1/*
2 * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright 2015-2016 Cryptography Research, Inc.
4 *
5 * Licensed under the Apache License 2.0 (the "License").  You may not use
6 * this file except in compliance with the License.  You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 * Originally written by Mike Hamburg
11 */
12#include <openssl/crypto.h>
13#include "word.h"
14#include "field.h"
15
16#include "point_448.h"
17#include "ed448.h"
18#include "crypto/ecx.h"
19#include "curve448_local.h"
20
21#define COFACTOR 4
22
23#define C448_WNAF_FIXED_TABLE_BITS 5
24#define C448_WNAF_VAR_TABLE_BITS 3
25
26#define EDWARDS_D       (-39081)
27
28static const curve448_scalar_t precomputed_scalarmul_adjustment = {
29    {
30        {
31            SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
32            SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL)
33        }
34    }
35};
36
37#define TWISTED_D (EDWARDS_D - 1)
38
39#define WBITS C448_WORD_BITS   /* NB this may be different from ARCH_WORD_BITS */
40
41/* Inverse. */
42static void gf_invert(gf y, const gf x, int assert_nonzero)
43{
44    mask_t ret;
45    gf t1, t2;
46
47    gf_sqr(t1, x);              /* o^2 */
48    ret = gf_isr(t2, t1);       /* +-1/sqrt(o^2) = +-1/o */
49    (void)ret;
50    if (assert_nonzero)
51        assert(ret);
52    gf_sqr(t1, t2);
53    gf_mul(t2, t1, x);          /* not direct to y in case of alias. */
54    gf_copy(y, t2);
55}
56
57/** identity = (0,1) */
58const curve448_point_t ossl_curve448_point_identity =
59    { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} };
60
61static void point_double_internal(curve448_point_t p, const curve448_point_t q,
62                                  int before_double)
63{
64    gf a, b, c, d;
65
66    gf_sqr(c, q->x);
67    gf_sqr(a, q->y);
68    gf_add_nr(d, c, a);         /* 2+e */
69    gf_add_nr(p->t, q->y, q->x); /* 2+e */
70    gf_sqr(b, p->t);
71    gf_subx_nr(b, b, d, 3);     /* 4+e */
72    gf_sub_nr(p->t, a, c);      /* 3+e */
73    gf_sqr(p->x, q->z);
74    gf_add_nr(p->z, p->x, p->x); /* 2+e */
75    gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
76    if (GF_HEADROOM == 5)
77        gf_weak_reduce(a);      /* or 1+e */
78    gf_mul(p->x, a, b);
79    gf_mul(p->z, p->t, a);
80    gf_mul(p->y, p->t, d);
81    if (!before_double)
82        gf_mul(p->t, b, d);
83}
84
85void ossl_curve448_point_double(curve448_point_t p, const curve448_point_t q)
86{
87    point_double_internal(p, q, 0);
88}
89
90/* Operations on [p]niels */
91static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
92{
93    gf_cond_swap(n->a, n->b, neg);
94    gf_cond_neg(n->c, neg);
95}
96
97static void pt_to_pniels(pniels_t b, const curve448_point_t a)
98{
99    gf_sub(b->n->a, a->y, a->x);
100    gf_add(b->n->b, a->x, a->y);
101    gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
102    gf_add(b->z, a->z, a->z);
103}
104
105static void pniels_to_pt(curve448_point_t e, const pniels_t d)
106{
107    gf eu;
108
109    gf_add(eu, d->n->b, d->n->a);
110    gf_sub(e->y, d->n->b, d->n->a);
111    gf_mul(e->t, e->y, eu);
112    gf_mul(e->x, d->z, e->y);
113    gf_mul(e->y, d->z, eu);
114    gf_sqr(e->z, d->z);
115}
116
117static void niels_to_pt(curve448_point_t e, const niels_t n)
118{
119    gf_add(e->y, n->b, n->a);
120    gf_sub(e->x, n->b, n->a);
121    gf_mul(e->t, e->y, e->x);
122    gf_copy(e->z, ONE);
123}
124
125static void add_niels_to_pt(curve448_point_t d, const niels_t e,
126                            int before_double)
127{
128    gf a, b, c;
129
130    gf_sub_nr(b, d->y, d->x);   /* 3+e */
131    gf_mul(a, e->a, b);
132    gf_add_nr(b, d->x, d->y);   /* 2+e */
133    gf_mul(d->y, e->b, b);
134    gf_mul(d->x, e->c, d->t);
135    gf_add_nr(c, a, d->y);      /* 2+e */
136    gf_sub_nr(b, d->y, a);      /* 3+e */
137    gf_sub_nr(d->y, d->z, d->x); /* 3+e */
138    gf_add_nr(a, d->x, d->z);   /* 2+e */
139    gf_mul(d->z, a, d->y);
140    gf_mul(d->x, d->y, b);
141    gf_mul(d->y, a, c);
142    if (!before_double)
143        gf_mul(d->t, b, c);
144}
145
146static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
147                              int before_double)
148{
149    gf a, b, c;
150
151    gf_sub_nr(b, d->y, d->x);   /* 3+e */
152    gf_mul(a, e->b, b);
153    gf_add_nr(b, d->x, d->y);   /* 2+e */
154    gf_mul(d->y, e->a, b);
155    gf_mul(d->x, e->c, d->t);
156    gf_add_nr(c, a, d->y);      /* 2+e */
157    gf_sub_nr(b, d->y, a);      /* 3+e */
158    gf_add_nr(d->y, d->z, d->x); /* 2+e */
159    gf_sub_nr(a, d->z, d->x);   /* 3+e */
160    gf_mul(d->z, a, d->y);
161    gf_mul(d->x, d->y, b);
162    gf_mul(d->y, a, c);
163    if (!before_double)
164        gf_mul(d->t, b, c);
165}
166
167static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
168                             int before_double)
169{
170    gf L0;
171
172    gf_mul(L0, p->z, pn->z);
173    gf_copy(p->z, L0);
174    add_niels_to_pt(p, pn->n, before_double);
175}
176
177static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
178                               int before_double)
179{
180    gf L0;
181
182    gf_mul(L0, p->z, pn->z);
183    gf_copy(p->z, L0);
184    sub_niels_from_pt(p, pn->n, before_double);
185}
186
187c448_bool_t
188ossl_curve448_point_eq(const curve448_point_t p,
189                       const curve448_point_t q)
190{
191    mask_t succ;
192    gf a, b;
193
194    /* equality mod 2-torsion compares x/y */
195    gf_mul(a, p->y, q->x);
196    gf_mul(b, q->y, p->x);
197    succ = gf_eq(a, b);
198
199    return mask_to_bool(succ);
200}
201
202c448_bool_t
203ossl_curve448_point_valid(const curve448_point_t p)
204{
205    mask_t out;
206    gf a, b, c;
207
208    gf_mul(a, p->x, p->y);
209    gf_mul(b, p->z, p->t);
210    out = gf_eq(a, b);
211    gf_sqr(a, p->x);
212    gf_sqr(b, p->y);
213    gf_sub(a, b, a);
214    gf_sqr(b, p->t);
215    gf_mulw(c, b, TWISTED_D);
216    gf_sqr(b, p->z);
217    gf_add(b, b, c);
218    out &= gf_eq(a, b);
219    out &= ~gf_eq(p->z, ZERO);
220    return mask_to_bool(out);
221}
222
223static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni,
224                                                   const niels_t * table,
225                                                   int nelts, int idx)
226{
227    constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
228}
229
230void
231ossl_curve448_precomputed_scalarmul(curve448_point_t out,
232                                    const curve448_precomputed_s * table,
233                                    const curve448_scalar_t scalar)
234{
235    unsigned int i, j, k;
236    const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
237    niels_t ni;
238    curve448_scalar_t scalar1x;
239
240    ossl_curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
241    ossl_curve448_scalar_halve(scalar1x, scalar1x);
242
243    for (i = s; i > 0; i--) {
244        if (i != s)
245            point_double_internal(out, out, 0);
246
247        for (j = 0; j < n; j++) {
248            int tab = 0;
249            mask_t invert;
250
251            for (k = 0; k < t; k++) {
252                unsigned int bit = (i - 1) + s * (k + j * t);
253
254                if (bit < C448_SCALAR_BITS)
255                    tab |=
256                        (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
257            }
258
259            invert = (tab >> (t - 1)) - 1;
260            tab ^= invert;
261            tab &= (1 << (t - 1)) - 1;
262
263            constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
264                                       1 << (t - 1), tab);
265
266            cond_neg_niels(ni, invert);
267            if ((i != s) || j != 0)
268                add_niels_to_pt(out, ni, j == n - 1 && i != 1);
269            else
270                niels_to_pt(out, ni);
271        }
272    }
273
274    OPENSSL_cleanse(ni, sizeof(ni));
275    OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
276}
277
278void
279ossl_curve448_point_mul_by_ratio_and_encode_like_eddsa(
280                                    uint8_t enc[EDDSA_448_PUBLIC_BYTES],
281                                    const curve448_point_t p)
282{
283    gf x, y, z, t;
284    curve448_point_t q;
285
286    /* The point is now on the twisted curve.  Move it to untwisted. */
287    curve448_point_copy(q, p);
288
289    {
290        /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
291        gf u;
292
293        gf_sqr(x, q->x);
294        gf_sqr(t, q->y);
295        gf_add(u, x, t);
296        gf_add(z, q->y, q->x);
297        gf_sqr(y, z);
298        gf_sub(y, y, u);
299        gf_sub(z, t, x);
300        gf_sqr(x, q->z);
301        gf_add(t, x, x);
302        gf_sub(t, t, z);
303        gf_mul(x, t, y);
304        gf_mul(y, z, u);
305        gf_mul(z, u, t);
306        OPENSSL_cleanse(u, sizeof(u));
307    }
308
309    /* Affinize */
310    gf_invert(z, z, 1);
311    gf_mul(t, x, z);
312    gf_mul(x, y, z);
313
314    /* Encode */
315    enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
316    gf_serialize(enc, x, 1);
317    enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
318
319    OPENSSL_cleanse(x, sizeof(x));
320    OPENSSL_cleanse(y, sizeof(y));
321    OPENSSL_cleanse(z, sizeof(z));
322    OPENSSL_cleanse(t, sizeof(t));
323    ossl_curve448_point_destroy(q);
324}
325
326c448_error_t
327ossl_curve448_point_decode_like_eddsa_and_mul_by_ratio(
328                                curve448_point_t p,
329                                const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
330{
331    uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
332    mask_t low;
333    mask_t succ;
334
335    memcpy(enc2, enc, sizeof(enc2));
336
337    low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
338    enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
339
340    succ = gf_deserialize(p->y, enc2, 1, 0);
341    succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
342
343    gf_sqr(p->x, p->y);
344    gf_sub(p->z, ONE, p->x);    /* num = 1-y^2 */
345    gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
346    gf_sub(p->t, ONE, p->t);    /* denom = 1-dy^2 or 1-d + dy^2 */
347
348    gf_mul(p->x, p->z, p->t);
349    succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
350
351    gf_mul(p->x, p->t, p->z);   /* sqrt(num / denom) */
352    gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
353    gf_copy(p->z, ONE);
354
355    {
356        gf a, b, c, d;
357
358        /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
359        gf_sqr(c, p->x);
360        gf_sqr(a, p->y);
361        gf_add(d, c, a);
362        gf_add(p->t, p->y, p->x);
363        gf_sqr(b, p->t);
364        gf_sub(b, b, d);
365        gf_sub(p->t, a, c);
366        gf_sqr(p->x, p->z);
367        gf_add(p->z, p->x, p->x);
368        gf_sub(a, p->z, d);
369        gf_mul(p->x, a, b);
370        gf_mul(p->z, p->t, a);
371        gf_mul(p->y, p->t, d);
372        gf_mul(p->t, b, d);
373        OPENSSL_cleanse(a, sizeof(a));
374        OPENSSL_cleanse(b, sizeof(b));
375        OPENSSL_cleanse(c, sizeof(c));
376        OPENSSL_cleanse(d, sizeof(d));
377    }
378
379    OPENSSL_cleanse(enc2, sizeof(enc2));
380    assert(ossl_curve448_point_valid(p) || ~succ);
381
382    return c448_succeed_if(mask_to_bool(succ));
383}
384
385c448_error_t
386ossl_x448_int(uint8_t out[X_PUBLIC_BYTES],
387              const uint8_t base[X_PUBLIC_BYTES],
388              const uint8_t scalar[X_PRIVATE_BYTES])
389{
390    gf x1, x2, z2, x3, z3, t1, t2;
391    int t;
392    mask_t swap = 0;
393    mask_t nz;
394
395    (void)gf_deserialize(x1, base, 1, 0);
396    gf_copy(x2, ONE);
397    gf_copy(z2, ZERO);
398    gf_copy(x3, x1);
399    gf_copy(z3, ONE);
400
401    for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
402        uint8_t sb = scalar[t / 8];
403        mask_t k_t;
404
405        /* Scalar conditioning */
406        if (t / 8 == 0)
407            sb &= -(uint8_t)COFACTOR;
408        else if (t == X_PRIVATE_BITS - 1)
409            sb = -1;
410
411        k_t = (sb >> (t % 8)) & 1;
412        k_t = 0 - k_t;             /* set to all 0s or all 1s */
413
414        swap ^= k_t;
415        gf_cond_swap(x2, x3, swap);
416        gf_cond_swap(z2, z3, swap);
417        swap = k_t;
418
419        /*
420         * The "_nr" below skips coefficient reduction. In the following
421         * comments, "2+e" is saying that the coefficients are at most 2+epsilon
422         * times the reduction limit.
423         */
424        gf_add_nr(t1, x2, z2);  /* A = x2 + z2 */ /* 2+e */
425        gf_sub_nr(t2, x2, z2);  /* B = x2 - z2 */ /* 3+e */
426        gf_sub_nr(z2, x3, z3);  /* D = x3 - z3 */ /* 3+e */
427        gf_mul(x2, t1, z2);     /* DA */
428        gf_add_nr(z2, z3, x3);  /* C = x3 + z3 */ /* 2+e */
429        gf_mul(x3, t2, z2);     /* CB */
430        gf_sub_nr(z3, x2, x3);  /* DA-CB */ /* 3+e */
431        gf_sqr(z2, z3);         /* (DA-CB)^2 */
432        gf_mul(z3, x1, z2);     /* z3 = x1(DA-CB)^2 */
433        gf_add_nr(z2, x2, x3);  /* (DA+CB) */ /* 2+e */
434        gf_sqr(x3, z2);         /* x3 = (DA+CB)^2 */
435
436        gf_sqr(z2, t1);         /* AA = A^2 */
437        gf_sqr(t1, t2);         /* BB = B^2 */
438        gf_mul(x2, z2, t1);     /* x2 = AA*BB */
439        gf_sub_nr(t2, z2, t1);  /* E = AA-BB */ /* 3+e */
440
441        gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
442        gf_add_nr(t1, t1, z2);  /* AA + a24*E */ /* 2+e */
443        gf_mul(z2, t2, t1);     /* z2 = E(AA+a24*E) */
444    }
445
446    /* Finish */
447    gf_cond_swap(x2, x3, swap);
448    gf_cond_swap(z2, z3, swap);
449    gf_invert(z2, z2, 0);
450    gf_mul(x1, x2, z2);
451    gf_serialize(out, x1, 1);
452    nz = ~gf_eq(x1, ZERO);
453
454    OPENSSL_cleanse(x1, sizeof(x1));
455    OPENSSL_cleanse(x2, sizeof(x2));
456    OPENSSL_cleanse(z2, sizeof(z2));
457    OPENSSL_cleanse(x3, sizeof(x3));
458    OPENSSL_cleanse(z3, sizeof(z3));
459    OPENSSL_cleanse(t1, sizeof(t1));
460    OPENSSL_cleanse(t2, sizeof(t2));
461
462    return c448_succeed_if(mask_to_bool(nz));
463}
464
465void
466ossl_curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
467                                                      out[X_PUBLIC_BYTES],
468                                                      const curve448_point_t p)
469{
470    curve448_point_t q;
471
472    curve448_point_copy(q, p);
473    gf_invert(q->t, q->x, 0);   /* 1/x */
474    gf_mul(q->z, q->t, q->y);   /* y/x */
475    gf_sqr(q->y, q->z);         /* (y/x)^2 */
476    gf_serialize(out, q->y, 1);
477    ossl_curve448_point_destroy(q);
478}
479
480void ossl_x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
481                                 const uint8_t scalar[X_PRIVATE_BYTES])
482{
483    /* Scalar conditioning */
484    uint8_t scalar2[X_PRIVATE_BYTES];
485    curve448_scalar_t the_scalar;
486    curve448_point_t p;
487    unsigned int i;
488
489    memcpy(scalar2, scalar, sizeof(scalar2));
490    scalar2[0] &= -(uint8_t)COFACTOR;
491
492    scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
493    scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
494
495    ossl_curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
496
497    /* Compensate for the encoding ratio */
498    for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
499        ossl_curve448_scalar_halve(the_scalar, the_scalar);
500
501    ossl_curve448_precomputed_scalarmul(p, ossl_curve448_precomputed_base,
502                                        the_scalar);
503    ossl_curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
504    ossl_curve448_point_destroy(p);
505}
506
507/* Control for variable-time scalar multiply algorithms. */
508struct smvt_control {
509    int power, addend;
510};
511
512#if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
513# define NUMTRAILINGZEROS       __builtin_ctz
514#else
515# define NUMTRAILINGZEROS       numtrailingzeros
516static uint32_t numtrailingzeros(uint32_t i)
517{
518    uint32_t tmp;
519    uint32_t num = 31;
520
521    if (i == 0)
522        return 32;
523
524    tmp = i << 16;
525    if (tmp != 0) {
526        i = tmp;
527        num -= 16;
528    }
529    tmp = i << 8;
530    if (tmp != 0) {
531        i = tmp;
532        num -= 8;
533    }
534    tmp = i << 4;
535    if (tmp != 0) {
536        i = tmp;
537        num -= 4;
538    }
539    tmp = i << 2;
540    if (tmp != 0) {
541        i = tmp;
542        num -= 2;
543    }
544    tmp = i << 1;
545    if (tmp != 0)
546        num--;
547
548    return num;
549}
550#endif
551
552static int recode_wnaf(struct smvt_control *control,
553                       /* [nbits/(table_bits + 1) + 3] */
554                       const curve448_scalar_t scalar,
555                       unsigned int table_bits)
556{
557    unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
558    int position = table_size - 1; /* at the end */
559    uint64_t current = scalar->limb[0] & 0xFFFF;
560    uint32_t mask = (1 << (table_bits + 1)) - 1;
561    unsigned int w;
562    const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
563    unsigned int n, i;
564
565    /* place the end marker */
566    control[position].power = -1;
567    control[position].addend = 0;
568    position--;
569
570    /*
571     * PERF: Could negate scalar if it's large.  But then would need more cases
572     * in the actual code that uses it, all for an expected reduction of like
573     * 1/5 op. Probably not worth it.
574     */
575
576    for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
577        if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
578            /* Refill the 16 high bits of current */
579            current += (uint32_t)((scalar->limb[w / B_OVER_16]
580                       >> (16 * (w % B_OVER_16))) << 16);
581        }
582
583        while (current & 0xFFFF) {
584            uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
585            uint32_t odd = (uint32_t)current >> pos;
586            int32_t delta = odd & mask;
587
588            assert(position >= 0);
589            assert(pos < 32);       /* can't fail since current & 0xFFFF != 0 */
590            if (odd & (1 << (table_bits + 1)))
591                delta -= (1 << (table_bits + 1));
592            current -= delta * (1 << pos);
593            control[position].power = pos + 16 * (w - 1);
594            control[position].addend = delta;
595            position--;
596        }
597        current >>= 16;
598    }
599    assert(current == 0);
600
601    position++;
602    n = table_size - position;
603    for (i = 0; i < n; i++)
604        control[i] = control[i + position];
605
606    return n - 1;
607}
608
609static void prepare_wnaf_table(pniels_t * output,
610                               const curve448_point_t working,
611                               unsigned int tbits)
612{
613    curve448_point_t tmp;
614    int i;
615    pniels_t twop;
616
617    pt_to_pniels(output[0], working);
618
619    if (tbits == 0)
620        return;
621
622    ossl_curve448_point_double(tmp, working);
623    pt_to_pniels(twop, tmp);
624
625    add_pniels_to_pt(tmp, output[0], 0);
626    pt_to_pniels(output[1], tmp);
627
628    for (i = 2; i < 1 << tbits; i++) {
629        add_pniels_to_pt(tmp, twop, 0);
630        pt_to_pniels(output[i], tmp);
631    }
632
633    ossl_curve448_point_destroy(tmp);
634    OPENSSL_cleanse(twop, sizeof(twop));
635}
636
637void
638ossl_curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
639                                               const curve448_scalar_t scalar1,
640                                               const curve448_point_t base2,
641                                               const curve448_scalar_t scalar2)
642{
643    const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
644    const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
645    struct smvt_control control_var[C448_SCALAR_BITS /
646                                    (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
647    struct smvt_control control_pre[C448_SCALAR_BITS /
648                                    (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
649    int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
650    int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
651    pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
652    int contp = 0, contv = 0, i;
653
654    prepare_wnaf_table(precmp_var, base2, table_bits_var);
655    i = control_var[0].power;
656
657    if (i < 0) {
658        curve448_point_copy(combo, ossl_curve448_point_identity);
659        return;
660    }
661    if (i > control_pre[0].power) {
662        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
663        contv++;
664    } else if (i == control_pre[0].power && i >= 0) {
665        pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
666        add_niels_to_pt(combo,
667                        ossl_curve448_wnaf_base[control_pre[0].addend >> 1],
668                        i);
669        contv++;
670        contp++;
671    } else {
672        i = control_pre[0].power;
673        niels_to_pt(combo, ossl_curve448_wnaf_base[control_pre[0].addend >> 1]);
674        contp++;
675    }
676
677    for (i--; i >= 0; i--) {
678        int cv = (i == control_var[contv].power);
679        int cp = (i == control_pre[contp].power);
680
681        point_double_internal(combo, combo, i && !(cv || cp));
682
683        if (cv) {
684            assert(control_var[contv].addend);
685
686            if (control_var[contv].addend > 0)
687                add_pniels_to_pt(combo,
688                                 precmp_var[control_var[contv].addend >> 1],
689                                 i && !cp);
690            else
691                sub_pniels_from_pt(combo,
692                                   precmp_var[(-control_var[contv].addend)
693                                              >> 1], i && !cp);
694            contv++;
695        }
696
697        if (cp) {
698            assert(control_pre[contp].addend);
699
700            if (control_pre[contp].addend > 0)
701                add_niels_to_pt(combo,
702                                ossl_curve448_wnaf_base[control_pre[contp].addend
703                                                   >> 1], i);
704            else
705                sub_niels_from_pt(combo,
706                                  ossl_curve448_wnaf_base[(-control_pre
707                                                      [contp].addend) >> 1], i);
708            contp++;
709        }
710    }
711
712    /* This function is non-secret, but whatever this is cheap. */
713    OPENSSL_cleanse(control_var, sizeof(control_var));
714    OPENSSL_cleanse(control_pre, sizeof(control_pre));
715    OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
716
717    assert(contv == ncb_var);
718    (void)ncb_var;
719    assert(contp == ncb_pre);
720    (void)ncb_pre;
721}
722
723void ossl_curve448_point_destroy(curve448_point_t point)
724{
725    OPENSSL_cleanse(point, sizeof(curve448_point_t));
726}
727
728int ossl_x448(uint8_t out_shared_key[56], const uint8_t private_key[56],
729              const uint8_t peer_public_value[56])
730{
731    return ossl_x448_int(out_shared_key, peer_public_value, private_key)
732           == C448_SUCCESS;
733}
734
735void ossl_x448_public_from_private(uint8_t out_public_value[56],
736                                   const uint8_t private_key[56])
737{
738    ossl_x448_derive_public_key(out_public_value, private_key);
739}
740