1051a39Sopenharmony_ci    out[3] = in[3];
382e1051a39Sopenharmony_ci}
383e1051a39Sopenharmony_ci
384e1051a39Sopenharmony_ci/* Sum two field elements: out += in */
385e1051a39Sopenharmony_cistatic void felem_sum(felem out, const felem in)
386e1051a39Sopenharmony_ci{
387e1051a39Sopenharmony_ci    out[0] += in[0];
388e1051a39Sopenharmony_ci    out[1] += in[1];
389e1051a39Sopenharmony_ci    out[2] += in[2];
390e1051a39Sopenharmony_ci    out[3] += in[3];
391e1051a39Sopenharmony_ci}
392e1051a39Sopenharmony_ci
393e1051a39Sopenharmony_ci/* Subtract field elements: out -= in */
394e1051a39Sopenharmony_ci/* Assumes in[i] < 2^57 */
395e1051a39Sopenharmony_cistatic void felem_diff(felem out, const felem in)
396e1051a39Sopenharmony_ci{
397e1051a39Sopenharmony_ci    static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2);
398e1051a39Sopenharmony_ci    static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2);
399e1051a39Sopenharmony_ci    static const limb two58m42m2 = (((limb) 1) << 58) -
400e1051a39Sopenharmony_ci        (((limb) 1) << 42) - (((limb) 1) << 2);
401e1051a39Sopenharmony_ci
402e1051a39Sopenharmony_ci    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
403e1051a39Sopenharmony_ci    out[0] += two58p2;
404e1051a39Sopenharmony_ci    out[1] += two58m42m2;
405e1051a39Sopenharmony_ci    out[2] += two58m2;
406e1051a39Sopenharmony_ci    out[3] += two58m2;
407e1051a39Sopenharmony_ci
408e1051a39Sopenharmony_ci    out[0] -= in[0];
409e1051a39Sopenharmony_ci    out[1] -= in[1];
410e1051a39Sopenharmony_ci    out[2] -= in[2];
411e1051a39Sopenharmony_ci    out[3] -= in[3];
412e1051a39Sopenharmony_ci}
413e1051a39Sopenharmony_ci
414e1051a39Sopenharmony_ci/* Subtract in unreduced 128-bit mode: out -= in */
415e1051a39Sopenharmony_ci/* Assumes in[i] < 2^119 */
416e1051a39Sopenharmony_cistatic void widefelem_diff(widefelem out, const widefelem in)
417e1051a39Sopenharmony_ci{
418e1051a39Sopenharmony_ci    static const widelimb two120 = ((widelimb) 1) << 120;
419e1051a39Sopenharmony_ci    static const widelimb two120m64 = (((widelimb) 1) << 120) -
420e1051a39Sopenharmony_ci        (((widelimb) 1) << 64);
421e1051a39Sopenharmony_ci    static const widelimb two120m104m64 = (((widelimb) 1) << 120) -
422e1051a39Sopenharmony_ci        (((widelimb) 1) << 104) - (((widelimb) 1) << 64);
423e1051a39Sopenharmony_ci
424e1051a39Sopenharmony_ci    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
425e1051a39Sopenharmony_ci    out[0] += two120;
426e1051a39Sopenharmony_ci    out[1] += two120m64;
427e1051a39Sopenharmony_ci    out[2] += two120m64;
428e1051a39Sopenharmony_ci    out[3] += two120;
429e1051a39Sopenharmony_ci    out[4] += two120m104m64;
430e1051a39Sopenharmony_ci    out[5] += two120m64;
431e1051a39Sopenharmony_ci    out[6] += two120m64;
432e1051a39Sopenharmony_ci
433e1051a39Sopenharmony_ci    out[0] -= in[0];
434e1051a39Sopenharmony_ci    out[1] -= in[1];
435e1051a39Sopenharmony_ci    out[2] -= in[2];
436e1051a39Sopenharmony_ci    out[3] -= in[3];
437e1051a39Sopenharmony_ci    out[4] -= in[4];
438e1051a39Sopenharmony_ci    out[5] -= in[5];
439e1051a39Sopenharmony_ci    out[6] -= in[6];
440e1051a39Sopenharmony_ci}
441e1051a39Sopenharmony_ci
442e1051a39Sopenharmony_ci/* Subtract in mixed mode: out128 -= in64 */
443e1051a39Sopenharmony_ci/* in[i] < 2^63 */
444e1051a39Sopenharmony_cistatic void felem_diff_128_64(widefelem out, const felem in)
445e1051a39Sopenharmony_ci{
446e1051a39Sopenharmony_ci    static const widelimb two64p8 = (((widelimb) 1) << 64) +
447e1051a39Sopenharmony_ci        (((widelimb) 1) << 8);
448e1051a39Sopenharmony_ci    static const widelimb two64m8 = (((widelimb) 1) << 64) -
449e1051a39Sopenharmony_ci        (((widelimb) 1) << 8);
450e1051a39Sopenharmony_ci    static const widelimb two64m48m8 = (((widelimb) 1) << 64) -
451e1051a39Sopenharmony_ci        (((widelimb) 1) << 48) - (((widelimb) 1) << 8);
452e1051a39Sopenharmony_ci
453e1051a39Sopenharmony_ci    /* Add 0 mod 2^224-2^96+1 to ensure out > in */
454e1051a39Sopenharmony_ci    out[0] += two64p8;
455e1051a39Sopenharmony_ci    out[1] += two64m48m8;
456e1051a39Sopenharmony_ci    out[2] += two64m8;
457e1051a39Sopenharmony_ci    out[3] += two64m8;
458e1051a39Sopenharmony_ci
459e1051a39Sopenharmony_ci    out[0] -= in[0];
460e1051a39Sopenharmony_ci    out[1] -= in[1];
461e1051a39Sopenharmony_ci    out[2] -= in[2];
462e1051a39Sopenharmony_ci    out[3] -= in[3];
463e1051a39Sopenharmony_ci}
464e1051a39Sopenharmony_ci
465e1051a39Sopenharmony_ci/*
466e1051a39Sopenharmony_ci * Multiply a field element by a scalar: out = out * scalar The scalars we
467e1051a39Sopenharmony_ci * actually use are small, so results fit without overflow
468e1051a39Sopenharmony_ci */
469e1051a39Sopenharmony_cistatic void felem_scalar(felem out, const limb scalar)
470e1051a39Sopenharmony_ci{
471e1051a39Sopenharmony_ci    out[0] *= scalar;
472e1051a39Sopenharmony_ci    out[1] *= scalar;
473e1051a39Sopenharmony_ci    out[2] *= scalar;
474e1051a39Sopenharmony_ci    out[3] *= scalar;
475e1051a39Sopenharmony_ci}
476e1051a39Sopenharmony_ci
477e1051a39Sopenharmony_ci/*
478e1051a39Sopenharmony_ci * Multiply an unreduced field element by a scalar: out = out * scalar The
479e1051a39Sopenharmony_ci * scalars we actually use are small, so results fit without overflow
480e1051a39Sopenharmony_ci */
481e1051a39Sopenharmony_cistatic void widefelem_scalar(widefelem out, const widelimb scalar)
482e1051a39Sopenharmony_ci{
483e1051a39Sopenharmony_ci    out[0] *= scalar;
484e1051a39Sopenharmony_ci    out[1] *= scalar;
485e1051a39Sopenharmony_ci    out[2] *= scalar;
486e1051a39Sopenharmony_ci    out[3] *= scalar;
487e1051a39Sopenharmony_ci    out[4] *= scalar;
488e1051a39Sopenharmony_ci    out[5] *= scalar;
489e1051a39Sopenharmony_ci    out[6] *= scalar;
490e1051a39Sopenharmony_ci}
491e1051a39Sopenharmony_ci
492e1051a39Sopenharmony_ci/* Square a field element: out = in^2 */
493e1051a39Sopenharmony_cistatic void felem_square(widefelem out, const felem in)
494e1051a39Sopenharmony_ci{
495e1051a39Sopenharmony_ci    limb tmp0, tmp1, tmp2;
496e1051a39Sopenharmony_ci    tmp0 = 2 * in[0];
497e1051a39Sopenharmony_ci    tmp1 = 2 * in[1];
498e1051a39Sopenharmony_ci    tmp2 = 2 * in[2];
499e1051a39Sopenharmony_ci    out[0] = ((widelimb) in[0]) * in[0];
500e1051a39Sopenharmony_ci    out[1] = ((widelimb) in[0]) * tmp1;
501e1051a39Sopenharmony_ci    out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1];
502e1051a39Sopenharmony_ci    out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2;
503e1051a39Sopenharmony_ci    out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2];
504e1051a39Sopenharmony_ci    out[5] = ((widelimb) in[3]) * tmp2;
505e1051a39Sopenharmony_ci    out[6] = ((widelimb) in[3]) * in[3];
506e1051a39Sopenharmony_ci}
507e1051a39Sopenharmony_ci
508e1051a39Sopenharmony_ci/* Multiply two field elements: out = in1 * in2 */
509e1051a39Sopenharmony_cistatic void felem_mul(widefelem out, const felem in1, const felem in2)
510e1051a39Sopenharmony_ci{
511e1051a39Sopenharmony_ci    out[0] = ((widelimb) in1[0]) * in2[0];
512e1051a39Sopenharmony_ci    out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0];
513e1051a39Sopenharmony_ci    out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] +
514e1051a39Sopenharmony_ci             ((widelimb) in1[2]) * in2[0];
515e1051a39Sopenharmony_ci    out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] +
516e1051a39Sopenharmony_ci             ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0];
517e1051a39Sopenharmony_ci    out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] +
518e1051a39Sopenharmony_ci             ((widelimb) in1[3]) * in2[1];
519e1051a39Sopenharmony_ci    out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2];
520e1051a39Sopenharmony_ci    out[6] = ((widelimb) in1[3]) * in2[3];
521e1051a39Sopenharmony_ci}
522e1051a39Sopenharmony_ci
523e1051a39Sopenharmony_ci/*-
524e1051a39Sopenharmony_ci * Reduce seven 128-bit coefficients to four 64-bit coefficients.
525e1051a39Sopenharmony_ci * Requires in[i] < 2^126,
526e1051a39Sopenharmony_ci * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
527e1051a39Sopenharmony_cistatic void felem_reduce(felem out, const widefelem in)
528e1051a39Sopenharmony_ci{
529e1051a39Sopenharmony_ci    static const widelimb two127p15 = (((widelimb) 1) << 127) +
530e1051a39Sopenharmony_ci        (((widelimb) 1) << 15);
531e1051a39Sopenharmony_ci    static const widelimb two127m71 = (((widelimb) 1) << 127) -
532e1051a39Sopenharmony_ci        (((widelimb) 1) << 71);
533e1051a39Sopenharmony_ci    static const widelimb two127m71m55 = (((widelimb) 1) << 127) -
534e1051a39Sopenharmony_ci        (((widelimb) 1) << 71) - (((widelimb) 1) << 55);
535e1051a39Sopenharmony_ci    widelimb output[5];
536e1051a39Sopenharmony_ci
537e1051a39Sopenharmony_ci    /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
538e1051a39Sopenharmony_ci    output[0] = in[0] + two127p15;
539e1051a39Sopenharmony_ci    output[1] = in[1] + two127m71m55;
540e1051a39Sopenharmony_ci    output[2] = in[2] + two127m71;
541e1051a39Sopenharmony_ci    output[3] = in[3];
542e1051a39Sopenharmony_ci    output[4] = in[4];
543e1051a39Sopenharmony_ci
544e1051a39Sopenharmony_ci    /* Eliminate in[4], in[5], in[6] */
545e1051a39Sopenharmony_ci    output[4] += in[6] >> 16;
546e1051a39Sopenharmony_ci    output[3] += (in[6] & 0xffff) << 40;
547e1051a39Sopenharmony_ci    output[2] -= in[6];
548e1051a39Sopenharmony_ci
549e1051a39Sopenharmony_ci    output[3] += in[5] >> 16;
550e1051a39Sopenharmony_ci    output[2] += (in[5] & 0xffff) << 40;
551e1051a39Sopenharmony_ci    output[1] -= in[5];
552e1051a39Sopenharmony_ci
553e1051a39Sopenharmony_ci    output[2] += output[4] >> 16;
554e1051a39Sopenharmony_ci    output[1] += (output[4] & 0xffff) << 40;
555e1051a39Sopenharmony_ci    output[0] -= output[4];
556e1051a39Sopenharmony_ci
557e1051a39Sopenharmony_ci    /* Carry 2 -> 3 -> 4 */
558e1051a39Sopenharmony_ci    output[3] += output[2] >> 56;
559e1051a39Sopenharmony_ci    output[2] &= 0x00ffffffffffffff;
560e1051a39Sopenharmony_ci
561e1051a39Sopenharmony_ci    output[4] = output[3] >> 56;
562e1051a39Sopenharmony_ci    output[3] &= 0x00ffffffffffffff;
563e1051a39Sopenharmony_ci
564e1051a39Sopenharmony_ci    /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
565e1051a39Sopenharmony_ci
566e1051a39Sopenharmony_ci    /* Eliminate output[4] */
567e1051a39Sopenharmony_ci    output[2] += output[4] >> 16;
568e1051a39Sopenharmony_ci    /* output[2] < 2^56 + 2^56 = 2^57 */
569e1051a39Sopenharmony_ci    output[1] += (output[4] & 0xffff) << 40;
570e1051a39Sopenharmony_ci    output[0] -= output[4];
571e1051a39Sopenharmony_ci
572e1051a39Sopenharmony_ci    /* Carry 0 -> 1 -> 2 -> 3 */
573e1051a39Sopenharmony_ci    output[1] += output[0] >> 56;
574e1051a39Sopenharmony_ci    out[0] = output[0] & 0x00ffffffffffffff;
575e1051a39Sopenharmony_ci
576e1051a39Sopenharmony_ci    output[2] += output[1] >> 56;
577e1051a39Sopenharmony_ci    /* output[2] < 2^57 + 2^72 */
578e1051a39Sopenharmony_ci    out[1] = output[1] & 0x00ffffffffffffff;
579e1051a39Sopenharmony_ci    output[3] += output[2] >> 56;
580e1051a39Sopenharmony_ci    /* output[3] <= 2^56 + 2^16 */
581e1051a39Sopenharmony_ci    out[2] = output[2] & 0x00ffffffffffffff;
582e1051a39Sopenharmony_ci
583e1051a39Sopenharmony_ci    /*-
584e1051a39Sopenharmony_ci     * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
585e1051a39Sopenharmony_ci     * out[3] <= 2^56 + 2^16 (due to final carry),
586e1051a39Sopenharmony_ci     * so out < 2*p
587e1051a39Sopenharmony_ci     */
588e1051a39Sopenharmony_ci    out[3] = output[3];
589e1051a39Sopenharmony_ci}
590e1051a39Sopenharmony_ci
591e1051a39Sopenharmony_cistatic void felem_square_reduce(felem out, const felem in)
592e1051a39Sopenharmony_ci{
593e1051a39Sopenharmony_ci    widefelem tmp;
594e1051a39Sopenharmony_ci    felem_square(tmp, in);
595e1051a39Sopenharmony_ci    felem_reduce(out, tmp);
596e1051a39Sopenharmony_ci}
597e1051a39Sopenharmony_ci
598e1051a39Sopenharmony_cistatic void felem_mul_reduce(felem out, const felem in1, const felem in2)
599e1051a39Sopenharmony_ci{
600e1051a39Sopenharmony_ci    widefelem tmp;
601e1051a39Sopenharmony_ci    felem_mul(tmp, in1, in2);
602e1051a39Sopenharmony_ci    felem_reduce(out, tmp);
603e1051a39Sopenharmony_ci}
604e1051a39Sopenharmony_ci
605e1051a39Sopenharmony_ci/*
606e1051a39Sopenharmony_ci * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always
607e1051a39Sopenharmony_ci * call felem_reduce first)
608e1051a39Sopenharmony_ci */
609e1051a39Sopenharmony_cistatic void felem_contract(felem out, const felem in)
610e1051a39Sopenharmony_ci{
611e1051a39Sopenharmony_ci    static const int64_t two56 = ((limb) 1) << 56;
612e1051a39Sopenharmony_ci    /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
613e1051a39Sopenharmony_ci    /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
614e1051a39Sopenharmony_ci    int64_t tmp[4], a;
615e1051a39Sopenharmony_ci    tmp[0] = in[0];
616e1051a39Sopenharmony_ci    tmp[1] = in[1];
617e1051a39Sopenharmony_ci    tmp[2] = in[2];
618e1051a39Sopenharmony_ci    tmp[3] = in[3];
619e1051a39Sopenharmony_ci    /* Case 1: a = 1 iff in >= 2^224 */
620e1051a39Sopenharmony_ci    a = (in[3] >> 56);
621e1051a39Sopenharmony_ci    tmp[0] -= a;
622e1051a39Sopenharmony_ci    tmp[1] += a << 40;
623e1051a39Sopenharmony_ci    tmp[3] &= 0x00ffffffffffffff;
624e1051a39Sopenharmony_ci    /*
625e1051a39Sopenharmony_ci     * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1
626e1051a39Sopenharmony_ci     * and the lower part is non-zero
627e1051a39Sopenharmony_ci     */
628e1051a39Sopenharmony_ci    a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
629e1051a39Sopenharmony_ci        (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
630e1051a39Sopenharmony_ci    a &= 0x00ffffffffffffff;
631e1051a39Sopenharmony_ci    /* turn a into an all-one mask (if a = 0) or an all-zero mask */
632e1051a39Sopenharmony_ci    a = (a - 1) >> 63;
633e1051a39Sopenharmony_ci    /* subtract 2^224 - 2^96 + 1 if a is all-one */
634e1051a39Sopenharmony_ci    tmp[3] &= a ^ 0xffffffffffffffff;
635e1051a39Sopenharmony_ci    tmp[2] &= a ^ 0xffffffffffffffff;
636e1051a39Sopenharmony_ci    tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
637e1051a39Sopenharmony_ci    tmp[0] -= 1 & a;
638e1051a39Sopenharmony_ci
639e1051a39Sopenharmony_ci    /*
640e1051a39Sopenharmony_ci     * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
641e1051a39Sopenharmony_ci     * non-zero, so we only need one step
642e1051a39Sopenharmony_ci     */
643e1051a39Sopenharmony_ci    a = tmp[0] >> 63;
644e1051a39Sopenharmony_ci    tmp[0] += two56 & a;
645e1051a39Sopenharmony_ci    tmp[1] -= 1 & a;
646e1051a39Sopenharmony_ci
647e1051a39Sopenharmony_ci    /* carry 1 -> 2 -> 3 */
648e1051a39Sopenharmony_ci    tmp[2] += tmp[1] >> 56;
649e1051a39Sopenharmony_ci    tmp[1] &= 0x00ffffffffffffff;
650e1051a39Sopenharmony_ci
651e1051a39Sopenharmony_ci    tmp[3] += tmp[2] >> 56;
652e1051a39Sopenharmony_ci    tmp[2] &= 0x00ffffffffffffff;
653e1051a39Sopenharmony_ci
654e1051a39Sopenharmony_ci    /* Now 0 <= out < p */
655e1051a39Sopenharmony_ci    out[0] = tmp[0];
656e1051a39Sopenharmony_ci    out[1] = tmp[1];
657e1051a39Sopenharmony_ci    out[2] = tmp[2];
658e1051a39Sopenharmony_ci    out[3] = tmp[3];
659e1051a39Sopenharmony_ci}
660e1051a39Sopenharmony_ci
661e1051a39Sopenharmony_ci/*
662e1051a39Sopenharmony_ci * Get negative value: out = -in
663e1051a39Sopenharmony_ci * Requires in[i] < 2^63,
664e1051a39Sopenharmony_ci * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
665e1051a39Sopenharmony_ci */
666e1051a39Sopenharmony_cistatic void felem_neg(felem out, const felem in)
667e1051a39Sopenharmony_ci{
668e1051a39Sopenharmony_ci    widefelem tmp;
669e1051a39Sopenharmony_ci
670e1051a39Sopenharmony_ci    memset(tmp, 0, sizeof(tmp));
671e1051a39Sopenharmony_ci    felem_diff_128_64(tmp, in);
672e1051a39Sopenharmony_ci    felem_reduce(out, tmp);
673e1051a39Sopenharmony_ci}
674e1051a39Sopenharmony_ci
675e1051a39Sopenharmony_ci/*
676e1051a39Sopenharmony_ci * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
677e1051a39Sopenharmony_ci * elements are reduced to in < 2^225, so we only need to check three cases:
678e1051a39Sopenharmony_ci * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
679e1051a39Sopenharmony_ci */
680e1051a39Sopenharmony_cistatic limb felem_is_zero(const felem in)
681e1051a39Sopenharmony_ci{
682e1051a39Sopenharmony_ci    limb zero, two224m96p1, two225m97p2;
683e1051a39Sopenharmony_ci
684e1051a39Sopenharmony_ci    zero = in[0] | in[1] | in[2] | in[3];
685e1051a39Sopenharmony_ci    zero = (((int64_t) (zero) - 1) >> 63) & 1;
686e1051a39Sopenharmony_ci    two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000)
687e1051a39Sopenharmony_ci        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff);
688e1051a39Sopenharmony_ci    two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1;
689e1051a39Sopenharmony_ci    two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000)
690e1051a39Sopenharmony_ci        | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff);
691e1051a39Sopenharmony_ci    two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1;
692e1051a39Sopenharmony_ci    return (zero | two224m96p1 | two225m97p2);
693e1051a39Sopenharmony_ci}
694e1051a39Sopenharmony_ci
695e1051a39Sopenharmony_cistatic int felem_is_zero_int(const void *in)
696e1051a39Sopenharmony_ci{
697e1051a39Sopenharmony_ci    return (int)(felem_is_zero(in) & ((limb) 1));
698e1051a39Sopenharmony_ci}
699e1051a39Sopenharmony_ci
700e1051a39Sopenharmony_ci/* Invert a field element */
701e1051a39Sopenharmony_ci/* Computation chain copied from djb's code */
702e1051a39Sopenharmony_cistatic void felem_inv(felem out, const felem in)
703e1051a39Sopenharmony_ci{
704e1051a39Sopenharmony_ci    felem ftmp, ftmp2, ftmp3, ftmp4;
705e1051a39Sopenharmony_ci    widefelem tmp;
706e1051a39Sopenharmony_ci    unsigned i;
707e1051a39Sopenharmony_ci
708e1051a39Sopenharmony_ci    felem_square(tmp, in);
709e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2 */
710e1051a39Sopenharmony_ci    felem_mul(tmp, in, ftmp);
711e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^2 - 1 */
712e1051a39Sopenharmony_ci    felem_square(tmp, ftmp);
713e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^3 - 2 */
714e1051a39Sopenharmony_ci    felem_mul(tmp, in, ftmp);
715e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^3 - 1 */
716e1051a39Sopenharmony_ci    felem_square(tmp, ftmp);
717e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^4 - 2 */
718e1051a39Sopenharmony_ci    felem_square(tmp, ftmp2);
719e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^5 - 4 */
720e1051a39Sopenharmony_ci    felem_square(tmp, ftmp2);
721e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^6 - 8 */
722e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp2, ftmp);
723e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^6 - 1 */
724e1051a39Sopenharmony_ci    felem_square(tmp, ftmp);
725e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^7 - 2 */
726e1051a39Sopenharmony_ci    for (i = 0; i < 5; ++i) {   /* 2^12 - 2^6 */
727e1051a39Sopenharmony_ci        felem_square(tmp, ftmp2);
728e1051a39Sopenharmony_ci        felem_reduce(ftmp2, tmp);
729e1051a39Sopenharmony_ci    }
730e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp2, ftmp);
731e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^12 - 1 */
732e1051a39Sopenharmony_ci    felem_square(tmp, ftmp2);
733e1051a39Sopenharmony_ci    felem_reduce(ftmp3, tmp);   /* 2^13 - 2 */
734e1051a39Sopenharmony_ci    for (i = 0; i < 11; ++i) {  /* 2^24 - 2^12 */
735e1051a39Sopenharmony_ci        felem_square(tmp, ftmp3);
736e1051a39Sopenharmony_ci        felem_reduce(ftmp3, tmp);
737e1051a39Sopenharmony_ci    }
738e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp3, ftmp2);
739e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^24 - 1 */
740e1051a39Sopenharmony_ci    felem_square(tmp, ftmp2);
741e1051a39Sopenharmony_ci    felem_reduce(ftmp3, tmp);   /* 2^25 - 2 */
742e1051a39Sopenharmony_ci    for (i = 0; i < 23; ++i) {  /* 2^48 - 2^24 */
743e1051a39Sopenharmony_ci        felem_square(tmp, ftmp3);
744e1051a39Sopenharmony_ci        felem_reduce(ftmp3, tmp);
745e1051a39Sopenharmony_ci    }
746e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp3, ftmp2);
747e1051a39Sopenharmony_ci    felem_reduce(ftmp3, tmp);   /* 2^48 - 1 */
748e1051a39Sopenharmony_ci    felem_square(tmp, ftmp3);
749e1051a39Sopenharmony_ci    felem_reduce(ftmp4, tmp);   /* 2^49 - 2 */
750e1051a39Sopenharmony_ci    for (i = 0; i < 47; ++i) {  /* 2^96 - 2^48 */
751e1051a39Sopenharmony_ci        felem_square(tmp, ftmp4);
752e1051a39Sopenharmony_ci        felem_reduce(ftmp4, tmp);
753e1051a39Sopenharmony_ci    }
754e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp3, ftmp4);
755e1051a39Sopenharmony_ci    felem_reduce(ftmp3, tmp);   /* 2^96 - 1 */
756e1051a39Sopenharmony_ci    felem_square(tmp, ftmp3);
757e1051a39Sopenharmony_ci    felem_reduce(ftmp4, tmp);   /* 2^97 - 2 */
758e1051a39Sopenharmony_ci    for (i = 0; i < 23; ++i) {  /* 2^120 - 2^24 */
759e1051a39Sopenharmony_ci        felem_square(tmp, ftmp4);
760e1051a39Sopenharmony_ci        felem_reduce(ftmp4, tmp);
761e1051a39Sopenharmony_ci    }
762e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp2, ftmp4);
763e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);   /* 2^120 - 1 */
764e1051a39Sopenharmony_ci    for (i = 0; i < 6; ++i) {   /* 2^126 - 2^6 */
765e1051a39Sopenharmony_ci        felem_square(tmp, ftmp2);
766e1051a39Sopenharmony_ci        felem_reduce(ftmp2, tmp);
767e1051a39Sopenharmony_ci    }
768e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp2, ftmp);
769e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^126 - 1 */
770e1051a39Sopenharmony_ci    felem_square(tmp, ftmp);
771e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^127 - 2 */
772e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, in);
773e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);    /* 2^127 - 1 */
774e1051a39Sopenharmony_ci    for (i = 0; i < 97; ++i) {  /* 2^224 - 2^97 */
775e1051a39Sopenharmony_ci        felem_square(tmp, ftmp);
776e1051a39Sopenharmony_ci        felem_reduce(ftmp, tmp);
777e1051a39Sopenharmony_ci    }
778e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, ftmp3);
779e1051a39Sopenharmony_ci    felem_reduce(out, tmp);     /* 2^224 - 2^96 - 1 */
780e1051a39Sopenharmony_ci}
781e1051a39Sopenharmony_ci
782e1051a39Sopenharmony_ci/*
783e1051a39Sopenharmony_ci * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy
784e1051a39Sopenharmony_ci * out to itself.
785e1051a39Sopenharmony_ci */
786e1051a39Sopenharmony_cistatic void copy_conditional(felem out, const felem in, limb icopy)
787e1051a39Sopenharmony_ci{
788e1051a39Sopenharmony_ci    unsigned i;
789e1051a39Sopenharmony_ci    /*
790e1051a39Sopenharmony_ci     * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
791e1051a39Sopenharmony_ci     */
792e1051a39Sopenharmony_ci    const limb copy = -icopy;
793e1051a39Sopenharmony_ci    for (i = 0; i < 4; ++i) {
794e1051a39Sopenharmony_ci        const limb tmp = copy & (in[i] ^ out[i]);
795e1051a39Sopenharmony_ci        out[i] ^= tmp;
796e1051a39Sopenharmony_ci    }
797e1051a39Sopenharmony_ci}
798e1051a39Sopenharmony_ci
799e1051a39Sopenharmony_ci/******************************************************************************/
800e1051a39Sopenharmony_ci/*-
801e1051a39Sopenharmony_ci *                       ELLIPTIC CURVE POINT OPERATIONS
802e1051a39Sopenharmony_ci *
803e1051a39Sopenharmony_ci * Points are represented in Jacobian projective coordinates:
804e1051a39Sopenharmony_ci * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
805e1051a39Sopenharmony_ci * or to the point at infinity if Z == 0.
806e1051a39Sopenharmony_ci *
807e1051a39Sopenharmony_ci */
808e1051a39Sopenharmony_ci
809e1051a39Sopenharmony_ci/*-
810e1051a39Sopenharmony_ci * Double an elliptic curve point:
811e1051a39Sopenharmony_ci * (X', Y', Z') = 2 * (X, Y, Z), where
812e1051a39Sopenharmony_ci * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
813e1051a39Sopenharmony_ci * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4
814e1051a39Sopenharmony_ci * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
815e1051a39Sopenharmony_ci * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
816e1051a39Sopenharmony_ci * while x_out == y_in is not (maybe this works, but it's not tested).
817e1051a39Sopenharmony_ci */
818e1051a39Sopenharmony_cistatic void
819e1051a39Sopenharmony_cipoint_double(felem x_out, felem y_out, felem z_out,
820e1051a39Sopenharmony_ci             const felem x_in, const felem y_in, const felem z_in)
821e1051a39Sopenharmony_ci{
822e1051a39Sopenharmony_ci    widefelem tmp, tmp2;
823e1051a39Sopenharmony_ci    felem delta, gamma, beta, alpha, ftmp, ftmp2;
824e1051a39Sopenharmony_ci
825e1051a39Sopenharmony_ci    felem_assign(ftmp, x_in);
826e1051a39Sopenharmony_ci    felem_assign(ftmp2, x_in);
827e1051a39Sopenharmony_ci
828e1051a39Sopenharmony_ci    /* delta = z^2 */
829e1051a39Sopenharmony_ci    felem_square(tmp, z_in);
830e1051a39Sopenharmony_ci    felem_reduce(delta, tmp);
831e1051a39Sopenharmony_ci
832e1051a39Sopenharmony_ci    /* gamma = y^2 */
833e1051a39Sopenharmony_ci    felem_square(tmp, y_in);
834e1051a39Sopenharmony_ci    felem_reduce(gamma, tmp);
835e1051a39Sopenharmony_ci
836e1051a39Sopenharmony_ci    /* beta = x*gamma */
837e1051a39Sopenharmony_ci    felem_mul(tmp, x_in, gamma);
838e1051a39Sopenharmony_ci    felem_reduce(beta, tmp);
839e1051a39Sopenharmony_ci
840e1051a39Sopenharmony_ci    /* alpha = 3*(x-delta)*(x+delta) */
841e1051a39Sopenharmony_ci    felem_diff(ftmp, delta);
842e1051a39Sopenharmony_ci    /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
843e1051a39Sopenharmony_ci    felem_sum(ftmp2, delta);
844e1051a39Sopenharmony_ci    /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
845e1051a39Sopenharmony_ci    felem_scalar(ftmp2, 3);
846e1051a39Sopenharmony_ci    /* ftmp2[i] < 3 * 2^58 < 2^60 */
847e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, ftmp2);
848e1051a39Sopenharmony_ci    /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
849e1051a39Sopenharmony_ci    felem_reduce(alpha, tmp);
850e1051a39Sopenharmony_ci
851e1051a39Sopenharmony_ci    /* x' = alpha^2 - 8*beta */
852e1051a39Sopenharmony_ci    felem_square(tmp, alpha);
853e1051a39Sopenharmony_ci    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
854e1051a39Sopenharmony_ci    felem_assign(ftmp, beta);
855e1051a39Sopenharmony_ci    felem_scalar(ftmp, 8);
856e1051a39Sopenharmony_ci    /* ftmp[i] < 8 * 2^57 = 2^60 */
857e1051a39Sopenharmony_ci    felem_diff_128_64(tmp, ftmp);
858e1051a39Sopenharmony_ci    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
859e1051a39Sopenharmony_ci    felem_reduce(x_out, tmp);
860e1051a39Sopenharmony_ci
861e1051a39Sopenharmony_ci    /* z' = (y + z)^2 - gamma - delta */
862e1051a39Sopenharmony_ci    felem_sum(delta, gamma);
863e1051a39Sopenharmony_ci    /* delta[i] < 2^57 + 2^57 = 2^58 */
864e1051a39Sopenharmony_ci    felem_assign(ftmp, y_in);
865e1051a39Sopenharmony_ci    felem_sum(ftmp, z_in);
866e1051a39Sopenharmony_ci    /* ftmp[i] < 2^57 + 2^57 = 2^58 */
867e1051a39Sopenharmony_ci    felem_square(tmp, ftmp);
868e1051a39Sopenharmony_ci    /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
869e1051a39Sopenharmony_ci    felem_diff_128_64(tmp, delta);
870e1051a39Sopenharmony_ci    /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
871e1051a39Sopenharmony_ci    felem_reduce(z_out, tmp);
872e1051a39Sopenharmony_ci
873e1051a39Sopenharmony_ci    /* y' = alpha*(4*beta - x') - 8*gamma^2 */
874e1051a39Sopenharmony_ci    felem_scalar(beta, 4);
875e1051a39Sopenharmony_ci    /* beta[i] < 4 * 2^57 = 2^59 */
876e1051a39Sopenharmony_ci    felem_diff(beta, x_out);
877e1051a39Sopenharmony_ci    /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
878e1051a39Sopenharmony_ci    felem_mul(tmp, alpha, beta);
879e1051a39Sopenharmony_ci    /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
880e1051a39Sopenharmony_ci    felem_square(tmp2, gamma);
881e1051a39Sopenharmony_ci    /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
882e1051a39Sopenharmony_ci    widefelem_scalar(tmp2, 8);
883e1051a39Sopenharmony_ci    /* tmp2[i] < 8 * 2^116 = 2^119 */
884e1051a39Sopenharmony_ci    widefelem_diff(tmp, tmp2);
885e1051a39Sopenharmony_ci    /* tmp[i] < 2^119 + 2^120 < 2^121 */
886e1051a39Sopenharmony_ci    felem_reduce(y_out, tmp);
887e1051a39Sopenharmony_ci}
888e1051a39Sopenharmony_ci
889e1051a39Sopenharmony_ci/*-
890e1051a39Sopenharmony_ci * Add two elliptic curve points:
891e1051a39Sopenharmony_ci * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
892e1051a39Sopenharmony_ci * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
893e1051a39Sopenharmony_ci * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
894e1051a39Sopenharmony_ci * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) -
895e1051a39Sopenharmony_ci *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
896e1051a39Sopenharmony_ci * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
897e1051a39Sopenharmony_ci *
898e1051a39Sopenharmony_ci * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
899e1051a39Sopenharmony_ci */
900e1051a39Sopenharmony_ci
901e1051a39Sopenharmony_ci/*
902e1051a39Sopenharmony_ci * This function is not entirely constant-time: it includes a branch for
903e1051a39Sopenharmony_ci * checking whether the two input points are equal, (while not equal to the
904e1051a39Sopenharmony_ci * point at infinity). This case never happens during single point
905e1051a39Sopenharmony_ci * multiplication, so there is no timing leak for ECDH or ECDSA signing.
906e1051a39Sopenharmony_ci */
907e1051a39Sopenharmony_cistatic void point_add(felem x3, felem y3, felem z3,
908e1051a39Sopenharmony_ci                      const felem x1, const felem y1, const felem z1,
909e1051a39Sopenharmony_ci                      const int mixed, const felem x2, const felem y2,
910e1051a39Sopenharmony_ci                      const felem z2)
911e1051a39Sopenharmony_ci{
912e1051a39Sopenharmony_ci    felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
913e1051a39Sopenharmony_ci    widefelem tmp, tmp2;
914e1051a39Sopenharmony_ci    limb z1_is_zero, z2_is_zero, x_equal, y_equal;
915e1051a39Sopenharmony_ci    limb points_equal;
916e1051a39Sopenharmony_ci
917e1051a39Sopenharmony_ci    if (!mixed) {
918e1051a39Sopenharmony_ci        /* ftmp2 = z2^2 */
919e1051a39Sopenharmony_ci        felem_square(tmp, z2);
920e1051a39Sopenharmony_ci        felem_reduce(ftmp2, tmp);
921e1051a39Sopenharmony_ci
922e1051a39Sopenharmony_ci        /* ftmp4 = z2^3 */
923e1051a39Sopenharmony_ci        felem_mul(tmp, ftmp2, z2);
924e1051a39Sopenharmony_ci        felem_reduce(ftmp4, tmp);
925e1051a39Sopenharmony_ci
926e1051a39Sopenharmony_ci        /* ftmp4 = z2^3*y1 */
927e1051a39Sopenharmony_ci        felem_mul(tmp2, ftmp4, y1);
928e1051a39Sopenharmony_ci        felem_reduce(ftmp4, tmp2);
929e1051a39Sopenharmony_ci
930e1051a39Sopenharmony_ci        /* ftmp2 = z2^2*x1 */
931e1051a39Sopenharmony_ci        felem_mul(tmp2, ftmp2, x1);
932e1051a39Sopenharmony_ci        felem_reduce(ftmp2, tmp2);
933e1051a39Sopenharmony_ci    } else {
934e1051a39Sopenharmony_ci        /*
935e1051a39Sopenharmony_ci         * We'll assume z2 = 1 (special case z2 = 0 is handled later)
936e1051a39Sopenharmony_ci         */
937e1051a39Sopenharmony_ci
938e1051a39Sopenharmony_ci        /* ftmp4 = z2^3*y1 */
939e1051a39Sopenharmony_ci        felem_assign(ftmp4, y1);
940e1051a39Sopenharmony_ci
941e1051a39Sopenharmony_ci        /* ftmp2 = z2^2*x1 */
942e1051a39Sopenharmony_ci        felem_assign(ftmp2, x1);
943e1051a39Sopenharmony_ci    }
944e1051a39Sopenharmony_ci
945e1051a39Sopenharmony_ci    /* ftmp = z1^2 */
946e1051a39Sopenharmony_ci    felem_square(tmp, z1);
947e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);
948e1051a39Sopenharmony_ci
949e1051a39Sopenharmony_ci    /* ftmp3 = z1^3 */
950e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, z1);
951e1051a39Sopenharmony_ci    felem_reduce(ftmp3, tmp);
952e1051a39Sopenharmony_ci
953e1051a39Sopenharmony_ci    /* tmp = z1^3*y2 */
954e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp3, y2);
955e1051a39Sopenharmony_ci    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
956e1051a39Sopenharmony_ci
957e1051a39Sopenharmony_ci    /* ftmp3 = z1^3*y2 - z2^3*y1 */
958e1051a39Sopenharmony_ci    felem_diff_128_64(tmp, ftmp4);
959e1051a39Sopenharmony_ci    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
960e1051a39Sopenharmony_ci    felem_reduce(ftmp3, tmp);
961e1051a39Sopenharmony_ci
962e1051a39Sopenharmony_ci    /* tmp = z1^2*x2 */
963e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, x2);
964e1051a39Sopenharmony_ci    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
965e1051a39Sopenharmony_ci
966e1051a39Sopenharmony_ci    /* ftmp = z1^2*x2 - z2^2*x1 */
967e1051a39Sopenharmony_ci    felem_diff_128_64(tmp, ftmp2);
968e1051a39Sopenharmony_ci    /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
969e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);
970e1051a39Sopenharmony_ci
971e1051a39Sopenharmony_ci    /*
972e1051a39Sopenharmony_ci     * The formulae are incorrect if the points are equal, in affine coordinates
973e1051a39Sopenharmony_ci     * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
974e1051a39Sopenharmony_ci     * happens.
975e1051a39Sopenharmony_ci     *
976e1051a39Sopenharmony_ci     * We use bitwise operations to avoid potential side-channels introduced by
977e1051a39Sopenharmony_ci     * the short-circuiting behaviour of boolean operators.
978e1051a39Sopenharmony_ci     */
979e1051a39Sopenharmony_ci    x_equal = felem_is_zero(ftmp);
980e1051a39Sopenharmony_ci    y_equal = felem_is_zero(ftmp3);
981e1051a39Sopenharmony_ci    /*
982e1051a39Sopenharmony_ci     * The special case of either point being the point at infinity (z1 and/or
983e1051a39Sopenharmony_ci     * z2 are zero), is handled separately later on in this function, so we
984e1051a39Sopenharmony_ci     * avoid jumping to point_double here in those special cases.
985e1051a39Sopenharmony_ci     */
986e1051a39Sopenharmony_ci    z1_is_zero = felem_is_zero(z1);
987e1051a39Sopenharmony_ci    z2_is_zero = felem_is_zero(z2);
988e1051a39Sopenharmony_ci
989e1051a39Sopenharmony_ci    /*
990e1051a39Sopenharmony_ci     * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
991e1051a39Sopenharmony_ci     * specific implementation `felem_is_zero()` returns truth as `0x1`
992e1051a39Sopenharmony_ci     * (rather than `0xff..ff`).
993e1051a39Sopenharmony_ci     *
994e1051a39Sopenharmony_ci     * This implies that `~true` in this implementation becomes
995e1051a39Sopenharmony_ci     * `0xff..fe` (rather than `0x0`): for this reason, to be used in
996e1051a39Sopenharmony_ci     * the if expression, we mask out only the last bit in the next
997e1051a39Sopenharmony_ci     * line.
998e1051a39Sopenharmony_ci     */
999e1051a39Sopenharmony_ci    points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
1000e1051a39Sopenharmony_ci
1001e1051a39Sopenharmony_ci    if (points_equal) {
1002e1051a39Sopenharmony_ci        /*
1003e1051a39Sopenharmony_ci         * This is obviously not constant-time but, as mentioned before, this
1004e1051a39Sopenharmony_ci         * case never happens during single point multiplication, so there is no
1005e1051a39Sopenharmony_ci         * timing leak for ECDH or ECDSA signing.
1006e1051a39Sopenharmony_ci         */
1007e1051a39Sopenharmony_ci        point_double(x3, y3, z3, x1, y1, z1);
1008e1051a39Sopenharmony_ci        return;
1009e1051a39Sopenharmony_ci    }
1010e1051a39Sopenharmony_ci
1011e1051a39Sopenharmony_ci    /* ftmp5 = z1*z2 */
1012e1051a39Sopenharmony_ci    if (!mixed) {
1013e1051a39Sopenharmony_ci        felem_mul(tmp, z1, z2);
1014e1051a39Sopenharmony_ci        felem_reduce(ftmp5, tmp);
1015e1051a39Sopenharmony_ci    } else {
1016e1051a39Sopenharmony_ci        /* special case z2 = 0 is handled later */
1017e1051a39Sopenharmony_ci        felem_assign(ftmp5, z1);
1018e1051a39Sopenharmony_ci    }
1019e1051a39Sopenharmony_ci
1020e1051a39Sopenharmony_ci    /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
1021e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, ftmp5);
1022e1051a39Sopenharmony_ci    felem_reduce(z_out, tmp);
1023e1051a39Sopenharmony_ci
1024e1051a39Sopenharmony_ci    /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
1025e1051a39Sopenharmony_ci    felem_assign(ftmp5, ftmp);
1026e1051a39Sopenharmony_ci    felem_square(tmp, ftmp);
1027e1051a39Sopenharmony_ci    felem_reduce(ftmp, tmp);
1028e1051a39Sopenharmony_ci
1029e1051a39Sopenharmony_ci    /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
1030e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp, ftmp5);
1031e1051a39Sopenharmony_ci    felem_reduce(ftmp5, tmp);
1032e1051a39Sopenharmony_ci
1033e1051a39Sopenharmony_ci    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1034e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp2, ftmp);
1035e1051a39Sopenharmony_ci    felem_reduce(ftmp2, tmp);
1036e1051a39Sopenharmony_ci
1037e1051a39Sopenharmony_ci    /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
1038e1051a39Sopenharmony_ci    felem_mul(tmp, ftmp4, ftmp5);
1039e1051a39Sopenharmony_ci    /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
1040e1051a39Sopenharmony_ci
1041e1051a39Sopenharmony_ci    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
1042e1051a39Sopenharmony_ci    felem_square(tmp2, ftmp3);
1043e1051a39Sopenharmony_ci    /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
1044e1051a39Sopenharmony_ci
1045e1051a39Sopenharmony_ci    /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
1046e1051a39Sopenharmony_ci    felem_diff_128_64(tmp2, ftmp5);
1047e1051a39Sopenharmony_ci    /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
1048e1051a39Sopenharmony_ci
1049e1051a39Sopenharmony_ci    /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
1050e1051a39Sopenharmony_ci    felem_assign(ftmp5, ftmp2);
1051e1051a39Sopenharmony_ci    felem_scalar(ftmp5, 2);
1052e1051a39Sopenharmony_ci    /* ftmp5[i] < 2 * 2^57 = 2^58 */
1053e1051a39Sopenharmony_ci
1054e1051a39Sopenharmony_ci    /*-
1055e1051a39Sopenharmony_ci     * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
1056e1051a39Sopenharmony_ci     *  2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
1057e1051a39Sopenharmony_ci     */
1058e1051a39Sopenharmony_ci    felem_diff_128_64(tmp2, ftmp5);
1059e1051a39Sopenharmony_ci    /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
1060e1051a39Sopenharmony_ci    felem_reduce(x_out, tmp2);
1061e1051a39Sopenharmony_ci
1062e1051a39Sopenharmony_ci    /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
1063e1051a39Sopenharmony_ci    felem_diff(ftmp2, x_out);
1064e1051a39Sopenharmony_ci    /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
1065e1051a39Sopenharmony_ci
1066e1051a39Sopenharmony_ci    /*
1067e1051a39Sopenharmony_ci     * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
1068e1051a39Sopenharmony_ci     */
1069e1051a39Sopenharmony_ci    felem_mul(tmp2, ftmp3, ftmp2);
1070e1051a39Sopenharmony_ci    /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
1071e1051a39Sopenharmony_ci
1072e1051a39Sopenharmony_ci    /*-
1073e1051a39Sopenharmony_ci     * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
1074e1051a39Sopenharmony_ci     *  z2^3*y1*(z1^2*x2 - z2^2*x1)^3
1075e1051a39Sopenharmony_ci     */
1076e1051a39Sopenharmony_ci    widefelem_diff(tmp2, tmp);
1077e1051a39Sopenharmony_ci    /* tmp2[i] < 2^118 + 2^120 < 2^121 */
1078e1051a39Sopenharmony_ci    felem_reduce(y_out, tmp2);
1079e1051a39Sopenharmony_ci
1080e1051a39Sopenharmony_ci    /*
1081e1051a39Sopenharmony_ci     * the result (x_out, y_out, z_out) is incorrect if one of the inputs is
1082e1051a39Sopenharmony_ci     * the point at infinity, so we need to check for this separately
1083e1051a39Sopenharmony_ci     */
1084e1051a39Sopenharmony_ci
1085e1051a39Sopenharmony_ci    /*
1086e1051a39Sopenharmony_ci     * if point 1 is at infinity, copy point 2 to output, and vice versa
1087e1051a39Sopenharmony_ci     */
1088e1051a39Sopenharmony_ci    copy_conditional(x_out, x2, z1_is_zero);
1089e1051a39Sopenharmony_ci    copy_conditional(x_out, x1, z2_is_zero);
1090e1051a39Sopenharmony_ci    copy_conditional(y_out, y2, z1_is_zero);
1091e1051a39Sopenharmony_ci    copy_conditional(y_out, y1, z2_is_zero);
1092e1051a39Sopenharmony_ci    copy_conditional(z_out, z2, z1_is_zero);
1093e1051a39Sopenharmony_ci    copy_conditional(z_out, z1, z2_is_zero);
1094e1051a39Sopenharmony_ci    felem_assign(x3, x_out);
1095e1051a39Sopenharmony_ci    felem_assign(y3, y_out);
1096e1051a39Sopenharmony_ci    felem_assign(z3, z_out);
1097e1051a39Sopenharmony_ci}
1098e1051a39Sopenharmony_ci
1099e1051a39Sopenharmony_ci/*
1100e1051a39Sopenharmony_ci * select_point selects the |idx|th point from a precomputation table and
1101e1051a39Sopenharmony_ci * copies it to out.
1102e1051a39Sopenharmony_ci * The pre_comp array argument should be size of |size| argument
1103e1051a39Sopenharmony_ci */
1104e1051a39Sopenharmony_cistatic void select_point(const u64 idx, unsigned int size,
1105e1051a39Sopenharmony_ci                         const felem pre_comp[][3], felem out[3])
1106e1051a39Sopenharmony_ci{
1107e1051a39Sopenharmony_ci    unsigned i, j;
1108e1051a39Sopenharmony_ci    limb *outlimbs = &out[0][0];
1109e1051a39Sopenharmony_ci
1110e1051a39Sopenharmony_ci    memset(out, 0, sizeof(*out) * 3);
1111e1051a39Sopenharmony_ci    for (i = 0; i < size; i++) {
1112e1051a39Sopenharmony_ci        const limb *inlimbs = &pre_comp[i][0][0];
1113e1051a39Sopenharmony_ci        u64 mask = i ^ idx;
1114e1051a39Sopenharmony_ci        mask |= mask >> 4;
1115e1051a39Sopenharmony_ci        mask |= mask >> 2;
1116e1051a39Sopenharmony_ci        mask |= mask >> 1;
1117e1051a39Sopenharmony_ci        mask &= 1;
1118e1051a39Sopenharmony_ci        mask--;
1119e1051a39Sopenharmony_ci        for (j = 0; j < 4 * 3; j++)
1120e1051a39Sopenharmony_ci            outlimbs[j] |= inlimbs[j] & mask;
1121e1051a39Sopenharmony_ci    }
1122e1051a39Sopenharmony_ci}
1123e1051a39Sopenharmony_ci
1124e1051a39Sopenharmony_ci/* get_bit returns the |i|th bit in |in| */
1125e1051a39Sopenharmony_cistatic char get_bit(const felem_bytearray in, unsigned i)
1126e1051a39Sopenharmony_ci{
1127e1051a39Sopenharmony_ci    if (i >= 224)
1128e1051a39Sopenharmony_ci        return 0;
1129e1051a39Sopenharmony_ci    return (in[i >> 3] >> (i & 7)) & 1;
1130e1051a39Sopenharmony_ci}
1131e1051a39Sopenharmony_ci
1132e1051a39Sopenharmony_ci/*
1133e1051a39Sopenharmony_ci * Interleaved point multiplication using precomputed point multiples: The
1134e1051a39Sopenharmony_ci * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1135e1051a39Sopenharmony_ci * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1136e1051a39Sopenharmony_ci * generator, using certain (large) precomputed multiples in g_pre_comp.
1137e1051a39Sopenharmony_ci * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1138e1051a39Sopenharmony_ci */
1139e1051a39Sopenharmony_cistatic void batch_mul(felem x_out, felem y_out, felem z_out,
1140e1051a39Sopenharmony_ci                      const felem_bytearray scalars[],
1141e1051a39Sopenharmony_ci                      const unsigned num_points, const u8 *g_scalar,
1142e1051a39Sopenharmony_ci                      const int mixed, const felem pre_comp[][17][3],
1143e1051a39Sopenharmony_ci                      const felem g_pre_comp[2][16][3])
1144e1051a39Sopenharmony_ci{
1145e1051a39Sopenharmony_ci    int i, skip;
1146e1051a39Sopenharmony_ci    unsigned num;
1147e1051a39Sopenharmony_ci    unsigned gen_mul = (g_scalar != NULL);
1148e1051a39Sopenharmony_ci    felem nq[3], tmp[4];
1149e1051a39Sopenharmony_ci    u64 bits;
1150e1051a39Sopenharmony_ci    u8 sign, digit;
1151e1051a39Sopenharmony_ci
1152e1051a39Sopenharmony_ci    /* set nq to the point at infinity */
1153e1051a39Sopenharmony_ci    memset(nq, 0, sizeof(nq));
1154e1051a39Sopenharmony_ci
1155e1051a39Sopenharmony_ci    /*
1156e1051a39Sopenharmony_ci     * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1157e1051a39Sopenharmony_ci     * of the generator (two in each of the last 28 rounds) and additions of
1158e1051a39Sopenharmony_ci     * other points multiples (every 5th round).
1159e1051a39Sopenharmony_ci     */
1160e1051a39Sopenharmony_ci    skip = 1;                   /* save two point operations in the first
1161e1051a39Sopenharmony_ci                                 * round */
1162e1051a39Sopenharmony_ci    for (i = (num_points ? 220 : 27); i >= 0; --i) {
1163e1051a39Sopenharmony_ci        /* double */
1164e1051a39Sopenharmony_ci        if (!skip)
1165e1051a39Sopenharmony_ci            point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1166e1051a39Sopenharmony_ci
1167e1051a39Sopenharmony_ci        /* add multiples of the generator */
1168e1051a39Sopenharmony_ci        if (gen_mul && (i <= 27)) {
1169e1051a39Sopenharmony_ci            /* first, look 28 bits upwards */
1170e1051a39Sopenharmony_ci            bits = get_bit(g_scalar, i + 196) << 3;
1171e1051a39Sopenharmony_ci            bits |= get_bit(g_scalar, i + 140) << 2;
1172e1051a39Sopenharmony_ci            bits |= get_bit(g_scalar, i + 84) << 1;
1173e1051a39Sopenharmony_ci            bits |= get_bit(g_scalar, i + 28);
1174e1051a39Sopenharmony_ci            /* select the point to add, in constant time */
1175e1051a39Sopenharmony_ci            select_point(bits, 16, g_pre_comp[1], tmp);
1176e1051a39Sopenharmony_ci
1177e1051a39Sopenharmony_ci            if (!skip) {
1178e1051a39Sopenharmony_ci                /* value 1 below is argument for "mixed" */
1179e1051a39Sopenharmony_ci                point_add(nq[0], nq[1], nq[2],
1180e1051a39Sopenharmony_ci                          nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1181e1051a39Sopenharmony_ci            } else {
1182e1051a39Sopenharmony_ci                memcpy(nq, tmp, 3 * sizeof(felem));
1183e1051a39Sopenharmony_ci                skip = 0;
1184e1051a39Sopenharmony_ci            }
1185e1051a39Sopenharmony_ci
1186e1051a39Sopenharmony_ci            /* second, look at the current position */
1187e1051a39Sopenharmony_ci            bits = get_bit(g_scalar, i + 168) << 3;
1188e1051a39Sopenharmony_ci            bits |= get_bit(g_scalar, i + 112) << 2;
1189e1051a39Sopenharmony_ci            bits |= get_bit(g_scalar, i + 56) << 1;
1190e1051a39Sopenharmony_ci            bits |= get_bit(g_scalar, i);
1191e1051a39Sopenharmony_ci            /* select the point to add, in constant time */
1192e1051a39Sopenharmony_ci            select_point(bits, 16, g_pre_comp[0], tmp);
1193e1051a39Sopenharmony_ci            point_add(nq[0], nq[1], nq[2],
1194e1051a39Sopenharmony_ci                      nq[0], nq[1], nq[2],
1195e1051a39Sopenharmony_ci                      1 /* mixed */ , tmp[0], tmp[1], tmp[2]);
1196e1051a39Sopenharmony_ci        }
1197e1051a39Sopenharmony_ci
1198e1051a39Sopenharmony_ci        /* do other additions every 5 doublings */
1199e1051a39Sopenharmony_ci        if (num_points && (i % 5 == 0)) {
1200e1051a39Sopenharmony_ci            /* loop over all scalars */
1201e1051a39Sopenharmony_ci            for (num = 0; num < num_points; ++num) {
1202e1051a39Sopenharmony_ci                bits = get_bit(scalars[num], i + 4) << 5;
1203e1051a39Sopenharmony_ci                bits |= get_bit(scalars[num], i + 3) << 4;
1204e1051a39Sopenharmony_ci                bits |= get_bit(scalars[num], i + 2) << 3;
1205e1051a39Sopenharmony_ci                bits |= get_bit(scalars[num], i + 1) << 2;
1206e1051a39Sopenharmony_ci                bits |= get_bit(scalars[num], i) << 1;
1207e1051a39Sopenharmony_ci                bits |= get_bit(scalars[num], i - 1);
1208e1051a39Sopenharmony_ci                ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1209e1051a39Sopenharmony_ci
1210e1051a39Sopenharmony_ci                /* select the point to add or subtract */
1211e1051a39Sopenharmony_ci                select_point(digit, 17, pre_comp[num], tmp);
1212e1051a39Sopenharmony_ci                felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1213e1051a39Sopenharmony_ci                                            * point */
1214e1051a39Sopenharmony_ci                copy_conditional(tmp[1], tmp[3], sign);
1215e1051a39Sopenharmony_ci
1216e1051a39Sopenharmony_ci                if (!skip) {
1217e1051a39Sopenharmony_ci                    point_add(nq[0], nq[1], nq[2],
1218e1051a39Sopenharmony_ci                              nq[0], nq[1], nq[2],
1219e1051a39Sopenharmony_ci                              mixed, tmp[0], tmp[1], tmp[2]);
1220e1051a39Sopenharmony_ci                } else {
1221e1051a39Sopenharmony_ci                    memcpy(nq, tmp, 3 * sizeof(felem));
1222e1051a39Sopenharmony_ci                    skip = 0;
1223e1051a39Sopenharmony_ci                }
1224e1051a39Sopenharmony_ci            }
1225e1051a39Sopenharmony_ci        }
1226e1051a39Sopenharmony_ci    }
1227e1051a39Sopenharmony_ci    felem_assign(x_out, nq[0]);
1228e1051a39Sopenharmony_ci    felem_assign(y_out, nq[1]);
1229e1051a39Sopenharmony_ci    felem_assign(z_out, nq[2]);
1230e1051a39Sopenharmony_ci}
1231e1051a39Sopenharmony_ci
1232e1051a39Sopenharmony_ci/******************************************************************************/
1233e1051a39Sopenharmony_ci/*
1234e1051a39Sopenharmony_ci * FUNCTIONS TO MANAGE PRECOMPUTATION
1235e1051a39Sopenharmony_ci */
1236e1051a39Sopenharmony_ci
1237e1051a39Sopenharmony_cistatic NISTP224_PRE_COMP *nistp224_pre_comp_new(void)
1238e1051a39Sopenharmony_ci{
1239e1051a39Sopenharmony_ci    NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1240e1051a39Sopenharmony_ci
1241e1051a39Sopenharmony_ci    if (!ret) {
1242e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1243e1051a39Sopenharmony_ci        return ret;
1244e1051a39Sopenharmony_ci    }
1245e1051a39Sopenharmony_ci
1246e1051a39Sopenharmony_ci    ret->references = 1;
1247e1051a39Sopenharmony_ci
1248e1051a39Sopenharmony_ci    ret->lock = CRYPTO_THREAD_lock_new();
1249e1051a39Sopenharmony_ci    if (ret->lock == NULL) {
1250e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1251e1051a39Sopenharmony_ci        OPENSSL_free(ret);
1252e1051a39Sopenharmony_ci        return NULL;
1253e1051a39Sopenharmony_ci    }
1254e1051a39Sopenharmony_ci    return ret;
1255e1051a39Sopenharmony_ci}
1256e1051a39Sopenharmony_ci
1257e1051a39Sopenharmony_ciNISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p)
1258e1051a39Sopenharmony_ci{
1259e1051a39Sopenharmony_ci    int i;
1260e1051a39Sopenharmony_ci    if (p != NULL)
1261e1051a39Sopenharmony_ci        CRYPTO_UP_REF(&p->references, &i, p->lock);
1262e1051a39Sopenharmony_ci    return p;
1263e1051a39Sopenharmony_ci}
1264e1051a39Sopenharmony_ci
1265e1051a39Sopenharmony_civoid EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p)
1266e1051a39Sopenharmony_ci{
1267e1051a39Sopenharmony_ci    int i;
1268e1051a39Sopenharmony_ci
1269e1051a39Sopenharmony_ci    if (p == NULL)
1270e1051a39Sopenharmony_ci        return;
1271e1051a39Sopenharmony_ci
1272e1051a39Sopenharmony_ci    CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1273e1051a39Sopenharmony_ci    REF_PRINT_COUNT("EC_nistp224", p);
1274e1051a39Sopenharmony_ci    if (i > 0)
1275e1051a39Sopenharmony_ci        return;
1276e1051a39Sopenharmony_ci    REF_ASSERT_ISNT(i < 0);
1277e1051a39Sopenharmony_ci
1278e1051a39Sopenharmony_ci    CRYPTO_THREAD_lock_free(p->lock);
1279e1051a39Sopenharmony_ci    OPENSSL_free(p);
1280e1051a39Sopenharmony_ci}
1281e1051a39Sopenharmony_ci
1282e1051a39Sopenharmony_ci/******************************************************************************/
1283e1051a39Sopenharmony_ci/*
1284e1051a39Sopenharmony_ci * OPENSSL EC_METHOD FUNCTIONS
1285e1051a39Sopenharmony_ci */
1286e1051a39Sopenharmony_ci
1287e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_group_init(EC_GROUP *group)
1288e1051a39Sopenharmony_ci{
1289e1051a39Sopenharmony_ci    int ret;
1290e1051a39Sopenharmony_ci    ret = ossl_ec_GFp_simple_group_init(group);
1291e1051a39Sopenharmony_ci    group->a_is_minus3 = 1;
1292e1051a39Sopenharmony_ci    return ret;
1293e1051a39Sopenharmony_ci}
1294e1051a39Sopenharmony_ci
1295e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1296e1051a39Sopenharmony_ci                                         const BIGNUM *a, const BIGNUM *b,
1297e1051a39Sopenharmony_ci                                         BN_CTX *ctx)
1298e1051a39Sopenharmony_ci{
1299e1051a39Sopenharmony_ci    int ret = 0;
1300e1051a39Sopenharmony_ci    BIGNUM *curve_p, *curve_a, *curve_b;
1301e1051a39Sopenharmony_ci#ifndef FIPS_MODULE
1302e1051a39Sopenharmony_ci    BN_CTX *new_ctx = NULL;
1303e1051a39Sopenharmony_ci
1304e1051a39Sopenharmony_ci    if (ctx == NULL)
1305e1051a39Sopenharmony_ci        ctx = new_ctx = BN_CTX_new();
1306e1051a39Sopenharmony_ci#endif
1307e1051a39Sopenharmony_ci    if (ctx == NULL)
1308e1051a39Sopenharmony_ci        return 0;
1309e1051a39Sopenharmony_ci
1310e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
1311e1051a39Sopenharmony_ci    curve_p = BN_CTX_get(ctx);
1312e1051a39Sopenharmony_ci    curve_a = BN_CTX_get(ctx);
1313e1051a39Sopenharmony_ci    curve_b = BN_CTX_get(ctx);
1314e1051a39Sopenharmony_ci    if (curve_b == NULL)
1315e1051a39Sopenharmony_ci        goto err;
1316e1051a39Sopenharmony_ci    BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
1317e1051a39Sopenharmony_ci    BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
1318e1051a39Sopenharmony_ci    BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
1319e1051a39Sopenharmony_ci    if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1320e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
1321e1051a39Sopenharmony_ci        goto err;
1322e1051a39Sopenharmony_ci    }
1323e1051a39Sopenharmony_ci    group->field_mod_func = BN_nist_mod_224;
1324e1051a39Sopenharmony_ci    ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1325e1051a39Sopenharmony_ci err:
1326e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
1327e1051a39Sopenharmony_ci#ifndef FIPS_MODULE
1328e1051a39Sopenharmony_ci    BN_CTX_free(new_ctx);
1329e1051a39Sopenharmony_ci#endif
1330e1051a39Sopenharmony_ci    return ret;
1331e1051a39Sopenharmony_ci}
1332e1051a39Sopenharmony_ci
1333e1051a39Sopenharmony_ci/*
1334e1051a39Sopenharmony_ci * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1335e1051a39Sopenharmony_ci * (X/Z^2, Y/Z^3)
1336e1051a39Sopenharmony_ci */
1337e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
1338e1051a39Sopenharmony_ci                                                      const EC_POINT *point,
1339e1051a39Sopenharmony_ci                                                      BIGNUM *x, BIGNUM *y,
1340e1051a39Sopenharmony_ci                                                      BN_CTX *ctx)
1341e1051a39Sopenharmony_ci{
1342e1051a39Sopenharmony_ci    felem z1, z2, x_in, y_in, x_out, y_out;
1343e1051a39Sopenharmony_ci    widefelem tmp;
1344e1051a39Sopenharmony_ci
1345e1051a39Sopenharmony_ci    if (EC_POINT_is_at_infinity(group, point)) {
1346e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
1347e1051a39Sopenharmony_ci        return 0;
1348e1051a39Sopenharmony_ci    }
1349e1051a39Sopenharmony_ci    if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1350e1051a39Sopenharmony_ci        (!BN_to_felem(z1, point->Z)))
1351e1051a39Sopenharmony_ci        return 0;
1352e1051a39Sopenharmony_ci    felem_inv(z2, z1);
1353e1051a39Sopenharmony_ci    felem_square(tmp, z2);
1354e1051a39Sopenharmony_ci    felem_reduce(z1, tmp);
1355e1051a39Sopenharmony_ci    felem_mul(tmp, x_in, z1);
1356e1051a39Sopenharmony_ci    felem_reduce(x_in, tmp);
1357e1051a39Sopenharmony_ci    felem_contract(x_out, x_in);
1358e1051a39Sopenharmony_ci    if (x != NULL) {
1359e1051a39Sopenharmony_ci        if (!felem_to_BN(x, x_out)) {
1360e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1361e1051a39Sopenharmony_ci            return 0;
1362e1051a39Sopenharmony_ci        }
1363e1051a39Sopenharmony_ci    }
1364e1051a39Sopenharmony_ci    felem_mul(tmp, z1, z2);
1365e1051a39Sopenharmony_ci    felem_reduce(z1, tmp);
1366e1051a39Sopenharmony_ci    felem_mul(tmp, y_in, z1);
1367e1051a39Sopenharmony_ci    felem_reduce(y_in, tmp);
1368e1051a39Sopenharmony_ci    felem_contract(y_out, y_in);
1369e1051a39Sopenharmony_ci    if (y != NULL) {
1370e1051a39Sopenharmony_ci        if (!felem_to_BN(y, y_out)) {
1371e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1372e1051a39Sopenharmony_ci            return 0;
1373e1051a39Sopenharmony_ci        }
1374e1051a39Sopenharmony_ci    }
1375e1051a39Sopenharmony_ci    return 1;
1376e1051a39Sopenharmony_ci}
1377e1051a39Sopenharmony_ci
1378e1051a39Sopenharmony_cistatic void make_points_affine(size_t num, felem points[ /* num */ ][3],
1379e1051a39Sopenharmony_ci                               felem tmp_felems[ /* num+1 */ ])
1380e1051a39Sopenharmony_ci{
1381e1051a39Sopenharmony_ci    /*
1382e1051a39Sopenharmony_ci     * Runs in constant time, unless an input is the point at infinity (which
1383e1051a39Sopenharmony_ci     * normally shouldn't happen).
1384e1051a39Sopenharmony_ci     */
1385e1051a39Sopenharmony_ci    ossl_ec_GFp_nistp_points_make_affine_internal(num,
1386e1051a39Sopenharmony_ci                                                  points,
1387e1051a39Sopenharmony_ci                                                  sizeof(felem),
1388e1051a39Sopenharmony_ci                                                  tmp_felems,
1389e1051a39Sopenharmony_ci                                                  (void (*)(void *))felem_one,
1390e1051a39Sopenharmony_ci                                                  felem_is_zero_int,
1391e1051a39Sopenharmony_ci                                                  (void (*)(void *, const void *))
1392e1051a39Sopenharmony_ci                                                  felem_assign,
1393e1051a39Sopenharmony_ci                                                  (void (*)(void *, const void *))
1394e1051a39Sopenharmony_ci                                                  felem_square_reduce, (void (*)
1395e1051a39Sopenharmony_ci                                                                        (void *,
1396e1051a39Sopenharmony_ci                                                                         const void
1397e1051a39Sopenharmony_ci                                                                         *,
1398e1051a39Sopenharmony_ci                                                                         const void
1399e1051a39Sopenharmony_ci                                                                         *))
1400e1051a39Sopenharmony_ci                                                  felem_mul_reduce,
1401e1051a39Sopenharmony_ci                                                  (void (*)(void *, const void *))
1402e1051a39Sopenharmony_ci                                                  felem_inv,
1403e1051a39Sopenharmony_ci                                                  (void (*)(void *, const void *))
1404e1051a39Sopenharmony_ci                                                  felem_contract);
1405e1051a39Sopenharmony_ci}
1406e1051a39Sopenharmony_ci
1407e1051a39Sopenharmony_ci/*
1408e1051a39Sopenharmony_ci * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1409e1051a39Sopenharmony_ci * values Result is stored in r (r can equal one of the inputs).
1410e1051a39Sopenharmony_ci */
1411e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
1412e1051a39Sopenharmony_ci                                    const BIGNUM *scalar, size_t num,
1413e1051a39Sopenharmony_ci                                    const EC_POINT *points[],
1414e1051a39Sopenharmony_ci                                    const BIGNUM *scalars[], BN_CTX *ctx)
1415e1051a39Sopenharmony_ci{
1416e1051a39Sopenharmony_ci    int ret = 0;
1417e1051a39Sopenharmony_ci    int j;
1418e1051a39Sopenharmony_ci    unsigned i;
1419e1051a39Sopenharmony_ci    int mixed = 0;
1420e1051a39Sopenharmony_ci    BIGNUM *x, *y, *z, *tmp_scalar;
1421e1051a39Sopenharmony_ci    felem_bytearray g_secret;
1422e1051a39Sopenharmony_ci    felem_bytearray *secrets = NULL;
1423e1051a39Sopenharmony_ci    felem (*pre_comp)[17][3] = NULL;
1424e1051a39Sopenharmony_ci    felem *tmp_felems = NULL;
1425e1051a39Sopenharmony_ci    int num_bytes;
1426e1051a39Sopenharmony_ci    int have_pre_comp = 0;
1427e1051a39Sopenharmony_ci    size_t num_points = num;
1428e1051a39Sopenharmony_ci    felem x_in, y_in, z_in, x_out, y_out, z_out;
1429e1051a39Sopenharmony_ci    NISTP224_PRE_COMP *pre = NULL;
1430e1051a39Sopenharmony_ci    const felem(*g_pre_comp)[16][3] = NULL;
1431e1051a39Sopenharmony_ci    EC_POINT *generator = NULL;
1432e1051a39Sopenharmony_ci    const EC_POINT *p = NULL;
1433e1051a39Sopenharmony_ci    const BIGNUM *p_scalar = NULL;
1434e1051a39Sopenharmony_ci
1435e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
1436e1051a39Sopenharmony_ci    x = BN_CTX_get(ctx);
1437e1051a39Sopenharmony_ci    y = BN_CTX_get(ctx);
1438e1051a39Sopenharmony_ci    z = BN_CTX_get(ctx);
1439e1051a39Sopenharmony_ci    tmp_scalar = BN_CTX_get(ctx);
1440e1051a39Sopenharmony_ci    if (tmp_scalar == NULL)
1441e1051a39Sopenharmony_ci        goto err;
1442e1051a39Sopenharmony_ci
1443e1051a39Sopenharmony_ci    if (scalar != NULL) {
1444e1051a39Sopenharmony_ci        pre = group->pre_comp.nistp224;
1445e1051a39Sopenharmony_ci        if (pre)
1446e1051a39Sopenharmony_ci            /* we have precomputation, try to use it */
1447e1051a39Sopenharmony_ci            g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp;
1448e1051a39Sopenharmony_ci        else
1449e1051a39Sopenharmony_ci            /* try to use the standard precomputation */
1450e1051a39Sopenharmony_ci            g_pre_comp = &gmul[0];
1451e1051a39Sopenharmony_ci        generator = EC_POINT_new(group);
1452e1051a39Sopenharmony_ci        if (generator == NULL)
1453e1051a39Sopenharmony_ci            goto err;
1454e1051a39Sopenharmony_ci        /* get the generator from precomputation */
1455e1051a39Sopenharmony_ci        if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
1456e1051a39Sopenharmony_ci            !felem_to_BN(y, g_pre_comp[0][1][1]) ||
1457e1051a39Sopenharmony_ci            !felem_to_BN(z, g_pre_comp[0][1][2])) {
1458e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1459e1051a39Sopenharmony_ci            goto err;
1460e1051a39Sopenharmony_ci        }
1461e1051a39Sopenharmony_ci        if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
1462e1051a39Sopenharmony_ci                                                                generator,
1463e1051a39Sopenharmony_ci                                                                x, y, z, ctx))
1464e1051a39Sopenharmony_ci            goto err;
1465e1051a39Sopenharmony_ci        if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1466e1051a39Sopenharmony_ci            /* precomputation matches generator */
1467e1051a39Sopenharmony_ci            have_pre_comp = 1;
1468e1051a39Sopenharmony_ci        else
1469e1051a39Sopenharmony_ci            /*
1470e1051a39Sopenharmony_ci             * we don't have valid precomputation: treat the generator as a
1471e1051a39Sopenharmony_ci             * random point
1472e1051a39Sopenharmony_ci             */
1473e1051a39Sopenharmony_ci            num_points = num_points + 1;
1474e1051a39Sopenharmony_ci    }
1475e1051a39Sopenharmony_ci
1476e1051a39Sopenharmony_ci    if (num_points > 0) {
1477e1051a39Sopenharmony_ci        if (num_points >= 3) {
1478e1051a39Sopenharmony_ci            /*
1479e1051a39Sopenharmony_ci             * unless we precompute multiples for just one or two points,
1480e1051a39Sopenharmony_ci             * converting those into affine form is time well spent
1481e1051a39Sopenharmony_ci             */
1482e1051a39Sopenharmony_ci            mixed = 1;
1483e1051a39Sopenharmony_ci        }
1484e1051a39Sopenharmony_ci        secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1485e1051a39Sopenharmony_ci        pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1486e1051a39Sopenharmony_ci        if (mixed)
1487e1051a39Sopenharmony_ci            tmp_felems =
1488e1051a39Sopenharmony_ci                OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1));
1489e1051a39Sopenharmony_ci        if ((secrets == NULL) || (pre_comp == NULL)
1490e1051a39Sopenharmony_ci            || (mixed && (tmp_felems == NULL))) {
1491e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
1492e1051a39Sopenharmony_ci            goto err;
1493e1051a39Sopenharmony_ci        }
1494e1051a39Sopenharmony_ci
1495e1051a39Sopenharmony_ci        /*
1496e1051a39Sopenharmony_ci         * we treat NULL scalars as 0, and NULL points as points at infinity,
1497e1051a39Sopenharmony_ci         * i.e., they contribute nothing to the linear combination
1498e1051a39Sopenharmony_ci         */
1499e1051a39Sopenharmony_ci        for (i = 0; i < num_points; ++i) {
1500e1051a39Sopenharmony_ci            if (i == num) {
1501e1051a39Sopenharmony_ci                /* the generator */
1502e1051a39Sopenharmony_ci                p = EC_GROUP_get0_generator(group);
1503e1051a39Sopenharmony_ci                p_scalar = scalar;
1504e1051a39Sopenharmony_ci            } else {
1505e1051a39Sopenharmony_ci                /* the i^th point */
1506e1051a39Sopenharmony_ci                p = points[i];
1507e1051a39Sopenharmony_ci                p_scalar = scalars[i];
1508e1051a39Sopenharmony_ci            }
1509e1051a39Sopenharmony_ci            if ((p_scalar != NULL) && (p != NULL)) {
1510e1051a39Sopenharmony_ci                /* reduce scalar to 0 <= scalar < 2^224 */
1511e1051a39Sopenharmony_ci                if ((BN_num_bits(p_scalar) > 224)
1512e1051a39Sopenharmony_ci                    || (BN_is_negative(p_scalar))) {
1513e1051a39Sopenharmony_ci                    /*
1514e1051a39Sopenharmony_ci                     * this is an unusual input, and we don't guarantee
1515e1051a39Sopenharmony_ci                     * constant-timeness
1516e1051a39Sopenharmony_ci                     */
1517e1051a39Sopenharmony_ci                    if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1518e1051a39Sopenharmony_ci                        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1519e1051a39Sopenharmony_ci                        goto err;
1520e1051a39Sopenharmony_ci                    }
1521e1051a39Sopenharmony_ci                    num_bytes = BN_bn2lebinpad(tmp_scalar,
1522e1051a39Sopenharmony_ci                                               secrets[i], sizeof(secrets[i]));
1523e1051a39Sopenharmony_ci                } else {
1524e1051a39Sopenharmony_ci                    num_bytes = BN_bn2lebinpad(p_scalar,
1525e1051a39Sopenharmony_ci                                               secrets[i], sizeof(secrets[i]));
1526e1051a39Sopenharmony_ci                }
1527e1051a39Sopenharmony_ci                if (num_bytes < 0) {
1528e1051a39Sopenharmony_ci                    ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1529e1051a39Sopenharmony_ci                    goto err;
1530e1051a39Sopenharmony_ci                }
1531e1051a39Sopenharmony_ci                /* precompute multiples */
1532e1051a39Sopenharmony_ci                if ((!BN_to_felem(x_out, p->X)) ||
1533e1051a39Sopenharmony_ci                    (!BN_to_felem(y_out, p->Y)) ||
1534e1051a39Sopenharmony_ci                    (!BN_to_felem(z_out, p->Z)))
1535e1051a39Sopenharmony_ci                    goto err;
1536e1051a39Sopenharmony_ci                felem_assign(pre_comp[i][1][0], x_out);
1537e1051a39Sopenharmony_ci                felem_assign(pre_comp[i][1][1], y_out);
1538e1051a39Sopenharmony_ci                felem_assign(pre_comp[i][1][2], z_out);
1539e1051a39Sopenharmony_ci                for (j = 2; j <= 16; ++j) {
1540e1051a39Sopenharmony_ci                    if (j & 1) {
1541e1051a39Sopenharmony_ci                        point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1542e1051a39Sopenharmony_ci                                  pre_comp[i][j][2], pre_comp[i][1][0],
1543e1051a39Sopenharmony_ci                                  pre_comp[i][1][1], pre_comp[i][1][2], 0,
1544e1051a39Sopenharmony_ci                                  pre_comp[i][j - 1][0],
1545e1051a39Sopenharmony_ci                                  pre_comp[i][j - 1][1],
1546e1051a39Sopenharmony_ci                                  pre_comp[i][j - 1][2]);
1547e1051a39Sopenharmony_ci                    } else {
1548e1051a39Sopenharmony_ci                        point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1549e1051a39Sopenharmony_ci                                     pre_comp[i][j][2], pre_comp[i][j / 2][0],
1550e1051a39Sopenharmony_ci                                     pre_comp[i][j / 2][1],
1551e1051a39Sopenharmony_ci                                     pre_comp[i][j / 2][2]);
1552e1051a39Sopenharmony_ci                    }
1553e1051a39Sopenharmony_ci                }
1554e1051a39Sopenharmony_ci            }
1555e1051a39Sopenharmony_ci        }
1556e1051a39Sopenharmony_ci        if (mixed)
1557e1051a39Sopenharmony_ci            make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1558e1051a39Sopenharmony_ci    }
1559e1051a39Sopenharmony_ci
1560e1051a39Sopenharmony_ci    /* the scalar for the generator */
1561e1051a39Sopenharmony_ci    if ((scalar != NULL) && (have_pre_comp)) {
1562e1051a39Sopenharmony_ci        memset(g_secret, 0, sizeof(g_secret));
1563e1051a39Sopenharmony_ci        /* reduce scalar to 0 <= scalar < 2^224 */
1564e1051a39Sopenharmony_ci        if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) {
1565e1051a39Sopenharmony_ci            /*
1566e1051a39Sopenharmony_ci             * this is an unusual input, and we don't guarantee
1567e1051a39Sopenharmony_ci             * constant-timeness
1568e1051a39Sopenharmony_ci             */
1569e1051a39Sopenharmony_ci            if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
1570e1051a39Sopenharmony_ci                ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1571e1051a39Sopenharmony_ci                goto err;
1572e1051a39Sopenharmony_ci            }
1573e1051a39Sopenharmony_ci            num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
1574e1051a39Sopenharmony_ci        } else {
1575e1051a39Sopenharmony_ci            num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
1576e1051a39Sopenharmony_ci        }
1577e1051a39Sopenharmony_ci        /* do the multiplication with generator precomputation */
1578e1051a39Sopenharmony_ci        batch_mul(x_out, y_out, z_out,
1579e1051a39Sopenharmony_ci                  (const felem_bytearray(*))secrets, num_points,
1580e1051a39Sopenharmony_ci                  g_secret,
1581e1051a39Sopenharmony_ci                  mixed, (const felem(*)[17][3])pre_comp, g_pre_comp);
1582e1051a39Sopenharmony_ci    } else {
1583e1051a39Sopenharmony_ci        /* do the multiplication without generator precomputation */
1584e1051a39Sopenharmony_ci        batch_mul(x_out, y_out, z_out,
1585e1051a39Sopenharmony_ci                  (const felem_bytearray(*))secrets, num_points,
1586e1051a39Sopenharmony_ci                  NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
1587e1051a39Sopenharmony_ci    }
1588e1051a39Sopenharmony_ci    /* reduce the output to its unique minimal representation */
1589e1051a39Sopenharmony_ci    felem_contract(x_in, x_out);
1590e1051a39Sopenharmony_ci    felem_contract(y_in, y_out);
1591e1051a39Sopenharmony_ci    felem_contract(z_in, z_out);
1592e1051a39Sopenharmony_ci    if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
1593e1051a39Sopenharmony_ci        (!felem_to_BN(z, z_in))) {
1594e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
1595e1051a39Sopenharmony_ci        goto err;
1596e1051a39Sopenharmony_ci    }
1597e1051a39Sopenharmony_ci    ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
1598e1051a39Sopenharmony_ci                                                             ctx);
1599e1051a39Sopenharmony_ci
1600e1051a39Sopenharmony_ci err:
1601e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
1602e1051a39Sopenharmony_ci    EC_POINT_free(generator);
1603e1051a39Sopenharmony_ci    OPENSSL_free(secrets);
1604e1051a39Sopenharmony_ci    OPENSSL_free(pre_comp);
1605e1051a39Sopenharmony_ci    OPENSSL_free(tmp_felems);
1606e1051a39Sopenharmony_ci    return ret;
1607e1051a39Sopenharmony_ci}
1608e1051a39Sopenharmony_ci
1609e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
1610e1051a39Sopenharmony_ci{
1611e1051a39Sopenharmony_ci    int ret = 0;
1612e1051a39Sopenharmony_ci    NISTP224_PRE_COMP *pre = NULL;
1613e1051a39Sopenharmony_ci    int i, j;
1614e1051a39Sopenharmony_ci    BIGNUM *x, *y;
1615e1051a39Sopenharmony_ci    EC_POINT *generator = NULL;
1616e1051a39Sopenharmony_ci    felem tmp_felems[32];
1617e1051a39Sopenharmony_ci#ifndef FIPS_MODULE
1618e1051a39Sopenharmony_ci    BN_CTX *new_ctx = NULL;
1619e1051a39Sopenharmony_ci#endif
1620e1051a39Sopenharmony_ci
1621e1051a39Sopenharmony_ci    /* throw away old precomputation */
1622e1051a39Sopenharmony_ci    EC_pre_comp_free(group);
1623e1051a39Sopenharmony_ci
1624e1051a39Sopenharmony_ci#ifndef FIPS_MODULE
1625e1051a39Sopenharmony_ci    if (ctx == NULL)
1626e1051a39Sopenharmony_ci        ctx = new_ctx = BN_CTX_new();
1627e1051a39Sopenharmony_ci#endif
1628e1051a39Sopenharmony_ci    if (ctx == NULL)
1629e1051a39Sopenharmony_ci        return 0;
1630e1051a39Sopenharmony_ci
1631e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
1632e1051a39Sopenharmony_ci    x = BN_CTX_get(ctx);
1633e1051a39Sopenharmony_ci    y = BN_CTX_get(ctx);
1634e1051a39Sopenharmony_ci    if (y == NULL)
1635e1051a39Sopenharmony_ci        goto err;
1636e1051a39Sopenharmony_ci    /* get the generator */
1637e1051a39Sopenharmony_ci    if (group->generator == NULL)
1638e1051a39Sopenharmony_ci        goto err;
1639e1051a39Sopenharmony_ci    generator = EC_POINT_new(group);
1640e1051a39Sopenharmony_ci    if (generator == NULL)
1641e1051a39Sopenharmony_ci        goto err;
1642e1051a39Sopenharmony_ci    BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x);
1643e1051a39Sopenharmony_ci    BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y);
1644e1051a39Sopenharmony_ci    if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
1645e1051a39Sopenharmony_ci        goto err;
1646e1051a39Sopenharmony_ci    if ((pre = nistp224_pre_comp_new()) == NULL)
1647e1051a39Sopenharmony_ci        goto err;
1648e1051a39Sopenharmony_ci    /*
1649e1051a39Sopenharmony_ci     * if the generator is the standard one, use built-in precomputation
1650e1051a39Sopenharmony_ci     */
1651e1051a39Sopenharmony_ci    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
1652e1051a39Sopenharmony_ci        memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
1653e1051a39Sopenharmony_ci        goto done;
1654e1051a39Sopenharmony_ci    }
1655e1051a39Sopenharmony_ci    if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) ||
1656e1051a39Sopenharmony_ci        (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) ||
1657e1051a39Sopenharmony_ci        (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z)))
1658e1051a39Sopenharmony_ci        goto err;
1659e1051a39Sopenharmony_ci    /*
1660e1051a39Sopenharmony_ci     * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G,
1661e1051a39Sopenharmony_ci     * 2^140*G, 2^196*G for the second one
1662e1051a39Sopenharmony_ci     */
1663e1051a39Sopenharmony_ci    for (i = 1; i <= 8; i <<= 1) {
1664e1051a39Sopenharmony_ci        point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1665e1051a39Sopenharmony_ci                     pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0],
1666e1051a39Sopenharmony_ci                     pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]);
1667e1051a39Sopenharmony_ci        for (j = 0; j < 27; ++j) {
1668e1051a39Sopenharmony_ci            point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1],
1669e1051a39Sopenharmony_ci                         pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0],
1670e1051a39Sopenharmony_ci                         pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1671e1051a39Sopenharmony_ci        }
1672e1051a39Sopenharmony_ci        if (i == 8)
1673e1051a39Sopenharmony_ci            break;
1674e1051a39Sopenharmony_ci        point_double(pre->g_pre_comp[0][2 * i][0],
1675e1051a39Sopenharmony_ci                     pre->g_pre_comp[0][2 * i][1],
1676e1051a39Sopenharmony_ci                     pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0],
1677e1051a39Sopenharmony_ci                     pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]);
1678e1051a39Sopenharmony_ci        for (j = 0; j < 27; ++j) {
1679e1051a39Sopenharmony_ci            point_double(pre->g_pre_comp[0][2 * i][0],
1680e1051a39Sopenharmony_ci                         pre->g_pre_comp[0][2 * i][1],
1681e1051a39Sopenharmony_ci                         pre->g_pre_comp[0][2 * i][2],
1682e1051a39Sopenharmony_ci                         pre->g_pre_comp[0][2 * i][0],
1683e1051a39Sopenharmony_ci                         pre->g_pre_comp[0][2 * i][1],
1684e1051a39Sopenharmony_ci                         pre->g_pre_comp[0][2 * i][2]);
1685e1051a39Sopenharmony_ci        }
1686e1051a39Sopenharmony_ci    }
1687e1051a39Sopenharmony_ci    for (i = 0; i < 2; i++) {
1688e1051a39Sopenharmony_ci        /* g_pre_comp[i][0] is the point at infinity */
1689e1051a39Sopenharmony_ci        memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0]));
1690e1051a39Sopenharmony_ci        /* the remaining multiples */
1691e1051a39Sopenharmony_ci        /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */
1692e1051a39Sopenharmony_ci        point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1],
1693e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0],
1694e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2],
1695e1051a39Sopenharmony_ci                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1696e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][2][2]);
1697e1051a39Sopenharmony_ci        /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */
1698e1051a39Sopenharmony_ci        point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1],
1699e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0],
1700e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1701e1051a39Sopenharmony_ci                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1702e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][2][2]);
1703e1051a39Sopenharmony_ci        /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */
1704e1051a39Sopenharmony_ci        point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1],
1705e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0],
1706e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2],
1707e1051a39Sopenharmony_ci                  0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1],
1708e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][4][2]);
1709e1051a39Sopenharmony_ci        /*
1710e1051a39Sopenharmony_ci         * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G
1711e1051a39Sopenharmony_ci         */
1712e1051a39Sopenharmony_ci        point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1],
1713e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0],
1714e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2],
1715e1051a39Sopenharmony_ci                  0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1],
1716e1051a39Sopenharmony_ci                  pre->g_pre_comp[i][2][2]);
1717e1051a39Sopenharmony_ci        for (j = 1; j < 8; ++j) {
1718e1051a39Sopenharmony_ci            /* odd multiples: add G resp. 2^28*G */
1719e1051a39Sopenharmony_ci            point_add(pre->g_pre_comp[i][2 * j + 1][0],
1720e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][2 * j + 1][1],
1721e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][2 * j + 1][2],
1722e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][2 * j][0],
1723e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][2 * j][1],
1724e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][2 * j][2], 0,
1725e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1],
1726e1051a39Sopenharmony_ci                      pre->g_pre_comp[i][1][2]);
1727e1051a39Sopenharmony_ci        }
1728e1051a39Sopenharmony_ci    }
1729e1051a39Sopenharmony_ci    make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems);
1730e1051a39Sopenharmony_ci
1731e1051a39Sopenharmony_ci done:
1732e1051a39Sopenharmony_ci    SETPRECOMP(group, nistp224, pre);
1733e1051a39Sopenharmony_ci    pre = NULL;
1734e1051a39Sopenharmony_ci    ret = 1;
1735e1051a39Sopenharmony_ci err:
1736e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
1737e1051a39Sopenharmony_ci    EC_POINT_free(generator);
1738e1051a39Sopenharmony_ci#ifndef FIPS_MODULE
1739e1051a39Sopenharmony_ci    BN_CTX_free(new_ctx);
1740e1051a39Sopenharmony_ci#endif
1741e1051a39Sopenharmony_ci    EC_nistp224_pre_comp_free(pre);
1742e1051a39Sopenharmony_ci    return ret;
1743e1051a39Sopenharmony_ci}
1744e1051a39Sopenharmony_ci
1745e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group)
1746e1051a39Sopenharmony_ci{
1747e1051a39Sopenharmony_ci    return HAVEPRECOMP(group, nistp224);
1748e1051a39Sopenharmony_ci}
1749