1e1051a39Sopenharmony_ci/* 2e1051a39Sopenharmony_ci * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved. 3e1051a39Sopenharmony_ci * 4e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License"). You may not use 5e1051a39Sopenharmony_ci * this file except in compliance with the License. You can obtain a copy 6e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at 7e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html 8e1051a39Sopenharmony_ci */ 9e1051a39Sopenharmony_ci 10e1051a39Sopenharmony_ci/* Copyright 2011 Google Inc. 11e1051a39Sopenharmony_ci * 12e1051a39Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License"); 13e1051a39Sopenharmony_ci * 14e1051a39Sopenharmony_ci * you may not use this file except in compliance with the License. 15e1051a39Sopenharmony_ci * You may obtain a copy of the License at 16e1051a39Sopenharmony_ci * 17e1051a39Sopenharmony_ci * http://www.apache.org/licenses/LICENSE-2.0 18e1051a39Sopenharmony_ci * 19e1051a39Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software 20e1051a39Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS, 21e1051a39Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 22e1051a39Sopenharmony_ci * See the License for the specific language governing permissions and 23e1051a39Sopenharmony_ci * limitations under the License. 24e1051a39Sopenharmony_ci */ 25e1051a39Sopenharmony_ci 26e1051a39Sopenharmony_ci/* 27e1051a39Sopenharmony_ci * ECDSA low level APIs are deprecated for public use, but still ok for 28e1051a39Sopenharmony_ci * internal use. 29e1051a39Sopenharmony_ci */ 30e1051a39Sopenharmony_ci#include "internal/deprecated.h" 31e1051a39Sopenharmony_ci 32e1051a39Sopenharmony_ci/* 33e1051a39Sopenharmony_ci * A 64-bit implementation of the NIST P-224 elliptic curve point multiplication 34e1051a39Sopenharmony_ci * 35e1051a39Sopenharmony_ci * Inspired by Daniel J. Bernstein's public domain nistp224 implementation 36e1051a39Sopenharmony_ci * and Adam Langley's public domain 64-bit C implementation of curve25519 37e1051a39Sopenharmony_ci */ 38e1051a39Sopenharmony_ci 39e1051a39Sopenharmony_ci#include <openssl/opensslconf.h> 40e1051a39Sopenharmony_ci 41e1051a39Sopenharmony_ci#include <stdint.h> 42e1051a39Sopenharmony_ci#include <string.h> 43e1051a39Sopenharmony_ci#include <openssl/err.h> 44e1051a39Sopenharmony_ci#include "ec_local.h" 45e1051a39Sopenharmony_ci 46e1051a39Sopenharmony_ci#include "internal/numbers.h" 47e1051a39Sopenharmony_ci 48e1051a39Sopenharmony_ci#ifndef INT128_MAX 49e1051a39Sopenharmony_ci# error "Your compiler doesn't appear to support 128-bit integer types" 50e1051a39Sopenharmony_ci#endif 51e1051a39Sopenharmony_ci 52e1051a39Sopenharmony_citypedef uint8_t u8; 53e1051a39Sopenharmony_citypedef uint64_t u64; 54e1051a39Sopenharmony_ci 55e1051a39Sopenharmony_ci/******************************************************************************/ 56e1051a39Sopenharmony_ci/*- 57e1051a39Sopenharmony_ci * INTERNAL REPRESENTATION OF FIELD ELEMENTS 58e1051a39Sopenharmony_ci * 59e1051a39Sopenharmony_ci * Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3 60e1051a39Sopenharmony_ci * using 64-bit coefficients called 'limbs', 61e1051a39Sopenharmony_ci * and sometimes (for multiplication results) as 62e1051a39Sopenharmony_ci * b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 + 2^336*b_6 63e1051a39Sopenharmony_ci * using 128-bit coefficients called 'widelimbs'. 64e1051a39Sopenharmony_ci * A 4-limb representation is an 'felem'; 65e1051a39Sopenharmony_ci * a 7-widelimb representation is a 'widefelem'. 66e1051a39Sopenharmony_ci * Even within felems, bits of adjacent limbs overlap, and we don't always 67e1051a39Sopenharmony_ci * reduce the representations: we ensure that inputs to each felem 68e1051a39Sopenharmony_ci * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, 69e1051a39Sopenharmony_ci * and fit into a 128-bit word without overflow. The coefficients are then 70e1051a39Sopenharmony_ci * again partially reduced to obtain an felem satisfying a_i < 2^57. 71e1051a39Sopenharmony_ci * We only reduce to the unique minimal representation at the end of the 72e1051a39Sopenharmony_ci * computation. 73e1051a39Sopenharmony_ci */ 74e1051a39Sopenharmony_ci 75e1051a39Sopenharmony_citypedef uint64_t limb; 76e1051a39Sopenharmony_citypedef uint64_t limb_aX __attribute((__aligned__(1))); 77e1051a39Sopenharmony_citypedef uint128_t widelimb; 78e1051a39Sopenharmony_ci 79e1051a39Sopenharmony_citypedef limb felem[4]; 80e1051a39Sopenharmony_citypedef widelimb widefelem[7]; 81e1051a39Sopenharmony_ci 82e1051a39Sopenharmony_ci/* 83e1051a39Sopenharmony_ci * Field element represented as a byte array. 28*8 = 224 bits is also the 84e1051a39Sopenharmony_ci * group order size for the elliptic curve, and we also use this type for 85e1051a39Sopenharmony_ci * scalars for point multiplication. 86e1051a39Sopenharmony_ci */ 87e1051a39Sopenharmony_citypedef u8 felem_bytearray[28]; 88e1051a39Sopenharmony_ci 89e1051a39Sopenharmony_cistatic const felem_bytearray nistp224_curve_params[5] = { 90e1051a39Sopenharmony_ci {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */ 91e1051a39Sopenharmony_ci 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 92e1051a39Sopenharmony_ci 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 93e1051a39Sopenharmony_ci {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */ 94e1051a39Sopenharmony_ci 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 95e1051a39Sopenharmony_ci 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE}, 96e1051a39Sopenharmony_ci {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */ 97e1051a39Sopenharmony_ci 0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 98e1051a39Sopenharmony_ci 0x27, 0x0B, 0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4}, 99e1051a39Sopenharmony_ci {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */ 100e1051a39Sopenharmony_ci 0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 101e1051a39Sopenharmony_ci 0x34, 0x32, 0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21}, 102e1051a39Sopenharmony_ci {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */ 103e1051a39Sopenharmony_ci 0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 104e1051a39Sopenharmony_ci 0x44, 0xd5, 0x81, 0x99, 0x85, 0x00, 0x7e, 0x34} 105e1051a39Sopenharmony_ci}; 106e1051a39Sopenharmony_ci 107e1051a39Sopenharmony_ci/*- 108e1051a39Sopenharmony_ci * Precomputed multiples of the standard generator 109e1051a39Sopenharmony_ci * Points are given in coordinates (X, Y, Z) where Z normally is 1 110e1051a39Sopenharmony_ci * (0 for the point at infinity). 111e1051a39Sopenharmony_ci * For each field element, slice a_0 is word 0, etc. 112e1051a39Sopenharmony_ci * 113e1051a39Sopenharmony_ci * The table has 2 * 16 elements, starting with the following: 114e1051a39Sopenharmony_ci * index | bits | point 115e1051a39Sopenharmony_ci * ------+---------+------------------------------ 116e1051a39Sopenharmony_ci * 0 | 0 0 0 0 | 0G 117e1051a39Sopenharmony_ci * 1 | 0 0 0 1 | 1G 118e1051a39Sopenharmony_ci * 2 | 0 0 1 0 | 2^56G 119e1051a39Sopenharmony_ci * 3 | 0 0 1 1 | (2^56 + 1)G 120e1051a39Sopenharmony_ci * 4 | 0 1 0 0 | 2^112G 121e1051a39Sopenharmony_ci * 5 | 0 1 0 1 | (2^112 + 1)G 122e1051a39Sopenharmony_ci * 6 | 0 1 1 0 | (2^112 + 2^56)G 123e1051a39Sopenharmony_ci * 7 | 0 1 1 1 | (2^112 + 2^56 + 1)G 124e1051a39Sopenharmony_ci * 8 | 1 0 0 0 | 2^168G 125e1051a39Sopenharmony_ci * 9 | 1 0 0 1 | (2^168 + 1)G 126e1051a39Sopenharmony_ci * 10 | 1 0 1 0 | (2^168 + 2^56)G 127e1051a39Sopenharmony_ci * 11 | 1 0 1 1 | (2^168 + 2^56 + 1)G 128e1051a39Sopenharmony_ci * 12 | 1 1 0 0 | (2^168 + 2^112)G 129e1051a39Sopenharmony_ci * 13 | 1 1 0 1 | (2^168 + 2^112 + 1)G 130e1051a39Sopenharmony_ci * 14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G 131e1051a39Sopenharmony_ci * 15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G 132e1051a39Sopenharmony_ci * followed by a copy of this with each element multiplied by 2^28. 133e1051a39Sopenharmony_ci * 134e1051a39Sopenharmony_ci * The reason for this is so that we can clock bits into four different 135e1051a39Sopenharmony_ci * locations when doing simple scalar multiplies against the base point, 136e1051a39Sopenharmony_ci * and then another four locations using the second 16 elements. 137e1051a39Sopenharmony_ci */ 138e1051a39Sopenharmony_cistatic const felem gmul[2][16][3] = { 139e1051a39Sopenharmony_ci{{{0, 0, 0, 0}, 140e1051a39Sopenharmony_ci {0, 0, 0, 0}, 141e1051a39Sopenharmony_ci {0, 0, 0, 0}}, 142e1051a39Sopenharmony_ci {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf}, 143e1051a39Sopenharmony_ci {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723}, 144e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 145e1051a39Sopenharmony_ci {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5}, 146e1051a39Sopenharmony_ci {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321}, 147e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 148e1051a39Sopenharmony_ci {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748}, 149e1051a39Sopenharmony_ci {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17}, 150e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 151e1051a39Sopenharmony_ci {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe}, 152e1051a39Sopenharmony_ci {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b}, 153e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 154e1051a39Sopenharmony_ci {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3}, 155e1051a39Sopenharmony_ci {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a}, 156e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 157e1051a39Sopenharmony_ci {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c}, 158e1051a39Sopenharmony_ci {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244}, 159e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 160e1051a39Sopenharmony_ci {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849}, 161e1051a39Sopenharmony_ci {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112}, 162e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 163e1051a39Sopenharmony_ci {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47}, 164e1051a39Sopenharmony_ci {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394}, 165e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 166e1051a39Sopenharmony_ci {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d}, 167e1051a39Sopenharmony_ci {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7}, 168e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 169e1051a39Sopenharmony_ci {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24}, 170e1051a39Sopenharmony_ci {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881}, 171e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 172e1051a39Sopenharmony_ci {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984}, 173e1051a39Sopenharmony_ci {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369}, 174e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 175e1051a39Sopenharmony_ci {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3}, 176e1051a39Sopenharmony_ci {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60}, 177e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 178e1051a39Sopenharmony_ci {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057}, 179e1051a39Sopenharmony_ci {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9}, 180e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 181e1051a39Sopenharmony_ci {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9}, 182e1051a39Sopenharmony_ci {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc}, 183e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 184e1051a39Sopenharmony_ci {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58}, 185e1051a39Sopenharmony_ci {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558}, 186e1051a39Sopenharmony_ci {1, 0, 0, 0}}}, 187e1051a39Sopenharmony_ci{{{0, 0, 0, 0}, 188e1051a39Sopenharmony_ci {0, 0, 0, 0}, 189e1051a39Sopenharmony_ci {0, 0, 0, 0}}, 190e1051a39Sopenharmony_ci {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31}, 191e1051a39Sopenharmony_ci {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d}, 192e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 193e1051a39Sopenharmony_ci {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3}, 194e1051a39Sopenharmony_ci {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a}, 195e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 196e1051a39Sopenharmony_ci {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33}, 197e1051a39Sopenharmony_ci {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100}, 198e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 199e1051a39Sopenharmony_ci {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5}, 200e1051a39Sopenharmony_ci {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea}, 201e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 202e1051a39Sopenharmony_ci {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be}, 203e1051a39Sopenharmony_ci {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51}, 204e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 205e1051a39Sopenharmony_ci {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1}, 206e1051a39Sopenharmony_ci {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb}, 207e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 208e1051a39Sopenharmony_ci {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233}, 209e1051a39Sopenharmony_ci {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def}, 210e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 211e1051a39Sopenharmony_ci {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae}, 212e1051a39Sopenharmony_ci {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45}, 213e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 214e1051a39Sopenharmony_ci {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e}, 215e1051a39Sopenharmony_ci {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb}, 216e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 217e1051a39Sopenharmony_ci {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de}, 218e1051a39Sopenharmony_ci {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3}, 219e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 220e1051a39Sopenharmony_ci {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05}, 221e1051a39Sopenharmony_ci {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58}, 222e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 223e1051a39Sopenharmony_ci {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb}, 224e1051a39Sopenharmony_ci {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0}, 225e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 226e1051a39Sopenharmony_ci {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9}, 227e1051a39Sopenharmony_ci {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea}, 228e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 229e1051a39Sopenharmony_ci {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba}, 230e1051a39Sopenharmony_ci {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405}, 231e1051a39Sopenharmony_ci {1, 0, 0, 0}}, 232e1051a39Sopenharmony_ci {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e}, 233e1051a39Sopenharmony_ci {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e}, 234e1051a39Sopenharmony_ci {1, 0, 0, 0}}} 235e1051a39Sopenharmony_ci}; 236e1051a39Sopenharmony_ci 237e1051a39Sopenharmony_ci/* Precomputation for the group generator. */ 238e1051a39Sopenharmony_cistruct nistp224_pre_comp_st { 239e1051a39Sopenharmony_ci felem g_pre_comp[2][16][3]; 240e1051a39Sopenharmony_ci CRYPTO_REF_COUNT references; 241e1051a39Sopenharmony_ci CRYPTO_RWLOCK *lock; 242e1051a39Sopenharmony_ci}; 243e1051a39Sopenharmony_ci 244e1051a39Sopenharmony_ciconst EC_METHOD *EC_GFp_nistp224_method(void) 245e1051a39Sopenharmony_ci{ 246e1051a39Sopenharmony_ci static const EC_METHOD ret = { 247e1051a39Sopenharmony_ci EC_FLAGS_DEFAULT_OCT, 248e1051a39Sopenharmony_ci NID_X9_62_prime_field, 249e1051a39Sopenharmony_ci ossl_ec_GFp_nistp224_group_init, 250e1051a39Sopenharmony_ci ossl_ec_GFp_simple_group_finish, 251e1051a39Sopenharmony_ci ossl_ec_GFp_simple_group_clear_finish, 252e1051a39Sopenharmony_ci ossl_ec_GFp_nist_group_copy, 253e1051a39Sopenharmony_ci ossl_ec_GFp_nistp224_group_set_curve, 254e1051a39Sopenharmony_ci ossl_ec_GFp_simple_group_get_curve, 255e1051a39Sopenharmony_ci ossl_ec_GFp_simple_group_get_degree, 256e1051a39Sopenharmony_ci ossl_ec_group_simple_order_bits, 257e1051a39Sopenharmony_ci ossl_ec_GFp_simple_group_check_discriminant, 258e1051a39Sopenharmony_ci ossl_ec_GFp_simple_point_init, 259e1051a39Sopenharmony_ci ossl_ec_GFp_simple_point_finish, 260e1051a39Sopenharmony_ci ossl_ec_GFp_simple_point_clear_finish, 261e1051a39Sopenharmony_ci ossl_ec_GFp_simple_point_copy, 262e1051a39Sopenharmony_ci ossl_ec_GFp_simple_point_set_to_infinity, 263e1051a39Sopenharmony_ci ossl_ec_GFp_simple_point_set_affine_coordinates, 264e1051a39Sopenharmony_ci ossl_ec_GFp_nistp224_point_get_affine_coordinates, 265e1051a39Sopenharmony_ci 0 /* point_set_compressed_coordinates */ , 266e1051a39Sopenharmony_ci 0 /* point2oct */ , 267e1051a39Sopenharmony_ci 0 /* oct2point */ , 268e1051a39Sopenharmony_ci ossl_ec_GFp_simple_add, 269e1051a39Sopenharmony_ci ossl_ec_GFp_simple_dbl, 270e1051a39Sopenharmony_ci ossl_ec_GFp_simple_invert, 271e1051a39Sopenharmony_ci ossl_ec_GFp_simple_is_at_infinity, 272e1051a39Sopenharmony_ci ossl_ec_GFp_simple_is_on_curve, 273e1051a39Sopenharmony_ci ossl_ec_GFp_simple_cmp, 274e1051a39Sopenharmony_ci ossl_ec_GFp_simple_make_affine, 275e1051a39Sopenharmony_ci ossl_ec_GFp_simple_points_make_affine, 276e1051a39Sopenharmony_ci ossl_ec_GFp_nistp224_points_mul, 277e1051a39Sopenharmony_ci ossl_ec_GFp_nistp224_precompute_mult, 278e1051a39Sopenharmony_ci ossl_ec_GFp_nistp224_have_precompute_mult, 279e1051a39Sopenharmony_ci ossl_ec_GFp_nist_field_mul, 280e1051a39Sopenharmony_ci ossl_ec_GFp_nist_field_sqr, 281e1051a39Sopenharmony_ci 0 /* field_div */ , 282e1051a39Sopenharmony_ci ossl_ec_GFp_simple_field_inv, 283e1051a39Sopenharmony_ci 0 /* field_encode */ , 284e1051a39Sopenharmony_ci 0 /* field_decode */ , 285e1051a39Sopenharmony_ci 0, /* field_set_to_one */ 286e1051a39Sopenharmony_ci ossl_ec_key_simple_priv2oct, 287e1051a39Sopenharmony_ci ossl_ec_key_simple_oct2priv, 288e1051a39Sopenharmony_ci 0, /* set private */ 289e1051a39Sopenharmony_ci ossl_ec_key_simple_generate_key, 290e1051a39Sopenharmony_ci ossl_ec_key_simple_check_key, 291e1051a39Sopenharmony_ci ossl_ec_key_simple_generate_public_key, 292e1051a39Sopenharmony_ci 0, /* keycopy */ 293e1051a39Sopenharmony_ci 0, /* keyfinish */ 294e1051a39Sopenharmony_ci ossl_ecdh_simple_compute_key, 295e1051a39Sopenharmony_ci ossl_ecdsa_simple_sign_setup, 296e1051a39Sopenharmony_ci ossl_ecdsa_simple_sign_sig, 297e1051a39Sopenharmony_ci ossl_ecdsa_simple_verify_sig, 298e1051a39Sopenharmony_ci 0, /* field_inverse_mod_ord */ 299e1051a39Sopenharmony_ci 0, /* blind_coordinates */ 300e1051a39Sopenharmony_ci 0, /* ladder_pre */ 301e1051a39Sopenharmony_ci 0, /* ladder_step */ 302e1051a39Sopenharmony_ci 0 /* ladder_post */ 303e1051a39Sopenharmony_ci }; 304e1051a39Sopenharmony_ci 305e1051a39Sopenharmony_ci return &ret; 306e1051a39Sopenharmony_ci} 307e1051a39Sopenharmony_ci 308e1051a39Sopenharmony_ci/* 309e1051a39Sopenharmony_ci * Helper functions to convert field elements to/from internal representation 310e1051a39Sopenharmony_ci */ 311e1051a39Sopenharmony_cistatic void bin28_to_felem(felem out, const u8 in[28]) 312e1051a39Sopenharmony_ci{ 313e1051a39Sopenharmony_ci out[0] = *((const limb *)(in)) & 0x00ffffffffffffff; 314e1051a39Sopenharmony_ci out[1] = (*((const limb_aX *)(in + 7))) & 0x00ffffffffffffff; 315e1051a39Sopenharmony_ci out[2] = (*((const limb_aX *)(in + 14))) & 0x00ffffffffffffff; 316e1051a39Sopenharmony_ci out[3] = (*((const limb_aX *)(in + 20))) >> 8; 317e1051a39Sopenharmony_ci} 318e1051a39Sopenharmony_ci 319e1051a39Sopenharmony_cistatic void felem_to_bin28(u8 out[28], const felem in) 320e1051a39Sopenharmony_ci{ 321e1051a39Sopenharmony_ci unsigned i; 322e1051a39Sopenharmony_ci for (i = 0; i < 7; ++i) { 323e1051a39Sopenharmony_ci out[i] = in[0] >> (8 * i); 324e1051a39Sopenharmony_ci out[i + 7] = in[1] >> (8 * i); 325e1051a39Sopenharmony_ci out[i + 14] = in[2] >> (8 * i); 326e1051a39Sopenharmony_ci out[i + 21] = in[3] >> (8 * i); 327e1051a39Sopenharmony_ci } 328e1051a39Sopenharmony_ci} 329e1051a39Sopenharmony_ci 330e1051a39Sopenharmony_ci/* From OpenSSL BIGNUM to internal representation */ 331e1051a39Sopenharmony_cistatic int BN_to_felem(felem out, const BIGNUM *bn) 332e1051a39Sopenharmony_ci{ 333e1051a39Sopenharmony_ci felem_bytearray b_out; 334e1051a39Sopenharmony_ci int num_bytes; 335e1051a39Sopenharmony_ci 336e1051a39Sopenharmony_ci if (BN_is_negative(bn)) { 337e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); 338e1051a39Sopenharmony_ci return 0; 339e1051a39Sopenharmony_ci } 340e1051a39Sopenharmony_ci num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); 341e1051a39Sopenharmony_ci if (num_bytes < 0) { 342e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); 343e1051a39Sopenharmony_ci return 0; 344e1051a39Sopenharmony_ci } 345e1051a39Sopenharmony_ci bin28_to_felem(out, b_out); 346e1051a39Sopenharmony_ci return 1; 347e1051a39Sopenharmony_ci} 348e1051a39Sopenharmony_ci 349e1051a39Sopenharmony_ci/* From internal representation to OpenSSL BIGNUM */ 350e1051a39Sopenharmony_cistatic BIGNUM *felem_to_BN(BIGNUM *out, const felem in) 351e1051a39Sopenharmony_ci{ 352e1051a39Sopenharmony_ci felem_bytearray b_out; 353e1051a39Sopenharmony_ci felem_to_bin28(b_out, in); 354e1051a39Sopenharmony_ci return BN_lebin2bn(b_out, sizeof(b_out), out); 355e1051a39Sopenharmony_ci} 356e1051a39Sopenharmony_ci 357e1051a39Sopenharmony_ci/******************************************************************************/ 358e1051a39Sopenharmony_ci/*- 359e1051a39Sopenharmony_ci * FIELD OPERATIONS 360e1051a39Sopenharmony_ci * 361e1051a39Sopenharmony_ci * Field operations, using the internal representation of field elements. 362e1051a39Sopenharmony_ci * NB! These operations are specific to our point multiplication and cannot be 363e1051a39Sopenharmony_ci * expected to be correct in general - e.g., multiplication with a large scalar 364e1051a39Sopenharmony_ci * will cause an overflow. 365e1051a39Sopenharmony_ci * 366e1051a39Sopenharmony_ci */ 367e1051a39Sopenharmony_ci 368e1051a39Sopenharmony_cistatic void felem_one(felem out) 369e1051a39Sopenharmony_ci{ 370e1051a39Sopenharmony_ci out[0] = 1; 371e1051a39Sopenharmony_ci out[1] = 0; 372e1051a39Sopenharmony_ci out[2] = 0; 373e1051a39Sopenharmony_ci out[3] = 0; 374e1051a39Sopenharmony_ci} 375e1051a39Sopenharmony_ci 376e1051a39Sopenharmony_cistatic void felem_assign(felem out, const felem in) 377e1051a39Sopenharmony_ci{ 378e1051a39Sopenharmony_ci out[0] = in[0]; 379e1051a39Sopenharmony_ci out[1] = in[1]; 380e1051a39Sopenharmony_ci out[2] = in[2]; 381e1051a39Sopenharmony_ci out[3] = in[3]; 382e1051a39Sopenharmony_ci} 383e1051a39Sopenharmony_ci 384e1051a39Sopenharmony_ci/* Sum two field elements: out += in */ 385e1051a39Sopenharmony_cistatic void felem_sum(felem out, const felem in) 386e1051a39Sopenharmony_ci{ 387e1051a39Sopenharmony_ci out[0] += in[0]; 388e1051a39Sopenharmony_ci out[1] += in[1]; 389e1051a39Sopenharmony_ci out[2] += in[2]; 390e1051a39Sopenharmony_ci out[3] += in[3]; 391e1051a39Sopenharmony_ci} 392e1051a39Sopenharmony_ci 393e1051a39Sopenharmony_ci/* Subtract field elements: out -= in */ 394e1051a39Sopenharmony_ci/* Assumes in[i] < 2^57 */ 395e1051a39Sopenharmony_cistatic void felem_diff(felem out, const felem in) 396e1051a39Sopenharmony_ci{ 397e1051a39Sopenharmony_ci static const limb two58p2 = (((limb) 1) << 58) + (((limb) 1) << 2); 398e1051a39Sopenharmony_ci static const limb two58m2 = (((limb) 1) << 58) - (((limb) 1) << 2); 399e1051a39Sopenharmony_ci static const limb two58m42m2 = (((limb) 1) << 58) - 400e1051a39Sopenharmony_ci (((limb) 1) << 42) - (((limb) 1) << 2); 401e1051a39Sopenharmony_ci 402e1051a39Sopenharmony_ci /* Add 0 mod 2^224-2^96+1 to ensure out > in */ 403e1051a39Sopenharmony_ci out[0] += two58p2; 404e1051a39Sopenharmony_ci out[1] += two58m42m2; 405e1051a39Sopenharmony_ci out[2] += two58m2; 406e1051a39Sopenharmony_ci out[3] += two58m2; 407e1051a39Sopenharmony_ci 408e1051a39Sopenharmony_ci out[0] -= in[0]; 409e1051a39Sopenharmony_ci out[1] -= in[1]; 410e1051a39Sopenharmony_ci out[2] -= in[2]; 411e1051a39Sopenharmony_ci out[3] -= in[3]; 412e1051a39Sopenharmony_ci} 413e1051a39Sopenharmony_ci 414e1051a39Sopenharmony_ci/* Subtract in unreduced 128-bit mode: out -= in */ 415e1051a39Sopenharmony_ci/* Assumes in[i] < 2^119 */ 416e1051a39Sopenharmony_cistatic void widefelem_diff(widefelem out, const widefelem in) 417e1051a39Sopenharmony_ci{ 418e1051a39Sopenharmony_ci static const widelimb two120 = ((widelimb) 1) << 120; 419e1051a39Sopenharmony_ci static const widelimb two120m64 = (((widelimb) 1) << 120) - 420e1051a39Sopenharmony_ci (((widelimb) 1) << 64); 421e1051a39Sopenharmony_ci static const widelimb two120m104m64 = (((widelimb) 1) << 120) - 422e1051a39Sopenharmony_ci (((widelimb) 1) << 104) - (((widelimb) 1) << 64); 423e1051a39Sopenharmony_ci 424e1051a39Sopenharmony_ci /* Add 0 mod 2^224-2^96+1 to ensure out > in */ 425e1051a39Sopenharmony_ci out[0] += two120; 426e1051a39Sopenharmony_ci out[1] += two120m64; 427e1051a39Sopenharmony_ci out[2] += two120m64; 428e1051a39Sopenharmony_ci out[3] += two120; 429e1051a39Sopenharmony_ci out[4] += two120m104m64; 430e1051a39Sopenharmony_ci out[5] += two120m64; 431e1051a39Sopenharmony_ci out[6] += two120m64; 432e1051a39Sopenharmony_ci 433e1051a39Sopenharmony_ci out[0] -= in[0]; 434e1051a39Sopenharmony_ci out[1] -= in[1]; 435e1051a39Sopenharmony_ci out[2] -= in[2]; 436e1051a39Sopenharmony_ci out[3] -= in[3]; 437e1051a39Sopenharmony_ci out[4] -= in[4]; 438e1051a39Sopenharmony_ci out[5] -= in[5]; 439e1051a39Sopenharmony_ci out[6] -= in[6]; 440e1051a39Sopenharmony_ci} 441e1051a39Sopenharmony_ci 442e1051a39Sopenharmony_ci/* Subtract in mixed mode: out128 -= in64 */ 443e1051a39Sopenharmony_ci/* in[i] < 2^63 */ 444e1051a39Sopenharmony_cistatic void felem_diff_128_64(widefelem out, const felem in) 445e1051a39Sopenharmony_ci{ 446e1051a39Sopenharmony_ci static const widelimb two64p8 = (((widelimb) 1) << 64) + 447e1051a39Sopenharmony_ci (((widelimb) 1) << 8); 448e1051a39Sopenharmony_ci static const widelimb two64m8 = (((widelimb) 1) << 64) - 449e1051a39Sopenharmony_ci (((widelimb) 1) << 8); 450e1051a39Sopenharmony_ci static const widelimb two64m48m8 = (((widelimb) 1) << 64) - 451e1051a39Sopenharmony_ci (((widelimb) 1) << 48) - (((widelimb) 1) << 8); 452e1051a39Sopenharmony_ci 453e1051a39Sopenharmony_ci /* Add 0 mod 2^224-2^96+1 to ensure out > in */ 454e1051a39Sopenharmony_ci out[0] += two64p8; 455e1051a39Sopenharmony_ci out[1] += two64m48m8; 456e1051a39Sopenharmony_ci out[2] += two64m8; 457e1051a39Sopenharmony_ci out[3] += two64m8; 458e1051a39Sopenharmony_ci 459e1051a39Sopenharmony_ci out[0] -= in[0]; 460e1051a39Sopenharmony_ci out[1] -= in[1]; 461e1051a39Sopenharmony_ci out[2] -= in[2]; 462e1051a39Sopenharmony_ci out[3] -= in[3]; 463e1051a39Sopenharmony_ci} 464e1051a39Sopenharmony_ci 465e1051a39Sopenharmony_ci/* 466e1051a39Sopenharmony_ci * Multiply a field element by a scalar: out = out * scalar The scalars we 467e1051a39Sopenharmony_ci * actually use are small, so results fit without overflow 468e1051a39Sopenharmony_ci */ 469e1051a39Sopenharmony_cistatic void felem_scalar(felem out, const limb scalar) 470e1051a39Sopenharmony_ci{ 471e1051a39Sopenharmony_ci out[0] *= scalar; 472e1051a39Sopenharmony_ci out[1] *= scalar; 473e1051a39Sopenharmony_ci out[2] *= scalar; 474e1051a39Sopenharmony_ci out[3] *= scalar; 475e1051a39Sopenharmony_ci} 476e1051a39Sopenharmony_ci 477e1051a39Sopenharmony_ci/* 478e1051a39Sopenharmony_ci * Multiply an unreduced field element by a scalar: out = out * scalar The 479e1051a39Sopenharmony_ci * scalars we actually use are small, so results fit without overflow 480e1051a39Sopenharmony_ci */ 481e1051a39Sopenharmony_cistatic void widefelem_scalar(widefelem out, const widelimb scalar) 482e1051a39Sopenharmony_ci{ 483e1051a39Sopenharmony_ci out[0] *= scalar; 484e1051a39Sopenharmony_ci out[1] *= scalar; 485e1051a39Sopenharmony_ci out[2] *= scalar; 486e1051a39Sopenharmony_ci out[3] *= scalar; 487e1051a39Sopenharmony_ci out[4] *= scalar; 488e1051a39Sopenharmony_ci out[5] *= scalar; 489e1051a39Sopenharmony_ci out[6] *= scalar; 490e1051a39Sopenharmony_ci} 491e1051a39Sopenharmony_ci 492e1051a39Sopenharmony_ci/* Square a field element: out = in^2 */ 493e1051a39Sopenharmony_cistatic void felem_square(widefelem out, const felem in) 494e1051a39Sopenharmony_ci{ 495e1051a39Sopenharmony_ci limb tmp0, tmp1, tmp2; 496e1051a39Sopenharmony_ci tmp0 = 2 * in[0]; 497e1051a39Sopenharmony_ci tmp1 = 2 * in[1]; 498e1051a39Sopenharmony_ci tmp2 = 2 * in[2]; 499e1051a39Sopenharmony_ci out[0] = ((widelimb) in[0]) * in[0]; 500e1051a39Sopenharmony_ci out[1] = ((widelimb) in[0]) * tmp1; 501e1051a39Sopenharmony_ci out[2] = ((widelimb) in[0]) * tmp2 + ((widelimb) in[1]) * in[1]; 502e1051a39Sopenharmony_ci out[3] = ((widelimb) in[3]) * tmp0 + ((widelimb) in[1]) * tmp2; 503e1051a39Sopenharmony_ci out[4] = ((widelimb) in[3]) * tmp1 + ((widelimb) in[2]) * in[2]; 504e1051a39Sopenharmony_ci out[5] = ((widelimb) in[3]) * tmp2; 505e1051a39Sopenharmony_ci out[6] = ((widelimb) in[3]) * in[3]; 506e1051a39Sopenharmony_ci} 507e1051a39Sopenharmony_ci 508e1051a39Sopenharmony_ci/* Multiply two field elements: out = in1 * in2 */ 509e1051a39Sopenharmony_cistatic void felem_mul(widefelem out, const felem in1, const felem in2) 510e1051a39Sopenharmony_ci{ 511e1051a39Sopenharmony_ci out[0] = ((widelimb) in1[0]) * in2[0]; 512e1051a39Sopenharmony_ci out[1] = ((widelimb) in1[0]) * in2[1] + ((widelimb) in1[1]) * in2[0]; 513e1051a39Sopenharmony_ci out[2] = ((widelimb) in1[0]) * in2[2] + ((widelimb) in1[1]) * in2[1] + 514e1051a39Sopenharmony_ci ((widelimb) in1[2]) * in2[0]; 515e1051a39Sopenharmony_ci out[3] = ((widelimb) in1[0]) * in2[3] + ((widelimb) in1[1]) * in2[2] + 516e1051a39Sopenharmony_ci ((widelimb) in1[2]) * in2[1] + ((widelimb) in1[3]) * in2[0]; 517e1051a39Sopenharmony_ci out[4] = ((widelimb) in1[1]) * in2[3] + ((widelimb) in1[2]) * in2[2] + 518e1051a39Sopenharmony_ci ((widelimb) in1[3]) * in2[1]; 519e1051a39Sopenharmony_ci out[5] = ((widelimb) in1[2]) * in2[3] + ((widelimb) in1[3]) * in2[2]; 520e1051a39Sopenharmony_ci out[6] = ((widelimb) in1[3]) * in2[3]; 521e1051a39Sopenharmony_ci} 522e1051a39Sopenharmony_ci 523e1051a39Sopenharmony_ci/*- 524e1051a39Sopenharmony_ci * Reduce seven 128-bit coefficients to four 64-bit coefficients. 525e1051a39Sopenharmony_ci * Requires in[i] < 2^126, 526e1051a39Sopenharmony_ci * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */ 527e1051a39Sopenharmony_cistatic void felem_reduce(felem out, const widefelem in) 528e1051a39Sopenharmony_ci{ 529e1051a39Sopenharmony_ci static const widelimb two127p15 = (((widelimb) 1) << 127) + 530e1051a39Sopenharmony_ci (((widelimb) 1) << 15); 531e1051a39Sopenharmony_ci static const widelimb two127m71 = (((widelimb) 1) << 127) - 532e1051a39Sopenharmony_ci (((widelimb) 1) << 71); 533e1051a39Sopenharmony_ci static const widelimb two127m71m55 = (((widelimb) 1) << 127) - 534e1051a39Sopenharmony_ci (((widelimb) 1) << 71) - (((widelimb) 1) << 55); 535e1051a39Sopenharmony_ci widelimb output[5]; 536e1051a39Sopenharmony_ci 537e1051a39Sopenharmony_ci /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */ 538e1051a39Sopenharmony_ci output[0] = in[0] + two127p15; 539e1051a39Sopenharmony_ci output[1] = in[1] + two127m71m55; 540e1051a39Sopenharmony_ci output[2] = in[2] + two127m71; 541e1051a39Sopenharmony_ci output[3] = in[3]; 542e1051a39Sopenharmony_ci output[4] = in[4]; 543e1051a39Sopenharmony_ci 544e1051a39Sopenharmony_ci /* Eliminate in[4], in[5], in[6] */ 545e1051a39Sopenharmony_ci output[4] += in[6] >> 16; 546e1051a39Sopenharmony_ci output[3] += (in[6] & 0xffff) << 40; 547e1051a39Sopenharmony_ci output[2] -= in[6]; 548e1051a39Sopenharmony_ci 549e1051a39Sopenharmony_ci output[3] += in[5] >> 16; 550e1051a39Sopenharmony_ci output[2] += (in[5] & 0xffff) << 40; 551e1051a39Sopenharmony_ci output[1] -= in[5]; 552e1051a39Sopenharmony_ci 553e1051a39Sopenharmony_ci output[2] += output[4] >> 16; 554e1051a39Sopenharmony_ci output[1] += (output[4] & 0xffff) << 40; 555e1051a39Sopenharmony_ci output[0] -= output[4]; 556e1051a39Sopenharmony_ci 557e1051a39Sopenharmony_ci /* Carry 2 -> 3 -> 4 */ 558e1051a39Sopenharmony_ci output[3] += output[2] >> 56; 559e1051a39Sopenharmony_ci output[2] &= 0x00ffffffffffffff; 560e1051a39Sopenharmony_ci 561e1051a39Sopenharmony_ci output[4] = output[3] >> 56; 562e1051a39Sopenharmony_ci output[3] &= 0x00ffffffffffffff; 563e1051a39Sopenharmony_ci 564e1051a39Sopenharmony_ci /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */ 565e1051a39Sopenharmony_ci 566e1051a39Sopenharmony_ci /* Eliminate output[4] */ 567e1051a39Sopenharmony_ci output[2] += output[4] >> 16; 568e1051a39Sopenharmony_ci /* output[2] < 2^56 + 2^56 = 2^57 */ 569e1051a39Sopenharmony_ci output[1] += (output[4] & 0xffff) << 40; 570e1051a39Sopenharmony_ci output[0] -= output[4]; 571e1051a39Sopenharmony_ci 572e1051a39Sopenharmony_ci /* Carry 0 -> 1 -> 2 -> 3 */ 573e1051a39Sopenharmony_ci output[1] += output[0] >> 56; 574e1051a39Sopenharmony_ci out[0] = output[0] & 0x00ffffffffffffff; 575e1051a39Sopenharmony_ci 576e1051a39Sopenharmony_ci output[2] += output[1] >> 56; 577e1051a39Sopenharmony_ci /* output[2] < 2^57 + 2^72 */ 578e1051a39Sopenharmony_ci out[1] = output[1] & 0x00ffffffffffffff; 579e1051a39Sopenharmony_ci output[3] += output[2] >> 56; 580e1051a39Sopenharmony_ci /* output[3] <= 2^56 + 2^16 */ 581e1051a39Sopenharmony_ci out[2] = output[2] & 0x00ffffffffffffff; 582e1051a39Sopenharmony_ci 583e1051a39Sopenharmony_ci /*- 584e1051a39Sopenharmony_ci * out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, 585e1051a39Sopenharmony_ci * out[3] <= 2^56 + 2^16 (due to final carry), 586e1051a39Sopenharmony_ci * so out < 2*p 587e1051a39Sopenharmony_ci */ 588e1051a39Sopenharmony_ci out[3] = output[3]; 589e1051a39Sopenharmony_ci} 590e1051a39Sopenharmony_ci 591e1051a39Sopenharmony_cistatic void felem_square_reduce(felem out, const felem in) 592e1051a39Sopenharmony_ci{ 593e1051a39Sopenharmony_ci widefelem tmp; 594e1051a39Sopenharmony_ci felem_square(tmp, in); 595e1051a39Sopenharmony_ci felem_reduce(out, tmp); 596e1051a39Sopenharmony_ci} 597e1051a39Sopenharmony_ci 598e1051a39Sopenharmony_cistatic void felem_mul_reduce(felem out, const felem in1, const felem in2) 599e1051a39Sopenharmony_ci{ 600e1051a39Sopenharmony_ci widefelem tmp; 601e1051a39Sopenharmony_ci felem_mul(tmp, in1, in2); 602e1051a39Sopenharmony_ci felem_reduce(out, tmp); 603e1051a39Sopenharmony_ci} 604e1051a39Sopenharmony_ci 605e1051a39Sopenharmony_ci/* 606e1051a39Sopenharmony_ci * Reduce to unique minimal representation. Requires 0 <= in < 2*p (always 607e1051a39Sopenharmony_ci * call felem_reduce first) 608e1051a39Sopenharmony_ci */ 609e1051a39Sopenharmony_cistatic void felem_contract(felem out, const felem in) 610e1051a39Sopenharmony_ci{ 611e1051a39Sopenharmony_ci static const int64_t two56 = ((limb) 1) << 56; 612e1051a39Sopenharmony_ci /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */ 613e1051a39Sopenharmony_ci /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */ 614e1051a39Sopenharmony_ci int64_t tmp[4], a; 615e1051a39Sopenharmony_ci tmp[0] = in[0]; 616e1051a39Sopenharmony_ci tmp[1] = in[1]; 617e1051a39Sopenharmony_ci tmp[2] = in[2]; 618e1051a39Sopenharmony_ci tmp[3] = in[3]; 619e1051a39Sopenharmony_ci /* Case 1: a = 1 iff in >= 2^224 */ 620e1051a39Sopenharmony_ci a = (in[3] >> 56); 621e1051a39Sopenharmony_ci tmp[0] -= a; 622e1051a39Sopenharmony_ci tmp[1] += a << 40; 623e1051a39Sopenharmony_ci tmp[3] &= 0x00ffffffffffffff; 624e1051a39Sopenharmony_ci /* 625e1051a39Sopenharmony_ci * Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 626e1051a39Sopenharmony_ci * and the lower part is non-zero 627e1051a39Sopenharmony_ci */ 628e1051a39Sopenharmony_ci a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) | 629e1051a39Sopenharmony_ci (((int64_t) (in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63); 630e1051a39Sopenharmony_ci a &= 0x00ffffffffffffff; 631e1051a39Sopenharmony_ci /* turn a into an all-one mask (if a = 0) or an all-zero mask */ 632e1051a39Sopenharmony_ci a = (a - 1) >> 63; 633e1051a39Sopenharmony_ci /* subtract 2^224 - 2^96 + 1 if a is all-one */ 634e1051a39Sopenharmony_ci tmp[3] &= a ^ 0xffffffffffffffff; 635e1051a39Sopenharmony_ci tmp[2] &= a ^ 0xffffffffffffffff; 636e1051a39Sopenharmony_ci tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff; 637e1051a39Sopenharmony_ci tmp[0] -= 1 & a; 638e1051a39Sopenharmony_ci 639e1051a39Sopenharmony_ci /* 640e1051a39Sopenharmony_ci * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be 641e1051a39Sopenharmony_ci * non-zero, so we only need one step 642e1051a39Sopenharmony_ci */ 643e1051a39Sopenharmony_ci a = tmp[0] >> 63; 644e1051a39Sopenharmony_ci tmp[0] += two56 & a; 645e1051a39Sopenharmony_ci tmp[1] -= 1 & a; 646e1051a39Sopenharmony_ci 647e1051a39Sopenharmony_ci /* carry 1 -> 2 -> 3 */ 648e1051a39Sopenharmony_ci tmp[2] += tmp[1] >> 56; 649e1051a39Sopenharmony_ci tmp[1] &= 0x00ffffffffffffff; 650e1051a39Sopenharmony_ci 651e1051a39Sopenharmony_ci tmp[3] += tmp[2] >> 56; 652e1051a39Sopenharmony_ci tmp[2] &= 0x00ffffffffffffff; 653e1051a39Sopenharmony_ci 654e1051a39Sopenharmony_ci /* Now 0 <= out < p */ 655e1051a39Sopenharmony_ci out[0] = tmp[0]; 656e1051a39Sopenharmony_ci out[1] = tmp[1]; 657e1051a39Sopenharmony_ci out[2] = tmp[2]; 658e1051a39Sopenharmony_ci out[3] = tmp[3]; 659e1051a39Sopenharmony_ci} 660e1051a39Sopenharmony_ci 661e1051a39Sopenharmony_ci/* 662e1051a39Sopenharmony_ci * Get negative value: out = -in 663e1051a39Sopenharmony_ci * Requires in[i] < 2^63, 664e1051a39Sopenharmony_ci * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 665e1051a39Sopenharmony_ci */ 666e1051a39Sopenharmony_cistatic void felem_neg(felem out, const felem in) 667e1051a39Sopenharmony_ci{ 668e1051a39Sopenharmony_ci widefelem tmp; 669e1051a39Sopenharmony_ci 670e1051a39Sopenharmony_ci memset(tmp, 0, sizeof(tmp)); 671e1051a39Sopenharmony_ci felem_diff_128_64(tmp, in); 672e1051a39Sopenharmony_ci felem_reduce(out, tmp); 673e1051a39Sopenharmony_ci} 674e1051a39Sopenharmony_ci 675e1051a39Sopenharmony_ci/* 676e1051a39Sopenharmony_ci * Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field 677e1051a39Sopenharmony_ci * elements are reduced to in < 2^225, so we only need to check three cases: 678e1051a39Sopenharmony_ci * 0, 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 679e1051a39Sopenharmony_ci */ 680e1051a39Sopenharmony_cistatic limb felem_is_zero(const felem in) 681e1051a39Sopenharmony_ci{ 682e1051a39Sopenharmony_ci limb zero, two224m96p1, two225m97p2; 683e1051a39Sopenharmony_ci 684e1051a39Sopenharmony_ci zero = in[0] | in[1] | in[2] | in[3]; 685e1051a39Sopenharmony_ci zero = (((int64_t) (zero) - 1) >> 63) & 1; 686e1051a39Sopenharmony_ci two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) 687e1051a39Sopenharmony_ci | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x00ffffffffffffff); 688e1051a39Sopenharmony_ci two224m96p1 = (((int64_t) (two224m96p1) - 1) >> 63) & 1; 689e1051a39Sopenharmony_ci two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) 690e1051a39Sopenharmony_ci | (in[2] ^ 0x00ffffffffffffff) | (in[3] ^ 0x01ffffffffffffff); 691e1051a39Sopenharmony_ci two225m97p2 = (((int64_t) (two225m97p2) - 1) >> 63) & 1; 692e1051a39Sopenharmony_ci return (zero | two224m96p1 | two225m97p2); 693e1051a39Sopenharmony_ci} 694e1051a39Sopenharmony_ci 695e1051a39Sopenharmony_cistatic int felem_is_zero_int(const void *in) 696e1051a39Sopenharmony_ci{ 697e1051a39Sopenharmony_ci return (int)(felem_is_zero(in) & ((limb) 1)); 698e1051a39Sopenharmony_ci} 699e1051a39Sopenharmony_ci 700e1051a39Sopenharmony_ci/* Invert a field element */ 701e1051a39Sopenharmony_ci/* Computation chain copied from djb's code */ 702e1051a39Sopenharmony_cistatic void felem_inv(felem out, const felem in) 703e1051a39Sopenharmony_ci{ 704e1051a39Sopenharmony_ci felem ftmp, ftmp2, ftmp3, ftmp4; 705e1051a39Sopenharmony_ci widefelem tmp; 706e1051a39Sopenharmony_ci unsigned i; 707e1051a39Sopenharmony_ci 708e1051a39Sopenharmony_ci felem_square(tmp, in); 709e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2 */ 710e1051a39Sopenharmony_ci felem_mul(tmp, in, ftmp); 711e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^2 - 1 */ 712e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 713e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^3 - 2 */ 714e1051a39Sopenharmony_ci felem_mul(tmp, in, ftmp); 715e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^3 - 1 */ 716e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 717e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^4 - 2 */ 718e1051a39Sopenharmony_ci felem_square(tmp, ftmp2); 719e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^5 - 4 */ 720e1051a39Sopenharmony_ci felem_square(tmp, ftmp2); 721e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^6 - 8 */ 722e1051a39Sopenharmony_ci felem_mul(tmp, ftmp2, ftmp); 723e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^6 - 1 */ 724e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 725e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^7 - 2 */ 726e1051a39Sopenharmony_ci for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */ 727e1051a39Sopenharmony_ci felem_square(tmp, ftmp2); 728e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); 729e1051a39Sopenharmony_ci } 730e1051a39Sopenharmony_ci felem_mul(tmp, ftmp2, ftmp); 731e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^12 - 1 */ 732e1051a39Sopenharmony_ci felem_square(tmp, ftmp2); 733e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); /* 2^13 - 2 */ 734e1051a39Sopenharmony_ci for (i = 0; i < 11; ++i) { /* 2^24 - 2^12 */ 735e1051a39Sopenharmony_ci felem_square(tmp, ftmp3); 736e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); 737e1051a39Sopenharmony_ci } 738e1051a39Sopenharmony_ci felem_mul(tmp, ftmp3, ftmp2); 739e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^24 - 1 */ 740e1051a39Sopenharmony_ci felem_square(tmp, ftmp2); 741e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); /* 2^25 - 2 */ 742e1051a39Sopenharmony_ci for (i = 0; i < 23; ++i) { /* 2^48 - 2^24 */ 743e1051a39Sopenharmony_ci felem_square(tmp, ftmp3); 744e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); 745e1051a39Sopenharmony_ci } 746e1051a39Sopenharmony_ci felem_mul(tmp, ftmp3, ftmp2); 747e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); /* 2^48 - 1 */ 748e1051a39Sopenharmony_ci felem_square(tmp, ftmp3); 749e1051a39Sopenharmony_ci felem_reduce(ftmp4, tmp); /* 2^49 - 2 */ 750e1051a39Sopenharmony_ci for (i = 0; i < 47; ++i) { /* 2^96 - 2^48 */ 751e1051a39Sopenharmony_ci felem_square(tmp, ftmp4); 752e1051a39Sopenharmony_ci felem_reduce(ftmp4, tmp); 753e1051a39Sopenharmony_ci } 754e1051a39Sopenharmony_ci felem_mul(tmp, ftmp3, ftmp4); 755e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); /* 2^96 - 1 */ 756e1051a39Sopenharmony_ci felem_square(tmp, ftmp3); 757e1051a39Sopenharmony_ci felem_reduce(ftmp4, tmp); /* 2^97 - 2 */ 758e1051a39Sopenharmony_ci for (i = 0; i < 23; ++i) { /* 2^120 - 2^24 */ 759e1051a39Sopenharmony_ci felem_square(tmp, ftmp4); 760e1051a39Sopenharmony_ci felem_reduce(ftmp4, tmp); 761e1051a39Sopenharmony_ci } 762e1051a39Sopenharmony_ci felem_mul(tmp, ftmp2, ftmp4); 763e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); /* 2^120 - 1 */ 764e1051a39Sopenharmony_ci for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */ 765e1051a39Sopenharmony_ci felem_square(tmp, ftmp2); 766e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); 767e1051a39Sopenharmony_ci } 768e1051a39Sopenharmony_ci felem_mul(tmp, ftmp2, ftmp); 769e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^126 - 1 */ 770e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 771e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^127 - 2 */ 772e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, in); 773e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); /* 2^127 - 1 */ 774e1051a39Sopenharmony_ci for (i = 0; i < 97; ++i) { /* 2^224 - 2^97 */ 775e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 776e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); 777e1051a39Sopenharmony_ci } 778e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, ftmp3); 779e1051a39Sopenharmony_ci felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */ 780e1051a39Sopenharmony_ci} 781e1051a39Sopenharmony_ci 782e1051a39Sopenharmony_ci/* 783e1051a39Sopenharmony_ci * Copy in constant time: if icopy == 1, copy in to out, if icopy == 0, copy 784e1051a39Sopenharmony_ci * out to itself. 785e1051a39Sopenharmony_ci */ 786e1051a39Sopenharmony_cistatic void copy_conditional(felem out, const felem in, limb icopy) 787e1051a39Sopenharmony_ci{ 788e1051a39Sopenharmony_ci unsigned i; 789e1051a39Sopenharmony_ci /* 790e1051a39Sopenharmony_ci * icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one 791e1051a39Sopenharmony_ci */ 792e1051a39Sopenharmony_ci const limb copy = -icopy; 793e1051a39Sopenharmony_ci for (i = 0; i < 4; ++i) { 794e1051a39Sopenharmony_ci const limb tmp = copy & (in[i] ^ out[i]); 795e1051a39Sopenharmony_ci out[i] ^= tmp; 796e1051a39Sopenharmony_ci } 797e1051a39Sopenharmony_ci} 798e1051a39Sopenharmony_ci 799e1051a39Sopenharmony_ci/******************************************************************************/ 800e1051a39Sopenharmony_ci/*- 801e1051a39Sopenharmony_ci * ELLIPTIC CURVE POINT OPERATIONS 802e1051a39Sopenharmony_ci * 803e1051a39Sopenharmony_ci * Points are represented in Jacobian projective coordinates: 804e1051a39Sopenharmony_ci * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3), 805e1051a39Sopenharmony_ci * or to the point at infinity if Z == 0. 806e1051a39Sopenharmony_ci * 807e1051a39Sopenharmony_ci */ 808e1051a39Sopenharmony_ci 809e1051a39Sopenharmony_ci/*- 810e1051a39Sopenharmony_ci * Double an elliptic curve point: 811e1051a39Sopenharmony_ci * (X', Y', Z') = 2 * (X, Y, Z), where 812e1051a39Sopenharmony_ci * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2 813e1051a39Sopenharmony_ci * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^4 814e1051a39Sopenharmony_ci * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z 815e1051a39Sopenharmony_ci * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed, 816e1051a39Sopenharmony_ci * while x_out == y_in is not (maybe this works, but it's not tested). 817e1051a39Sopenharmony_ci */ 818e1051a39Sopenharmony_cistatic void 819e1051a39Sopenharmony_cipoint_double(felem x_out, felem y_out, felem z_out, 820e1051a39Sopenharmony_ci const felem x_in, const felem y_in, const felem z_in) 821e1051a39Sopenharmony_ci{ 822e1051a39Sopenharmony_ci widefelem tmp, tmp2; 823e1051a39Sopenharmony_ci felem delta, gamma, beta, alpha, ftmp, ftmp2; 824e1051a39Sopenharmony_ci 825e1051a39Sopenharmony_ci felem_assign(ftmp, x_in); 826e1051a39Sopenharmony_ci felem_assign(ftmp2, x_in); 827e1051a39Sopenharmony_ci 828e1051a39Sopenharmony_ci /* delta = z^2 */ 829e1051a39Sopenharmony_ci felem_square(tmp, z_in); 830e1051a39Sopenharmony_ci felem_reduce(delta, tmp); 831e1051a39Sopenharmony_ci 832e1051a39Sopenharmony_ci /* gamma = y^2 */ 833e1051a39Sopenharmony_ci felem_square(tmp, y_in); 834e1051a39Sopenharmony_ci felem_reduce(gamma, tmp); 835e1051a39Sopenharmony_ci 836e1051a39Sopenharmony_ci /* beta = x*gamma */ 837e1051a39Sopenharmony_ci felem_mul(tmp, x_in, gamma); 838e1051a39Sopenharmony_ci felem_reduce(beta, tmp); 839e1051a39Sopenharmony_ci 840e1051a39Sopenharmony_ci /* alpha = 3*(x-delta)*(x+delta) */ 841e1051a39Sopenharmony_ci felem_diff(ftmp, delta); 842e1051a39Sopenharmony_ci /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */ 843e1051a39Sopenharmony_ci felem_sum(ftmp2, delta); 844e1051a39Sopenharmony_ci /* ftmp2[i] < 2^57 + 2^57 = 2^58 */ 845e1051a39Sopenharmony_ci felem_scalar(ftmp2, 3); 846e1051a39Sopenharmony_ci /* ftmp2[i] < 3 * 2^58 < 2^60 */ 847e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, ftmp2); 848e1051a39Sopenharmony_ci /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */ 849e1051a39Sopenharmony_ci felem_reduce(alpha, tmp); 850e1051a39Sopenharmony_ci 851e1051a39Sopenharmony_ci /* x' = alpha^2 - 8*beta */ 852e1051a39Sopenharmony_ci felem_square(tmp, alpha); 853e1051a39Sopenharmony_ci /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ 854e1051a39Sopenharmony_ci felem_assign(ftmp, beta); 855e1051a39Sopenharmony_ci felem_scalar(ftmp, 8); 856e1051a39Sopenharmony_ci /* ftmp[i] < 8 * 2^57 = 2^60 */ 857e1051a39Sopenharmony_ci felem_diff_128_64(tmp, ftmp); 858e1051a39Sopenharmony_ci /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ 859e1051a39Sopenharmony_ci felem_reduce(x_out, tmp); 860e1051a39Sopenharmony_ci 861e1051a39Sopenharmony_ci /* z' = (y + z)^2 - gamma - delta */ 862e1051a39Sopenharmony_ci felem_sum(delta, gamma); 863e1051a39Sopenharmony_ci /* delta[i] < 2^57 + 2^57 = 2^58 */ 864e1051a39Sopenharmony_ci felem_assign(ftmp, y_in); 865e1051a39Sopenharmony_ci felem_sum(ftmp, z_in); 866e1051a39Sopenharmony_ci /* ftmp[i] < 2^57 + 2^57 = 2^58 */ 867e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 868e1051a39Sopenharmony_ci /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */ 869e1051a39Sopenharmony_ci felem_diff_128_64(tmp, delta); 870e1051a39Sopenharmony_ci /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */ 871e1051a39Sopenharmony_ci felem_reduce(z_out, tmp); 872e1051a39Sopenharmony_ci 873e1051a39Sopenharmony_ci /* y' = alpha*(4*beta - x') - 8*gamma^2 */ 874e1051a39Sopenharmony_ci felem_scalar(beta, 4); 875e1051a39Sopenharmony_ci /* beta[i] < 4 * 2^57 = 2^59 */ 876e1051a39Sopenharmony_ci felem_diff(beta, x_out); 877e1051a39Sopenharmony_ci /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */ 878e1051a39Sopenharmony_ci felem_mul(tmp, alpha, beta); 879e1051a39Sopenharmony_ci /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */ 880e1051a39Sopenharmony_ci felem_square(tmp2, gamma); 881e1051a39Sopenharmony_ci /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */ 882e1051a39Sopenharmony_ci widefelem_scalar(tmp2, 8); 883e1051a39Sopenharmony_ci /* tmp2[i] < 8 * 2^116 = 2^119 */ 884e1051a39Sopenharmony_ci widefelem_diff(tmp, tmp2); 885e1051a39Sopenharmony_ci /* tmp[i] < 2^119 + 2^120 < 2^121 */ 886e1051a39Sopenharmony_ci felem_reduce(y_out, tmp); 887e1051a39Sopenharmony_ci} 888e1051a39Sopenharmony_ci 889e1051a39Sopenharmony_ci/*- 890e1051a39Sopenharmony_ci * Add two elliptic curve points: 891e1051a39Sopenharmony_ci * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where 892e1051a39Sopenharmony_ci * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 - 893e1051a39Sopenharmony_ci * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 894e1051a39Sopenharmony_ci * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2 - X_3) - 895e1051a39Sopenharmony_ci * Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3 896e1051a39Sopenharmony_ci * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2) 897e1051a39Sopenharmony_ci * 898e1051a39Sopenharmony_ci * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. 899e1051a39Sopenharmony_ci */ 900e1051a39Sopenharmony_ci 901e1051a39Sopenharmony_ci/* 902e1051a39Sopenharmony_ci * This function is not entirely constant-time: it includes a branch for 903e1051a39Sopenharmony_ci * checking whether the two input points are equal, (while not equal to the 904e1051a39Sopenharmony_ci * point at infinity). This case never happens during single point 905e1051a39Sopenharmony_ci * multiplication, so there is no timing leak for ECDH or ECDSA signing. 906e1051a39Sopenharmony_ci */ 907e1051a39Sopenharmony_cistatic void point_add(felem x3, felem y3, felem z3, 908e1051a39Sopenharmony_ci const felem x1, const felem y1, const felem z1, 909e1051a39Sopenharmony_ci const int mixed, const felem x2, const felem y2, 910e1051a39Sopenharmony_ci const felem z2) 911e1051a39Sopenharmony_ci{ 912e1051a39Sopenharmony_ci felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out; 913e1051a39Sopenharmony_ci widefelem tmp, tmp2; 914e1051a39Sopenharmony_ci limb z1_is_zero, z2_is_zero, x_equal, y_equal; 915e1051a39Sopenharmony_ci limb points_equal; 916e1051a39Sopenharmony_ci 917e1051a39Sopenharmony_ci if (!mixed) { 918e1051a39Sopenharmony_ci /* ftmp2 = z2^2 */ 919e1051a39Sopenharmony_ci felem_square(tmp, z2); 920e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); 921e1051a39Sopenharmony_ci 922e1051a39Sopenharmony_ci /* ftmp4 = z2^3 */ 923e1051a39Sopenharmony_ci felem_mul(tmp, ftmp2, z2); 924e1051a39Sopenharmony_ci felem_reduce(ftmp4, tmp); 925e1051a39Sopenharmony_ci 926e1051a39Sopenharmony_ci /* ftmp4 = z2^3*y1 */ 927e1051a39Sopenharmony_ci felem_mul(tmp2, ftmp4, y1); 928e1051a39Sopenharmony_ci felem_reduce(ftmp4, tmp2); 929e1051a39Sopenharmony_ci 930e1051a39Sopenharmony_ci /* ftmp2 = z2^2*x1 */ 931e1051a39Sopenharmony_ci felem_mul(tmp2, ftmp2, x1); 932e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp2); 933e1051a39Sopenharmony_ci } else { 934e1051a39Sopenharmony_ci /* 935e1051a39Sopenharmony_ci * We'll assume z2 = 1 (special case z2 = 0 is handled later) 936e1051a39Sopenharmony_ci */ 937e1051a39Sopenharmony_ci 938e1051a39Sopenharmony_ci /* ftmp4 = z2^3*y1 */ 939e1051a39Sopenharmony_ci felem_assign(ftmp4, y1); 940e1051a39Sopenharmony_ci 941e1051a39Sopenharmony_ci /* ftmp2 = z2^2*x1 */ 942e1051a39Sopenharmony_ci felem_assign(ftmp2, x1); 943e1051a39Sopenharmony_ci } 944e1051a39Sopenharmony_ci 945e1051a39Sopenharmony_ci /* ftmp = z1^2 */ 946e1051a39Sopenharmony_ci felem_square(tmp, z1); 947e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); 948e1051a39Sopenharmony_ci 949e1051a39Sopenharmony_ci /* ftmp3 = z1^3 */ 950e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, z1); 951e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); 952e1051a39Sopenharmony_ci 953e1051a39Sopenharmony_ci /* tmp = z1^3*y2 */ 954e1051a39Sopenharmony_ci felem_mul(tmp, ftmp3, y2); 955e1051a39Sopenharmony_ci /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ 956e1051a39Sopenharmony_ci 957e1051a39Sopenharmony_ci /* ftmp3 = z1^3*y2 - z2^3*y1 */ 958e1051a39Sopenharmony_ci felem_diff_128_64(tmp, ftmp4); 959e1051a39Sopenharmony_ci /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ 960e1051a39Sopenharmony_ci felem_reduce(ftmp3, tmp); 961e1051a39Sopenharmony_ci 962e1051a39Sopenharmony_ci /* tmp = z1^2*x2 */ 963e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, x2); 964e1051a39Sopenharmony_ci /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ 965e1051a39Sopenharmony_ci 966e1051a39Sopenharmony_ci /* ftmp = z1^2*x2 - z2^2*x1 */ 967e1051a39Sopenharmony_ci felem_diff_128_64(tmp, ftmp2); 968e1051a39Sopenharmony_ci /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */ 969e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); 970e1051a39Sopenharmony_ci 971e1051a39Sopenharmony_ci /* 972e1051a39Sopenharmony_ci * The formulae are incorrect if the points are equal, in affine coordinates 973e1051a39Sopenharmony_ci * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this 974e1051a39Sopenharmony_ci * happens. 975e1051a39Sopenharmony_ci * 976e1051a39Sopenharmony_ci * We use bitwise operations to avoid potential side-channels introduced by 977e1051a39Sopenharmony_ci * the short-circuiting behaviour of boolean operators. 978e1051a39Sopenharmony_ci */ 979e1051a39Sopenharmony_ci x_equal = felem_is_zero(ftmp); 980e1051a39Sopenharmony_ci y_equal = felem_is_zero(ftmp3); 981e1051a39Sopenharmony_ci /* 982e1051a39Sopenharmony_ci * The special case of either point being the point at infinity (z1 and/or 983e1051a39Sopenharmony_ci * z2 are zero), is handled separately later on in this function, so we 984e1051a39Sopenharmony_ci * avoid jumping to point_double here in those special cases. 985e1051a39Sopenharmony_ci */ 986e1051a39Sopenharmony_ci z1_is_zero = felem_is_zero(z1); 987e1051a39Sopenharmony_ci z2_is_zero = felem_is_zero(z2); 988e1051a39Sopenharmony_ci 989e1051a39Sopenharmony_ci /* 990e1051a39Sopenharmony_ci * Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this 991e1051a39Sopenharmony_ci * specific implementation `felem_is_zero()` returns truth as `0x1` 992e1051a39Sopenharmony_ci * (rather than `0xff..ff`). 993e1051a39Sopenharmony_ci * 994e1051a39Sopenharmony_ci * This implies that `~true` in this implementation becomes 995e1051a39Sopenharmony_ci * `0xff..fe` (rather than `0x0`): for this reason, to be used in 996e1051a39Sopenharmony_ci * the if expression, we mask out only the last bit in the next 997e1051a39Sopenharmony_ci * line. 998e1051a39Sopenharmony_ci */ 999e1051a39Sopenharmony_ci points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1; 1000e1051a39Sopenharmony_ci 1001e1051a39Sopenharmony_ci if (points_equal) { 1002e1051a39Sopenharmony_ci /* 1003e1051a39Sopenharmony_ci * This is obviously not constant-time but, as mentioned before, this 1004e1051a39Sopenharmony_ci * case never happens during single point multiplication, so there is no 1005e1051a39Sopenharmony_ci * timing leak for ECDH or ECDSA signing. 1006e1051a39Sopenharmony_ci */ 1007e1051a39Sopenharmony_ci point_double(x3, y3, z3, x1, y1, z1); 1008e1051a39Sopenharmony_ci return; 1009e1051a39Sopenharmony_ci } 1010e1051a39Sopenharmony_ci 1011e1051a39Sopenharmony_ci /* ftmp5 = z1*z2 */ 1012e1051a39Sopenharmony_ci if (!mixed) { 1013e1051a39Sopenharmony_ci felem_mul(tmp, z1, z2); 1014e1051a39Sopenharmony_ci felem_reduce(ftmp5, tmp); 1015e1051a39Sopenharmony_ci } else { 1016e1051a39Sopenharmony_ci /* special case z2 = 0 is handled later */ 1017e1051a39Sopenharmony_ci felem_assign(ftmp5, z1); 1018e1051a39Sopenharmony_ci } 1019e1051a39Sopenharmony_ci 1020e1051a39Sopenharmony_ci /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */ 1021e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, ftmp5); 1022e1051a39Sopenharmony_ci felem_reduce(z_out, tmp); 1023e1051a39Sopenharmony_ci 1024e1051a39Sopenharmony_ci /* ftmp = (z1^2*x2 - z2^2*x1)^2 */ 1025e1051a39Sopenharmony_ci felem_assign(ftmp5, ftmp); 1026e1051a39Sopenharmony_ci felem_square(tmp, ftmp); 1027e1051a39Sopenharmony_ci felem_reduce(ftmp, tmp); 1028e1051a39Sopenharmony_ci 1029e1051a39Sopenharmony_ci /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */ 1030e1051a39Sopenharmony_ci felem_mul(tmp, ftmp, ftmp5); 1031e1051a39Sopenharmony_ci felem_reduce(ftmp5, tmp); 1032e1051a39Sopenharmony_ci 1033e1051a39Sopenharmony_ci /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ 1034e1051a39Sopenharmony_ci felem_mul(tmp, ftmp2, ftmp); 1035e1051a39Sopenharmony_ci felem_reduce(ftmp2, tmp); 1036e1051a39Sopenharmony_ci 1037e1051a39Sopenharmony_ci /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */ 1038e1051a39Sopenharmony_ci felem_mul(tmp, ftmp4, ftmp5); 1039e1051a39Sopenharmony_ci /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */ 1040e1051a39Sopenharmony_ci 1041e1051a39Sopenharmony_ci /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */ 1042e1051a39Sopenharmony_ci felem_square(tmp2, ftmp3); 1043e1051a39Sopenharmony_ci /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */ 1044e1051a39Sopenharmony_ci 1045e1051a39Sopenharmony_ci /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */ 1046e1051a39Sopenharmony_ci felem_diff_128_64(tmp2, ftmp5); 1047e1051a39Sopenharmony_ci /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */ 1048e1051a39Sopenharmony_ci 1049e1051a39Sopenharmony_ci /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */ 1050e1051a39Sopenharmony_ci felem_assign(ftmp5, ftmp2); 1051e1051a39Sopenharmony_ci felem_scalar(ftmp5, 2); 1052e1051a39Sopenharmony_ci /* ftmp5[i] < 2 * 2^57 = 2^58 */ 1053e1051a39Sopenharmony_ci 1054e1051a39Sopenharmony_ci /*- 1055e1051a39Sopenharmony_ci * x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 - 1056e1051a39Sopenharmony_ci * 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 1057e1051a39Sopenharmony_ci */ 1058e1051a39Sopenharmony_ci felem_diff_128_64(tmp2, ftmp5); 1059e1051a39Sopenharmony_ci /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */ 1060e1051a39Sopenharmony_ci felem_reduce(x_out, tmp2); 1061e1051a39Sopenharmony_ci 1062e1051a39Sopenharmony_ci /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */ 1063e1051a39Sopenharmony_ci felem_diff(ftmp2, x_out); 1064e1051a39Sopenharmony_ci /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */ 1065e1051a39Sopenharmony_ci 1066e1051a39Sopenharmony_ci /* 1067e1051a39Sopenharmony_ci * tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) 1068e1051a39Sopenharmony_ci */ 1069e1051a39Sopenharmony_ci felem_mul(tmp2, ftmp3, ftmp2); 1070e1051a39Sopenharmony_ci /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */ 1071e1051a39Sopenharmony_ci 1072e1051a39Sopenharmony_ci /*- 1073e1051a39Sopenharmony_ci * y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) - 1074e1051a39Sopenharmony_ci * z2^3*y1*(z1^2*x2 - z2^2*x1)^3 1075e1051a39Sopenharmony_ci */ 1076e1051a39Sopenharmony_ci widefelem_diff(tmp2, tmp); 1077e1051a39Sopenharmony_ci /* tmp2[i] < 2^118 + 2^120 < 2^121 */ 1078e1051a39Sopenharmony_ci felem_reduce(y_out, tmp2); 1079e1051a39Sopenharmony_ci 1080e1051a39Sopenharmony_ci /* 1081e1051a39Sopenharmony_ci * the result (x_out, y_out, z_out) is incorrect if one of the inputs is 1082e1051a39Sopenharmony_ci * the point at infinity, so we need to check for this separately 1083e1051a39Sopenharmony_ci */ 1084e1051a39Sopenharmony_ci 1085e1051a39Sopenharmony_ci /* 1086e1051a39Sopenharmony_ci * if point 1 is at infinity, copy point 2 to output, and vice versa 1087e1051a39Sopenharmony_ci */ 1088e1051a39Sopenharmony_ci copy_conditional(x_out, x2, z1_is_zero); 1089e1051a39Sopenharmony_ci copy_conditional(x_out, x1, z2_is_zero); 1090e1051a39Sopenharmony_ci copy_conditional(y_out, y2, z1_is_zero); 1091e1051a39Sopenharmony_ci copy_conditional(y_out, y1, z2_is_zero); 1092e1051a39Sopenharmony_ci copy_conditional(z_out, z2, z1_is_zero); 1093e1051a39Sopenharmony_ci copy_conditional(z_out, z1, z2_is_zero); 1094e1051a39Sopenharmony_ci felem_assign(x3, x_out); 1095e1051a39Sopenharmony_ci felem_assign(y3, y_out); 1096e1051a39Sopenharmony_ci felem_assign(z3, z_out); 1097e1051a39Sopenharmony_ci} 1098e1051a39Sopenharmony_ci 1099e1051a39Sopenharmony_ci/* 1100e1051a39Sopenharmony_ci * select_point selects the |idx|th point from a precomputation table and 1101e1051a39Sopenharmony_ci * copies it to out. 1102e1051a39Sopenharmony_ci * The pre_comp array argument should be size of |size| argument 1103e1051a39Sopenharmony_ci */ 1104e1051a39Sopenharmony_cistatic void select_point(const u64 idx, unsigned int size, 1105e1051a39Sopenharmony_ci const felem pre_comp[][3], felem out[3]) 1106e1051a39Sopenharmony_ci{ 1107e1051a39Sopenharmony_ci unsigned i, j; 1108e1051a39Sopenharmony_ci limb *outlimbs = &out[0][0]; 1109e1051a39Sopenharmony_ci 1110e1051a39Sopenharmony_ci memset(out, 0, sizeof(*out) * 3); 1111e1051a39Sopenharmony_ci for (i = 0; i < size; i++) { 1112e1051a39Sopenharmony_ci const limb *inlimbs = &pre_comp[i][0][0]; 1113e1051a39Sopenharmony_ci u64 mask = i ^ idx; 1114e1051a39Sopenharmony_ci mask |= mask >> 4; 1115e1051a39Sopenharmony_ci mask |= mask >> 2; 1116e1051a39Sopenharmony_ci mask |= mask >> 1; 1117e1051a39Sopenharmony_ci mask &= 1; 1118e1051a39Sopenharmony_ci mask--; 1119e1051a39Sopenharmony_ci for (j = 0; j < 4 * 3; j++) 1120e1051a39Sopenharmony_ci outlimbs[j] |= inlimbs[j] & mask; 1121e1051a39Sopenharmony_ci } 1122e1051a39Sopenharmony_ci} 1123e1051a39Sopenharmony_ci 1124e1051a39Sopenharmony_ci/* get_bit returns the |i|th bit in |in| */ 1125e1051a39Sopenharmony_cistatic char get_bit(const felem_bytearray in, unsigned i) 1126e1051a39Sopenharmony_ci{ 1127e1051a39Sopenharmony_ci if (i >= 224) 1128e1051a39Sopenharmony_ci return 0; 1129e1051a39Sopenharmony_ci return (in[i >> 3] >> (i & 7)) & 1; 1130e1051a39Sopenharmony_ci} 1131e1051a39Sopenharmony_ci 1132e1051a39Sopenharmony_ci/* 1133e1051a39Sopenharmony_ci * Interleaved point multiplication using precomputed point multiples: The 1134e1051a39Sopenharmony_ci * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars 1135e1051a39Sopenharmony_ci * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the 1136e1051a39Sopenharmony_ci * generator, using certain (large) precomputed multiples in g_pre_comp. 1137e1051a39Sopenharmony_ci * Output point (X, Y, Z) is stored in x_out, y_out, z_out 1138e1051a39Sopenharmony_ci */ 1139e1051a39Sopenharmony_cistatic void batch_mul(felem x_out, felem y_out, felem z_out, 1140e1051a39Sopenharmony_ci const felem_bytearray scalars[], 1141e1051a39Sopenharmony_ci const unsigned num_points, const u8 *g_scalar, 1142e1051a39Sopenharmony_ci const int mixed, const felem pre_comp[][17][3], 1143e1051a39Sopenharmony_ci const felem g_pre_comp[2][16][3]) 1144e1051a39Sopenharmony_ci{ 1145e1051a39Sopenharmony_ci int i, skip; 1146e1051a39Sopenharmony_ci unsigned num; 1147e1051a39Sopenharmony_ci unsigned gen_mul = (g_scalar != NULL); 1148e1051a39Sopenharmony_ci felem nq[3], tmp[4]; 1149e1051a39Sopenharmony_ci u64 bits; 1150e1051a39Sopenharmony_ci u8 sign, digit; 1151e1051a39Sopenharmony_ci 1152e1051a39Sopenharmony_ci /* set nq to the point at infinity */ 1153e1051a39Sopenharmony_ci memset(nq, 0, sizeof(nq)); 1154e1051a39Sopenharmony_ci 1155e1051a39Sopenharmony_ci /* 1156e1051a39Sopenharmony_ci * Loop over all scalars msb-to-lsb, interleaving additions of multiples 1157e1051a39Sopenharmony_ci * of the generator (two in each of the last 28 rounds) and additions of 1158e1051a39Sopenharmony_ci * other points multiples (every 5th round). 1159e1051a39Sopenharmony_ci */ 1160e1051a39Sopenharmony_ci skip = 1; /* save two point operations in the first 1161e1051a39Sopenharmony_ci * round */ 1162e1051a39Sopenharmony_ci for (i = (num_points ? 220 : 27); i >= 0; --i) { 1163e1051a39Sopenharmony_ci /* double */ 1164e1051a39Sopenharmony_ci if (!skip) 1165e1051a39Sopenharmony_ci point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); 1166e1051a39Sopenharmony_ci 1167e1051a39Sopenharmony_ci /* add multiples of the generator */ 1168e1051a39Sopenharmony_ci if (gen_mul && (i <= 27)) { 1169e1051a39Sopenharmony_ci /* first, look 28 bits upwards */ 1170e1051a39Sopenharmony_ci bits = get_bit(g_scalar, i + 196) << 3; 1171e1051a39Sopenharmony_ci bits |= get_bit(g_scalar, i + 140) << 2; 1172e1051a39Sopenharmony_ci bits |= get_bit(g_scalar, i + 84) << 1; 1173e1051a39Sopenharmony_ci bits |= get_bit(g_scalar, i + 28); 1174e1051a39Sopenharmony_ci /* select the point to add, in constant time */ 1175e1051a39Sopenharmony_ci select_point(bits, 16, g_pre_comp[1], tmp); 1176e1051a39Sopenharmony_ci 1177e1051a39Sopenharmony_ci if (!skip) { 1178e1051a39Sopenharmony_ci /* value 1 below is argument for "mixed" */ 1179e1051a39Sopenharmony_ci point_add(nq[0], nq[1], nq[2], 1180e1051a39Sopenharmony_ci nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); 1181e1051a39Sopenharmony_ci } else { 1182e1051a39Sopenharmony_ci memcpy(nq, tmp, 3 * sizeof(felem)); 1183e1051a39Sopenharmony_ci skip = 0; 1184e1051a39Sopenharmony_ci } 1185e1051a39Sopenharmony_ci 1186e1051a39Sopenharmony_ci /* second, look at the current position */ 1187e1051a39Sopenharmony_ci bits = get_bit(g_scalar, i + 168) << 3; 1188e1051a39Sopenharmony_ci bits |= get_bit(g_scalar, i + 112) << 2; 1189e1051a39Sopenharmony_ci bits |= get_bit(g_scalar, i + 56) << 1; 1190e1051a39Sopenharmony_ci bits |= get_bit(g_scalar, i); 1191e1051a39Sopenharmony_ci /* select the point to add, in constant time */ 1192e1051a39Sopenharmony_ci select_point(bits, 16, g_pre_comp[0], tmp); 1193e1051a39Sopenharmony_ci point_add(nq[0], nq[1], nq[2], 1194e1051a39Sopenharmony_ci nq[0], nq[1], nq[2], 1195e1051a39Sopenharmony_ci 1 /* mixed */ , tmp[0], tmp[1], tmp[2]); 1196e1051a39Sopenharmony_ci } 1197e1051a39Sopenharmony_ci 1198e1051a39Sopenharmony_ci /* do other additions every 5 doublings */ 1199e1051a39Sopenharmony_ci if (num_points && (i % 5 == 0)) { 1200e1051a39Sopenharmony_ci /* loop over all scalars */ 1201e1051a39Sopenharmony_ci for (num = 0; num < num_points; ++num) { 1202e1051a39Sopenharmony_ci bits = get_bit(scalars[num], i + 4) << 5; 1203e1051a39Sopenharmony_ci bits |= get_bit(scalars[num], i + 3) << 4; 1204e1051a39Sopenharmony_ci bits |= get_bit(scalars[num], i + 2) << 3; 1205e1051a39Sopenharmony_ci bits |= get_bit(scalars[num], i + 1) << 2; 1206e1051a39Sopenharmony_ci bits |= get_bit(scalars[num], i) << 1; 1207e1051a39Sopenharmony_ci bits |= get_bit(scalars[num], i - 1); 1208e1051a39Sopenharmony_ci ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); 1209e1051a39Sopenharmony_ci 1210e1051a39Sopenharmony_ci /* select the point to add or subtract */ 1211e1051a39Sopenharmony_ci select_point(digit, 17, pre_comp[num], tmp); 1212e1051a39Sopenharmony_ci felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative 1213e1051a39Sopenharmony_ci * point */ 1214e1051a39Sopenharmony_ci copy_conditional(tmp[1], tmp[3], sign); 1215e1051a39Sopenharmony_ci 1216e1051a39Sopenharmony_ci if (!skip) { 1217e1051a39Sopenharmony_ci point_add(nq[0], nq[1], nq[2], 1218e1051a39Sopenharmony_ci nq[0], nq[1], nq[2], 1219e1051a39Sopenharmony_ci mixed, tmp[0], tmp[1], tmp[2]); 1220e1051a39Sopenharmony_ci } else { 1221e1051a39Sopenharmony_ci memcpy(nq, tmp, 3 * sizeof(felem)); 1222e1051a39Sopenharmony_ci skip = 0; 1223e1051a39Sopenharmony_ci } 1224e1051a39Sopenharmony_ci } 1225e1051a39Sopenharmony_ci } 1226e1051a39Sopenharmony_ci } 1227e1051a39Sopenharmony_ci felem_assign(x_out, nq[0]); 1228e1051a39Sopenharmony_ci felem_assign(y_out, nq[1]); 1229e1051a39Sopenharmony_ci felem_assign(z_out, nq[2]); 1230e1051a39Sopenharmony_ci} 1231e1051a39Sopenharmony_ci 1232e1051a39Sopenharmony_ci/******************************************************************************/ 1233e1051a39Sopenharmony_ci/* 1234e1051a39Sopenharmony_ci * FUNCTIONS TO MANAGE PRECOMPUTATION 1235e1051a39Sopenharmony_ci */ 1236e1051a39Sopenharmony_ci 1237e1051a39Sopenharmony_cistatic NISTP224_PRE_COMP *nistp224_pre_comp_new(void) 1238e1051a39Sopenharmony_ci{ 1239e1051a39Sopenharmony_ci NISTP224_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); 1240e1051a39Sopenharmony_ci 1241e1051a39Sopenharmony_ci if (!ret) { 1242e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); 1243e1051a39Sopenharmony_ci return ret; 1244e1051a39Sopenharmony_ci } 1245e1051a39Sopenharmony_ci 1246e1051a39Sopenharmony_ci ret->references = 1; 1247e1051a39Sopenharmony_ci 1248e1051a39Sopenharmony_ci ret->lock = CRYPTO_THREAD_lock_new(); 1249e1051a39Sopenharmony_ci if (ret->lock == NULL) { 1250e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); 1251e1051a39Sopenharmony_ci OPENSSL_free(ret); 1252e1051a39Sopenharmony_ci return NULL; 1253e1051a39Sopenharmony_ci } 1254e1051a39Sopenharmony_ci return ret; 1255e1051a39Sopenharmony_ci} 1256e1051a39Sopenharmony_ci 1257e1051a39Sopenharmony_ciNISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *p) 1258e1051a39Sopenharmony_ci{ 1259e1051a39Sopenharmony_ci int i; 1260e1051a39Sopenharmony_ci if (p != NULL) 1261e1051a39Sopenharmony_ci CRYPTO_UP_REF(&p->references, &i, p->lock); 1262e1051a39Sopenharmony_ci return p; 1263e1051a39Sopenharmony_ci} 1264e1051a39Sopenharmony_ci 1265e1051a39Sopenharmony_civoid EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *p) 1266e1051a39Sopenharmony_ci{ 1267e1051a39Sopenharmony_ci int i; 1268e1051a39Sopenharmony_ci 1269e1051a39Sopenharmony_ci if (p == NULL) 1270e1051a39Sopenharmony_ci return; 1271e1051a39Sopenharmony_ci 1272e1051a39Sopenharmony_ci CRYPTO_DOWN_REF(&p->references, &i, p->lock); 1273e1051a39Sopenharmony_ci REF_PRINT_COUNT("EC_nistp224", p); 1274e1051a39Sopenharmony_ci if (i > 0) 1275e1051a39Sopenharmony_ci return; 1276e1051a39Sopenharmony_ci REF_ASSERT_ISNT(i < 0); 1277e1051a39Sopenharmony_ci 1278e1051a39Sopenharmony_ci CRYPTO_THREAD_lock_free(p->lock); 1279e1051a39Sopenharmony_ci OPENSSL_free(p); 1280e1051a39Sopenharmony_ci} 1281e1051a39Sopenharmony_ci 1282e1051a39Sopenharmony_ci/******************************************************************************/ 1283e1051a39Sopenharmony_ci/* 1284e1051a39Sopenharmony_ci * OPENSSL EC_METHOD FUNCTIONS 1285e1051a39Sopenharmony_ci */ 1286e1051a39Sopenharmony_ci 1287e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_group_init(EC_GROUP *group) 1288e1051a39Sopenharmony_ci{ 1289e1051a39Sopenharmony_ci int ret; 1290e1051a39Sopenharmony_ci ret = ossl_ec_GFp_simple_group_init(group); 1291e1051a39Sopenharmony_ci group->a_is_minus3 = 1; 1292e1051a39Sopenharmony_ci return ret; 1293e1051a39Sopenharmony_ci} 1294e1051a39Sopenharmony_ci 1295e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p, 1296e1051a39Sopenharmony_ci const BIGNUM *a, const BIGNUM *b, 1297e1051a39Sopenharmony_ci BN_CTX *ctx) 1298e1051a39Sopenharmony_ci{ 1299e1051a39Sopenharmony_ci int ret = 0; 1300e1051a39Sopenharmony_ci BIGNUM *curve_p, *curve_a, *curve_b; 1301e1051a39Sopenharmony_ci#ifndef FIPS_MODULE 1302e1051a39Sopenharmony_ci BN_CTX *new_ctx = NULL; 1303e1051a39Sopenharmony_ci 1304e1051a39Sopenharmony_ci if (ctx == NULL) 1305e1051a39Sopenharmony_ci ctx = new_ctx = BN_CTX_new(); 1306e1051a39Sopenharmony_ci#endif 1307e1051a39Sopenharmony_ci if (ctx == NULL) 1308e1051a39Sopenharmony_ci return 0; 1309e1051a39Sopenharmony_ci 1310e1051a39Sopenharmony_ci BN_CTX_start(ctx); 1311e1051a39Sopenharmony_ci curve_p = BN_CTX_get(ctx); 1312e1051a39Sopenharmony_ci curve_a = BN_CTX_get(ctx); 1313e1051a39Sopenharmony_ci curve_b = BN_CTX_get(ctx); 1314e1051a39Sopenharmony_ci if (curve_b == NULL) 1315e1051a39Sopenharmony_ci goto err; 1316e1051a39Sopenharmony_ci BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p); 1317e1051a39Sopenharmony_ci BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a); 1318e1051a39Sopenharmony_ci BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b); 1319e1051a39Sopenharmony_ci if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { 1320e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); 1321e1051a39Sopenharmony_ci goto err; 1322e1051a39Sopenharmony_ci } 1323e1051a39Sopenharmony_ci group->field_mod_func = BN_nist_mod_224; 1324e1051a39Sopenharmony_ci ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); 1325e1051a39Sopenharmony_ci err: 1326e1051a39Sopenharmony_ci BN_CTX_end(ctx); 1327e1051a39Sopenharmony_ci#ifndef FIPS_MODULE 1328e1051a39Sopenharmony_ci BN_CTX_free(new_ctx); 1329e1051a39Sopenharmony_ci#endif 1330e1051a39Sopenharmony_ci return ret; 1331e1051a39Sopenharmony_ci} 1332e1051a39Sopenharmony_ci 1333e1051a39Sopenharmony_ci/* 1334e1051a39Sopenharmony_ci * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = 1335e1051a39Sopenharmony_ci * (X/Z^2, Y/Z^3) 1336e1051a39Sopenharmony_ci */ 1337e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group, 1338e1051a39Sopenharmony_ci const EC_POINT *point, 1339e1051a39Sopenharmony_ci BIGNUM *x, BIGNUM *y, 1340e1051a39Sopenharmony_ci BN_CTX *ctx) 1341e1051a39Sopenharmony_ci{ 1342e1051a39Sopenharmony_ci felem z1, z2, x_in, y_in, x_out, y_out; 1343e1051a39Sopenharmony_ci widefelem tmp; 1344e1051a39Sopenharmony_ci 1345e1051a39Sopenharmony_ci if (EC_POINT_is_at_infinity(group, point)) { 1346e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); 1347e1051a39Sopenharmony_ci return 0; 1348e1051a39Sopenharmony_ci } 1349e1051a39Sopenharmony_ci if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || 1350e1051a39Sopenharmony_ci (!BN_to_felem(z1, point->Z))) 1351e1051a39Sopenharmony_ci return 0; 1352e1051a39Sopenharmony_ci felem_inv(z2, z1); 1353e1051a39Sopenharmony_ci felem_square(tmp, z2); 1354e1051a39Sopenharmony_ci felem_reduce(z1, tmp); 1355e1051a39Sopenharmony_ci felem_mul(tmp, x_in, z1); 1356e1051a39Sopenharmony_ci felem_reduce(x_in, tmp); 1357e1051a39Sopenharmony_ci felem_contract(x_out, x_in); 1358e1051a39Sopenharmony_ci if (x != NULL) { 1359e1051a39Sopenharmony_ci if (!felem_to_BN(x, x_out)) { 1360e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1361e1051a39Sopenharmony_ci return 0; 1362e1051a39Sopenharmony_ci } 1363e1051a39Sopenharmony_ci } 1364e1051a39Sopenharmony_ci felem_mul(tmp, z1, z2); 1365e1051a39Sopenharmony_ci felem_reduce(z1, tmp); 1366e1051a39Sopenharmony_ci felem_mul(tmp, y_in, z1); 1367e1051a39Sopenharmony_ci felem_reduce(y_in, tmp); 1368e1051a39Sopenharmony_ci felem_contract(y_out, y_in); 1369e1051a39Sopenharmony_ci if (y != NULL) { 1370e1051a39Sopenharmony_ci if (!felem_to_BN(y, y_out)) { 1371e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1372e1051a39Sopenharmony_ci return 0; 1373e1051a39Sopenharmony_ci } 1374e1051a39Sopenharmony_ci } 1375e1051a39Sopenharmony_ci return 1; 1376e1051a39Sopenharmony_ci} 1377e1051a39Sopenharmony_ci 1378e1051a39Sopenharmony_cistatic void make_points_affine(size_t num, felem points[ /* num */ ][3], 1379e1051a39Sopenharmony_ci felem tmp_felems[ /* num+1 */ ]) 1380e1051a39Sopenharmony_ci{ 1381e1051a39Sopenharmony_ci /* 1382e1051a39Sopenharmony_ci * Runs in constant time, unless an input is the point at infinity (which 1383e1051a39Sopenharmony_ci * normally shouldn't happen). 1384e1051a39Sopenharmony_ci */ 1385e1051a39Sopenharmony_ci ossl_ec_GFp_nistp_points_make_affine_internal(num, 1386e1051a39Sopenharmony_ci points, 1387e1051a39Sopenharmony_ci sizeof(felem), 1388e1051a39Sopenharmony_ci tmp_felems, 1389e1051a39Sopenharmony_ci (void (*)(void *))felem_one, 1390e1051a39Sopenharmony_ci felem_is_zero_int, 1391e1051a39Sopenharmony_ci (void (*)(void *, const void *)) 1392e1051a39Sopenharmony_ci felem_assign, 1393e1051a39Sopenharmony_ci (void (*)(void *, const void *)) 1394e1051a39Sopenharmony_ci felem_square_reduce, (void (*) 1395e1051a39Sopenharmony_ci (void *, 1396e1051a39Sopenharmony_ci const void 1397e1051a39Sopenharmony_ci *, 1398e1051a39Sopenharmony_ci const void 1399e1051a39Sopenharmony_ci *)) 1400e1051a39Sopenharmony_ci felem_mul_reduce, 1401e1051a39Sopenharmony_ci (void (*)(void *, const void *)) 1402e1051a39Sopenharmony_ci felem_inv, 1403e1051a39Sopenharmony_ci (void (*)(void *, const void *)) 1404e1051a39Sopenharmony_ci felem_contract); 1405e1051a39Sopenharmony_ci} 1406e1051a39Sopenharmony_ci 1407e1051a39Sopenharmony_ci/* 1408e1051a39Sopenharmony_ci * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL 1409e1051a39Sopenharmony_ci * values Result is stored in r (r can equal one of the inputs). 1410e1051a39Sopenharmony_ci */ 1411e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r, 1412e1051a39Sopenharmony_ci const BIGNUM *scalar, size_t num, 1413e1051a39Sopenharmony_ci const EC_POINT *points[], 1414e1051a39Sopenharmony_ci const BIGNUM *scalars[], BN_CTX *ctx) 1415e1051a39Sopenharmony_ci{ 1416e1051a39Sopenharmony_ci int ret = 0; 1417e1051a39Sopenharmony_ci int j; 1418e1051a39Sopenharmony_ci unsigned i; 1419e1051a39Sopenharmony_ci int mixed = 0; 1420e1051a39Sopenharmony_ci BIGNUM *x, *y, *z, *tmp_scalar; 1421e1051a39Sopenharmony_ci felem_bytearray g_secret; 1422e1051a39Sopenharmony_ci felem_bytearray *secrets = NULL; 1423e1051a39Sopenharmony_ci felem (*pre_comp)[17][3] = NULL; 1424e1051a39Sopenharmony_ci felem *tmp_felems = NULL; 1425e1051a39Sopenharmony_ci int num_bytes; 1426e1051a39Sopenharmony_ci int have_pre_comp = 0; 1427e1051a39Sopenharmony_ci size_t num_points = num; 1428e1051a39Sopenharmony_ci felem x_in, y_in, z_in, x_out, y_out, z_out; 1429e1051a39Sopenharmony_ci NISTP224_PRE_COMP *pre = NULL; 1430e1051a39Sopenharmony_ci const felem(*g_pre_comp)[16][3] = NULL; 1431e1051a39Sopenharmony_ci EC_POINT *generator = NULL; 1432e1051a39Sopenharmony_ci const EC_POINT *p = NULL; 1433e1051a39Sopenharmony_ci const BIGNUM *p_scalar = NULL; 1434e1051a39Sopenharmony_ci 1435e1051a39Sopenharmony_ci BN_CTX_start(ctx); 1436e1051a39Sopenharmony_ci x = BN_CTX_get(ctx); 1437e1051a39Sopenharmony_ci y = BN_CTX_get(ctx); 1438e1051a39Sopenharmony_ci z = BN_CTX_get(ctx); 1439e1051a39Sopenharmony_ci tmp_scalar = BN_CTX_get(ctx); 1440e1051a39Sopenharmony_ci if (tmp_scalar == NULL) 1441e1051a39Sopenharmony_ci goto err; 1442e1051a39Sopenharmony_ci 1443e1051a39Sopenharmony_ci if (scalar != NULL) { 1444e1051a39Sopenharmony_ci pre = group->pre_comp.nistp224; 1445e1051a39Sopenharmony_ci if (pre) 1446e1051a39Sopenharmony_ci /* we have precomputation, try to use it */ 1447e1051a39Sopenharmony_ci g_pre_comp = (const felem(*)[16][3])pre->g_pre_comp; 1448e1051a39Sopenharmony_ci else 1449e1051a39Sopenharmony_ci /* try to use the standard precomputation */ 1450e1051a39Sopenharmony_ci g_pre_comp = &gmul[0]; 1451e1051a39Sopenharmony_ci generator = EC_POINT_new(group); 1452e1051a39Sopenharmony_ci if (generator == NULL) 1453e1051a39Sopenharmony_ci goto err; 1454e1051a39Sopenharmony_ci /* get the generator from precomputation */ 1455e1051a39Sopenharmony_ci if (!felem_to_BN(x, g_pre_comp[0][1][0]) || 1456e1051a39Sopenharmony_ci !felem_to_BN(y, g_pre_comp[0][1][1]) || 1457e1051a39Sopenharmony_ci !felem_to_BN(z, g_pre_comp[0][1][2])) { 1458e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1459e1051a39Sopenharmony_ci goto err; 1460e1051a39Sopenharmony_ci } 1461e1051a39Sopenharmony_ci if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, 1462e1051a39Sopenharmony_ci generator, 1463e1051a39Sopenharmony_ci x, y, z, ctx)) 1464e1051a39Sopenharmony_ci goto err; 1465e1051a39Sopenharmony_ci if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) 1466e1051a39Sopenharmony_ci /* precomputation matches generator */ 1467e1051a39Sopenharmony_ci have_pre_comp = 1; 1468e1051a39Sopenharmony_ci else 1469e1051a39Sopenharmony_ci /* 1470e1051a39Sopenharmony_ci * we don't have valid precomputation: treat the generator as a 1471e1051a39Sopenharmony_ci * random point 1472e1051a39Sopenharmony_ci */ 1473e1051a39Sopenharmony_ci num_points = num_points + 1; 1474e1051a39Sopenharmony_ci } 1475e1051a39Sopenharmony_ci 1476e1051a39Sopenharmony_ci if (num_points > 0) { 1477e1051a39Sopenharmony_ci if (num_points >= 3) { 1478e1051a39Sopenharmony_ci /* 1479e1051a39Sopenharmony_ci * unless we precompute multiples for just one or two points, 1480e1051a39Sopenharmony_ci * converting those into affine form is time well spent 1481e1051a39Sopenharmony_ci */ 1482e1051a39Sopenharmony_ci mixed = 1; 1483e1051a39Sopenharmony_ci } 1484e1051a39Sopenharmony_ci secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); 1485e1051a39Sopenharmony_ci pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); 1486e1051a39Sopenharmony_ci if (mixed) 1487e1051a39Sopenharmony_ci tmp_felems = 1488e1051a39Sopenharmony_ci OPENSSL_malloc(sizeof(felem) * (num_points * 17 + 1)); 1489e1051a39Sopenharmony_ci if ((secrets == NULL) || (pre_comp == NULL) 1490e1051a39Sopenharmony_ci || (mixed && (tmp_felems == NULL))) { 1491e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); 1492e1051a39Sopenharmony_ci goto err; 1493e1051a39Sopenharmony_ci } 1494e1051a39Sopenharmony_ci 1495e1051a39Sopenharmony_ci /* 1496e1051a39Sopenharmony_ci * we treat NULL scalars as 0, and NULL points as points at infinity, 1497e1051a39Sopenharmony_ci * i.e., they contribute nothing to the linear combination 1498e1051a39Sopenharmony_ci */ 1499e1051a39Sopenharmony_ci for (i = 0; i < num_points; ++i) { 1500e1051a39Sopenharmony_ci if (i == num) { 1501e1051a39Sopenharmony_ci /* the generator */ 1502e1051a39Sopenharmony_ci p = EC_GROUP_get0_generator(group); 1503e1051a39Sopenharmony_ci p_scalar = scalar; 1504e1051a39Sopenharmony_ci } else { 1505e1051a39Sopenharmony_ci /* the i^th point */ 1506e1051a39Sopenharmony_ci p = points[i]; 1507e1051a39Sopenharmony_ci p_scalar = scalars[i]; 1508e1051a39Sopenharmony_ci } 1509e1051a39Sopenharmony_ci if ((p_scalar != NULL) && (p != NULL)) { 1510e1051a39Sopenharmony_ci /* reduce scalar to 0 <= scalar < 2^224 */ 1511e1051a39Sopenharmony_ci if ((BN_num_bits(p_scalar) > 224) 1512e1051a39Sopenharmony_ci || (BN_is_negative(p_scalar))) { 1513e1051a39Sopenharmony_ci /* 1514e1051a39Sopenharmony_ci * this is an unusual input, and we don't guarantee 1515e1051a39Sopenharmony_ci * constant-timeness 1516e1051a39Sopenharmony_ci */ 1517e1051a39Sopenharmony_ci if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { 1518e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1519e1051a39Sopenharmony_ci goto err; 1520e1051a39Sopenharmony_ci } 1521e1051a39Sopenharmony_ci num_bytes = BN_bn2lebinpad(tmp_scalar, 1522e1051a39Sopenharmony_ci secrets[i], sizeof(secrets[i])); 1523e1051a39Sopenharmony_ci } else { 1524e1051a39Sopenharmony_ci num_bytes = BN_bn2lebinpad(p_scalar, 1525e1051a39Sopenharmony_ci secrets[i], sizeof(secrets[i])); 1526e1051a39Sopenharmony_ci } 1527e1051a39Sopenharmony_ci if (num_bytes < 0) { 1528e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1529e1051a39Sopenharmony_ci goto err; 1530e1051a39Sopenharmony_ci } 1531e1051a39Sopenharmony_ci /* precompute multiples */ 1532e1051a39Sopenharmony_ci if ((!BN_to_felem(x_out, p->X)) || 1533e1051a39Sopenharmony_ci (!BN_to_felem(y_out, p->Y)) || 1534e1051a39Sopenharmony_ci (!BN_to_felem(z_out, p->Z))) 1535e1051a39Sopenharmony_ci goto err; 1536e1051a39Sopenharmony_ci felem_assign(pre_comp[i][1][0], x_out); 1537e1051a39Sopenharmony_ci felem_assign(pre_comp[i][1][1], y_out); 1538e1051a39Sopenharmony_ci felem_assign(pre_comp[i][1][2], z_out); 1539e1051a39Sopenharmony_ci for (j = 2; j <= 16; ++j) { 1540e1051a39Sopenharmony_ci if (j & 1) { 1541e1051a39Sopenharmony_ci point_add(pre_comp[i][j][0], pre_comp[i][j][1], 1542e1051a39Sopenharmony_ci pre_comp[i][j][2], pre_comp[i][1][0], 1543e1051a39Sopenharmony_ci pre_comp[i][1][1], pre_comp[i][1][2], 0, 1544e1051a39Sopenharmony_ci pre_comp[i][j - 1][0], 1545e1051a39Sopenharmony_ci pre_comp[i][j - 1][1], 1546e1051a39Sopenharmony_ci pre_comp[i][j - 1][2]); 1547e1051a39Sopenharmony_ci } else { 1548e1051a39Sopenharmony_ci point_double(pre_comp[i][j][0], pre_comp[i][j][1], 1549e1051a39Sopenharmony_ci pre_comp[i][j][2], pre_comp[i][j / 2][0], 1550e1051a39Sopenharmony_ci pre_comp[i][j / 2][1], 1551e1051a39Sopenharmony_ci pre_comp[i][j / 2][2]); 1552e1051a39Sopenharmony_ci } 1553e1051a39Sopenharmony_ci } 1554e1051a39Sopenharmony_ci } 1555e1051a39Sopenharmony_ci } 1556e1051a39Sopenharmony_ci if (mixed) 1557e1051a39Sopenharmony_ci make_points_affine(num_points * 17, pre_comp[0], tmp_felems); 1558e1051a39Sopenharmony_ci } 1559e1051a39Sopenharmony_ci 1560e1051a39Sopenharmony_ci /* the scalar for the generator */ 1561e1051a39Sopenharmony_ci if ((scalar != NULL) && (have_pre_comp)) { 1562e1051a39Sopenharmony_ci memset(g_secret, 0, sizeof(g_secret)); 1563e1051a39Sopenharmony_ci /* reduce scalar to 0 <= scalar < 2^224 */ 1564e1051a39Sopenharmony_ci if ((BN_num_bits(scalar) > 224) || (BN_is_negative(scalar))) { 1565e1051a39Sopenharmony_ci /* 1566e1051a39Sopenharmony_ci * this is an unusual input, and we don't guarantee 1567e1051a39Sopenharmony_ci * constant-timeness 1568e1051a39Sopenharmony_ci */ 1569e1051a39Sopenharmony_ci if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { 1570e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1571e1051a39Sopenharmony_ci goto err; 1572e1051a39Sopenharmony_ci } 1573e1051a39Sopenharmony_ci num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); 1574e1051a39Sopenharmony_ci } else { 1575e1051a39Sopenharmony_ci num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); 1576e1051a39Sopenharmony_ci } 1577e1051a39Sopenharmony_ci /* do the multiplication with generator precomputation */ 1578e1051a39Sopenharmony_ci batch_mul(x_out, y_out, z_out, 1579e1051a39Sopenharmony_ci (const felem_bytearray(*))secrets, num_points, 1580e1051a39Sopenharmony_ci g_secret, 1581e1051a39Sopenharmony_ci mixed, (const felem(*)[17][3])pre_comp, g_pre_comp); 1582e1051a39Sopenharmony_ci } else { 1583e1051a39Sopenharmony_ci /* do the multiplication without generator precomputation */ 1584e1051a39Sopenharmony_ci batch_mul(x_out, y_out, z_out, 1585e1051a39Sopenharmony_ci (const felem_bytearray(*))secrets, num_points, 1586e1051a39Sopenharmony_ci NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); 1587e1051a39Sopenharmony_ci } 1588e1051a39Sopenharmony_ci /* reduce the output to its unique minimal representation */ 1589e1051a39Sopenharmony_ci felem_contract(x_in, x_out); 1590e1051a39Sopenharmony_ci felem_contract(y_in, y_out); 1591e1051a39Sopenharmony_ci felem_contract(z_in, z_out); 1592e1051a39Sopenharmony_ci if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || 1593e1051a39Sopenharmony_ci (!felem_to_BN(z, z_in))) { 1594e1051a39Sopenharmony_ci ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1595e1051a39Sopenharmony_ci goto err; 1596e1051a39Sopenharmony_ci } 1597e1051a39Sopenharmony_ci ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, 1598e1051a39Sopenharmony_ci ctx); 1599e1051a39Sopenharmony_ci 1600e1051a39Sopenharmony_ci err: 1601e1051a39Sopenharmony_ci BN_CTX_end(ctx); 1602e1051a39Sopenharmony_ci EC_POINT_free(generator); 1603e1051a39Sopenharmony_ci OPENSSL_free(secrets); 1604e1051a39Sopenharmony_ci OPENSSL_free(pre_comp); 1605e1051a39Sopenharmony_ci OPENSSL_free(tmp_felems); 1606e1051a39Sopenharmony_ci return ret; 1607e1051a39Sopenharmony_ci} 1608e1051a39Sopenharmony_ci 1609e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_precompute_mult(EC_GROUP *group, BN_CTX *ctx) 1610e1051a39Sopenharmony_ci{ 1611e1051a39Sopenharmony_ci int ret = 0; 1612e1051a39Sopenharmony_ci NISTP224_PRE_COMP *pre = NULL; 1613e1051a39Sopenharmony_ci int i, j; 1614e1051a39Sopenharmony_ci BIGNUM *x, *y; 1615e1051a39Sopenharmony_ci EC_POINT *generator = NULL; 1616e1051a39Sopenharmony_ci felem tmp_felems[32]; 1617e1051a39Sopenharmony_ci#ifndef FIPS_MODULE 1618e1051a39Sopenharmony_ci BN_CTX *new_ctx = NULL; 1619e1051a39Sopenharmony_ci#endif 1620e1051a39Sopenharmony_ci 1621e1051a39Sopenharmony_ci /* throw away old precomputation */ 1622e1051a39Sopenharmony_ci EC_pre_comp_free(group); 1623e1051a39Sopenharmony_ci 1624e1051a39Sopenharmony_ci#ifndef FIPS_MODULE 1625e1051a39Sopenharmony_ci if (ctx == NULL) 1626e1051a39Sopenharmony_ci ctx = new_ctx = BN_CTX_new(); 1627e1051a39Sopenharmony_ci#endif 1628e1051a39Sopenharmony_ci if (ctx == NULL) 1629e1051a39Sopenharmony_ci return 0; 1630e1051a39Sopenharmony_ci 1631e1051a39Sopenharmony_ci BN_CTX_start(ctx); 1632e1051a39Sopenharmony_ci x = BN_CTX_get(ctx); 1633e1051a39Sopenharmony_ci y = BN_CTX_get(ctx); 1634e1051a39Sopenharmony_ci if (y == NULL) 1635e1051a39Sopenharmony_ci goto err; 1636e1051a39Sopenharmony_ci /* get the generator */ 1637e1051a39Sopenharmony_ci if (group->generator == NULL) 1638e1051a39Sopenharmony_ci goto err; 1639e1051a39Sopenharmony_ci generator = EC_POINT_new(group); 1640e1051a39Sopenharmony_ci if (generator == NULL) 1641e1051a39Sopenharmony_ci goto err; 1642e1051a39Sopenharmony_ci BN_bin2bn(nistp224_curve_params[3], sizeof(felem_bytearray), x); 1643e1051a39Sopenharmony_ci BN_bin2bn(nistp224_curve_params[4], sizeof(felem_bytearray), y); 1644e1051a39Sopenharmony_ci if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) 1645e1051a39Sopenharmony_ci goto err; 1646e1051a39Sopenharmony_ci if ((pre = nistp224_pre_comp_new()) == NULL) 1647e1051a39Sopenharmony_ci goto err; 1648e1051a39Sopenharmony_ci /* 1649e1051a39Sopenharmony_ci * if the generator is the standard one, use built-in precomputation 1650e1051a39Sopenharmony_ci */ 1651e1051a39Sopenharmony_ci if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { 1652e1051a39Sopenharmony_ci memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); 1653e1051a39Sopenharmony_ci goto done; 1654e1051a39Sopenharmony_ci } 1655e1051a39Sopenharmony_ci if ((!BN_to_felem(pre->g_pre_comp[0][1][0], group->generator->X)) || 1656e1051a39Sopenharmony_ci (!BN_to_felem(pre->g_pre_comp[0][1][1], group->generator->Y)) || 1657e1051a39Sopenharmony_ci (!BN_to_felem(pre->g_pre_comp[0][1][2], group->generator->Z))) 1658e1051a39Sopenharmony_ci goto err; 1659e1051a39Sopenharmony_ci /* 1660e1051a39Sopenharmony_ci * compute 2^56*G, 2^112*G, 2^168*G for the first table, 2^28*G, 2^84*G, 1661e1051a39Sopenharmony_ci * 2^140*G, 2^196*G for the second one 1662e1051a39Sopenharmony_ci */ 1663e1051a39Sopenharmony_ci for (i = 1; i <= 8; i <<= 1) { 1664e1051a39Sopenharmony_ci point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], 1665e1051a39Sopenharmony_ci pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], 1666e1051a39Sopenharmony_ci pre->g_pre_comp[0][i][1], pre->g_pre_comp[0][i][2]); 1667e1051a39Sopenharmony_ci for (j = 0; j < 27; ++j) { 1668e1051a39Sopenharmony_ci point_double(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], 1669e1051a39Sopenharmony_ci pre->g_pre_comp[1][i][2], pre->g_pre_comp[1][i][0], 1670e1051a39Sopenharmony_ci pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); 1671e1051a39Sopenharmony_ci } 1672e1051a39Sopenharmony_ci if (i == 8) 1673e1051a39Sopenharmony_ci break; 1674e1051a39Sopenharmony_ci point_double(pre->g_pre_comp[0][2 * i][0], 1675e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][1], 1676e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][2], pre->g_pre_comp[1][i][0], 1677e1051a39Sopenharmony_ci pre->g_pre_comp[1][i][1], pre->g_pre_comp[1][i][2]); 1678e1051a39Sopenharmony_ci for (j = 0; j < 27; ++j) { 1679e1051a39Sopenharmony_ci point_double(pre->g_pre_comp[0][2 * i][0], 1680e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][1], 1681e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][2], 1682e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][0], 1683e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][1], 1684e1051a39Sopenharmony_ci pre->g_pre_comp[0][2 * i][2]); 1685e1051a39Sopenharmony_ci } 1686e1051a39Sopenharmony_ci } 1687e1051a39Sopenharmony_ci for (i = 0; i < 2; i++) { 1688e1051a39Sopenharmony_ci /* g_pre_comp[i][0] is the point at infinity */ 1689e1051a39Sopenharmony_ci memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); 1690e1051a39Sopenharmony_ci /* the remaining multiples */ 1691e1051a39Sopenharmony_ci /* 2^56*G + 2^112*G resp. 2^84*G + 2^140*G */ 1692e1051a39Sopenharmony_ci point_add(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], 1693e1051a39Sopenharmony_ci pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], 1694e1051a39Sopenharmony_ci pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], 1695e1051a39Sopenharmony_ci 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], 1696e1051a39Sopenharmony_ci pre->g_pre_comp[i][2][2]); 1697e1051a39Sopenharmony_ci /* 2^56*G + 2^168*G resp. 2^84*G + 2^196*G */ 1698e1051a39Sopenharmony_ci point_add(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], 1699e1051a39Sopenharmony_ci pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], 1700e1051a39Sopenharmony_ci pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], 1701e1051a39Sopenharmony_ci 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], 1702e1051a39Sopenharmony_ci pre->g_pre_comp[i][2][2]); 1703e1051a39Sopenharmony_ci /* 2^112*G + 2^168*G resp. 2^140*G + 2^196*G */ 1704e1051a39Sopenharmony_ci point_add(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], 1705e1051a39Sopenharmony_ci pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], 1706e1051a39Sopenharmony_ci pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], 1707e1051a39Sopenharmony_ci 0, pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], 1708e1051a39Sopenharmony_ci pre->g_pre_comp[i][4][2]); 1709e1051a39Sopenharmony_ci /* 1710e1051a39Sopenharmony_ci * 2^56*G + 2^112*G + 2^168*G resp. 2^84*G + 2^140*G + 2^196*G 1711e1051a39Sopenharmony_ci */ 1712e1051a39Sopenharmony_ci point_add(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], 1713e1051a39Sopenharmony_ci pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], 1714e1051a39Sopenharmony_ci pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], 1715e1051a39Sopenharmony_ci 0, pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], 1716e1051a39Sopenharmony_ci pre->g_pre_comp[i][2][2]); 1717e1051a39Sopenharmony_ci for (j = 1; j < 8; ++j) { 1718e1051a39Sopenharmony_ci /* odd multiples: add G resp. 2^28*G */ 1719e1051a39Sopenharmony_ci point_add(pre->g_pre_comp[i][2 * j + 1][0], 1720e1051a39Sopenharmony_ci pre->g_pre_comp[i][2 * j + 1][1], 1721e1051a39Sopenharmony_ci pre->g_pre_comp[i][2 * j + 1][2], 1722e1051a39Sopenharmony_ci pre->g_pre_comp[i][2 * j][0], 1723e1051a39Sopenharmony_ci pre->g_pre_comp[i][2 * j][1], 1724e1051a39Sopenharmony_ci pre->g_pre_comp[i][2 * j][2], 0, 1725e1051a39Sopenharmony_ci pre->g_pre_comp[i][1][0], pre->g_pre_comp[i][1][1], 1726e1051a39Sopenharmony_ci pre->g_pre_comp[i][1][2]); 1727e1051a39Sopenharmony_ci } 1728e1051a39Sopenharmony_ci } 1729e1051a39Sopenharmony_ci make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_felems); 1730e1051a39Sopenharmony_ci 1731e1051a39Sopenharmony_ci done: 1732e1051a39Sopenharmony_ci SETPRECOMP(group, nistp224, pre); 1733e1051a39Sopenharmony_ci pre = NULL; 1734e1051a39Sopenharmony_ci ret = 1; 1735e1051a39Sopenharmony_ci err: 1736e1051a39Sopenharmony_ci BN_CTX_end(ctx); 1737e1051a39Sopenharmony_ci EC_POINT_free(generator); 1738e1051a39Sopenharmony_ci#ifndef FIPS_MODULE 1739e1051a39Sopenharmony_ci BN_CTX_free(new_ctx); 1740e1051a39Sopenharmony_ci#endif 1741e1051a39Sopenharmony_ci EC_nistp224_pre_comp_free(pre); 1742e1051a39Sopenharmony_ci return ret; 1743e1051a39Sopenharmony_ci} 1744e1051a39Sopenharmony_ci 1745e1051a39Sopenharmony_ciint ossl_ec_GFp_nistp224_have_precompute_mult(const EC_GROUP *group) 1746e1051a39Sopenharmony_ci{ 1747e1051a39Sopenharmony_ci return HAVEPRECOMP(group, nistp224); 1748e1051a39Sopenharmony_ci} 1749