1e1051a39Sopenharmony_ci/*
2e1051a39Sopenharmony_ci * Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci *
4e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License").  You may not use
5e1051a39Sopenharmony_ci * this file except in compliance with the License.  You can obtain a copy
6e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at
7e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html
8e1051a39Sopenharmony_ci */
9e1051a39Sopenharmony_ci
10e1051a39Sopenharmony_ci#include "internal/cryptlib.h"
11e1051a39Sopenharmony_ci#include "bn_local.h"
12e1051a39Sopenharmony_ci
13e1051a39Sopenharmony_ciBIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
14e1051a39Sopenharmony_ci/*
15e1051a39Sopenharmony_ci * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
16e1051a39Sopenharmony_ci * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
17e1051a39Sopenharmony_ci * Theory", algorithm 1.5.1). 'p' must be prime, otherwise an error or
18e1051a39Sopenharmony_ci * an incorrect "result" will be returned.
19e1051a39Sopenharmony_ci */
20e1051a39Sopenharmony_ci{
21e1051a39Sopenharmony_ci    BIGNUM *ret = in;
22e1051a39Sopenharmony_ci    int err = 1;
23e1051a39Sopenharmony_ci    int r;
24e1051a39Sopenharmony_ci    BIGNUM *A, *b, *q, *t, *x, *y;
25e1051a39Sopenharmony_ci    int e, i, j;
26e1051a39Sopenharmony_ci    int used_ctx = 0;
27e1051a39Sopenharmony_ci
28e1051a39Sopenharmony_ci    if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
29e1051a39Sopenharmony_ci        if (BN_abs_is_word(p, 2)) {
30e1051a39Sopenharmony_ci            if (ret == NULL)
31e1051a39Sopenharmony_ci                ret = BN_new();
32e1051a39Sopenharmony_ci            if (ret == NULL)
33e1051a39Sopenharmony_ci                goto end;
34e1051a39Sopenharmony_ci            if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
35e1051a39Sopenharmony_ci                if (ret != in)
36e1051a39Sopenharmony_ci                    BN_free(ret);
37e1051a39Sopenharmony_ci                return NULL;
38e1051a39Sopenharmony_ci            }
39e1051a39Sopenharmony_ci            bn_check_top(ret);
40e1051a39Sopenharmony_ci            return ret;
41e1051a39Sopenharmony_ci        }
42e1051a39Sopenharmony_ci
43e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
44e1051a39Sopenharmony_ci        return NULL;
45e1051a39Sopenharmony_ci    }
46e1051a39Sopenharmony_ci
47e1051a39Sopenharmony_ci    if (BN_is_zero(a) || BN_is_one(a)) {
48e1051a39Sopenharmony_ci        if (ret == NULL)
49e1051a39Sopenharmony_ci            ret = BN_new();
50e1051a39Sopenharmony_ci        if (ret == NULL)
51e1051a39Sopenharmony_ci            goto end;
52e1051a39Sopenharmony_ci        if (!BN_set_word(ret, BN_is_one(a))) {
53e1051a39Sopenharmony_ci            if (ret != in)
54e1051a39Sopenharmony_ci                BN_free(ret);
55e1051a39Sopenharmony_ci            return NULL;
56e1051a39Sopenharmony_ci        }
57e1051a39Sopenharmony_ci        bn_check_top(ret);
58e1051a39Sopenharmony_ci        return ret;
59e1051a39Sopenharmony_ci    }
60e1051a39Sopenharmony_ci
61e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
62e1051a39Sopenharmony_ci    used_ctx = 1;
63e1051a39Sopenharmony_ci    A = BN_CTX_get(ctx);
64e1051a39Sopenharmony_ci    b = BN_CTX_get(ctx);
65e1051a39Sopenharmony_ci    q = BN_CTX_get(ctx);
66e1051a39Sopenharmony_ci    t = BN_CTX_get(ctx);
67e1051a39Sopenharmony_ci    x = BN_CTX_get(ctx);
68e1051a39Sopenharmony_ci    y = BN_CTX_get(ctx);
69e1051a39Sopenharmony_ci    if (y == NULL)
70e1051a39Sopenharmony_ci        goto end;
71e1051a39Sopenharmony_ci
72e1051a39Sopenharmony_ci    if (ret == NULL)
73e1051a39Sopenharmony_ci        ret = BN_new();
74e1051a39Sopenharmony_ci    if (ret == NULL)
75e1051a39Sopenharmony_ci        goto end;
76e1051a39Sopenharmony_ci
77e1051a39Sopenharmony_ci    /* A = a mod p */
78e1051a39Sopenharmony_ci    if (!BN_nnmod(A, a, p, ctx))
79e1051a39Sopenharmony_ci        goto end;
80e1051a39Sopenharmony_ci
81e1051a39Sopenharmony_ci    /* now write  |p| - 1  as  2^e*q  where  q  is odd */
82e1051a39Sopenharmony_ci    e = 1;
83e1051a39Sopenharmony_ci    while (!BN_is_bit_set(p, e))
84e1051a39Sopenharmony_ci        e++;
85e1051a39Sopenharmony_ci    /* we'll set  q  later (if needed) */
86e1051a39Sopenharmony_ci
87e1051a39Sopenharmony_ci    if (e == 1) {
88e1051a39Sopenharmony_ci        /*-
89e1051a39Sopenharmony_ci         * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
90e1051a39Sopenharmony_ci         * modulo  (|p|-1)/2,  and square roots can be computed
91e1051a39Sopenharmony_ci         * directly by modular exponentiation.
92e1051a39Sopenharmony_ci         * We have
93e1051a39Sopenharmony_ci         *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
94e1051a39Sopenharmony_ci         * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
95e1051a39Sopenharmony_ci         */
96e1051a39Sopenharmony_ci        if (!BN_rshift(q, p, 2))
97e1051a39Sopenharmony_ci            goto end;
98e1051a39Sopenharmony_ci        q->neg = 0;
99e1051a39Sopenharmony_ci        if (!BN_add_word(q, 1))
100e1051a39Sopenharmony_ci            goto end;
101e1051a39Sopenharmony_ci        if (!BN_mod_exp(ret, A, q, p, ctx))
102e1051a39Sopenharmony_ci            goto end;
103e1051a39Sopenharmony_ci        err = 0;
104e1051a39Sopenharmony_ci        goto vrfy;
105e1051a39Sopenharmony_ci    }
106e1051a39Sopenharmony_ci
107e1051a39Sopenharmony_ci    if (e == 2) {
108e1051a39Sopenharmony_ci        /*-
109e1051a39Sopenharmony_ci         * |p| == 5  (mod 8)
110e1051a39Sopenharmony_ci         *
111e1051a39Sopenharmony_ci         * In this case  2  is always a non-square since
112e1051a39Sopenharmony_ci         * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
113e1051a39Sopenharmony_ci         * So if  a  really is a square, then  2*a  is a non-square.
114e1051a39Sopenharmony_ci         * Thus for
115e1051a39Sopenharmony_ci         *      b := (2*a)^((|p|-5)/8),
116e1051a39Sopenharmony_ci         *      i := (2*a)*b^2
117e1051a39Sopenharmony_ci         * we have
118e1051a39Sopenharmony_ci         *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
119e1051a39Sopenharmony_ci         *         = (2*a)^((p-1)/2)
120e1051a39Sopenharmony_ci         *         = -1;
121e1051a39Sopenharmony_ci         * so if we set
122e1051a39Sopenharmony_ci         *      x := a*b*(i-1),
123e1051a39Sopenharmony_ci         * then
124e1051a39Sopenharmony_ci         *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
125e1051a39Sopenharmony_ci         *         = a^2 * b^2 * (-2*i)
126e1051a39Sopenharmony_ci         *         = a*(-i)*(2*a*b^2)
127e1051a39Sopenharmony_ci         *         = a*(-i)*i
128e1051a39Sopenharmony_ci         *         = a.
129e1051a39Sopenharmony_ci         *
130e1051a39Sopenharmony_ci         * (This is due to A.O.L. Atkin,
131e1051a39Sopenharmony_ci         * Subject: Square Roots and Cognate Matters modulo p=8n+5.
132e1051a39Sopenharmony_ci         * URL: https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind9211&L=NMBRTHRY&P=4026
133e1051a39Sopenharmony_ci         * November 1992.)
134e1051a39Sopenharmony_ci         */
135e1051a39Sopenharmony_ci
136e1051a39Sopenharmony_ci        /* t := 2*a */
137e1051a39Sopenharmony_ci        if (!BN_mod_lshift1_quick(t, A, p))
138e1051a39Sopenharmony_ci            goto end;
139e1051a39Sopenharmony_ci
140e1051a39Sopenharmony_ci        /* b := (2*a)^((|p|-5)/8) */
141e1051a39Sopenharmony_ci        if (!BN_rshift(q, p, 3))
142e1051a39Sopenharmony_ci            goto end;
143e1051a39Sopenharmony_ci        q->neg = 0;
144e1051a39Sopenharmony_ci        if (!BN_mod_exp(b, t, q, p, ctx))
145e1051a39Sopenharmony_ci            goto end;
146e1051a39Sopenharmony_ci
147e1051a39Sopenharmony_ci        /* y := b^2 */
148e1051a39Sopenharmony_ci        if (!BN_mod_sqr(y, b, p, ctx))
149e1051a39Sopenharmony_ci            goto end;
150e1051a39Sopenharmony_ci
151e1051a39Sopenharmony_ci        /* t := (2*a)*b^2 - 1 */
152e1051a39Sopenharmony_ci        if (!BN_mod_mul(t, t, y, p, ctx))
153e1051a39Sopenharmony_ci            goto end;
154e1051a39Sopenharmony_ci        if (!BN_sub_word(t, 1))
155e1051a39Sopenharmony_ci            goto end;
156e1051a39Sopenharmony_ci
157e1051a39Sopenharmony_ci        /* x = a*b*t */
158e1051a39Sopenharmony_ci        if (!BN_mod_mul(x, A, b, p, ctx))
159e1051a39Sopenharmony_ci            goto end;
160e1051a39Sopenharmony_ci        if (!BN_mod_mul(x, x, t, p, ctx))
161e1051a39Sopenharmony_ci            goto end;
162e1051a39Sopenharmony_ci
163e1051a39Sopenharmony_ci        if (!BN_copy(ret, x))
164e1051a39Sopenharmony_ci            goto end;
165e1051a39Sopenharmony_ci        err = 0;
166e1051a39Sopenharmony_ci        goto vrfy;
167e1051a39Sopenharmony_ci    }
168e1051a39Sopenharmony_ci
169e1051a39Sopenharmony_ci    /*
170e1051a39Sopenharmony_ci     * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
171e1051a39Sopenharmony_ci     * find some y that is not a square.
172e1051a39Sopenharmony_ci     */
173e1051a39Sopenharmony_ci    if (!BN_copy(q, p))
174e1051a39Sopenharmony_ci        goto end;               /* use 'q' as temp */
175e1051a39Sopenharmony_ci    q->neg = 0;
176e1051a39Sopenharmony_ci    i = 2;
177e1051a39Sopenharmony_ci    do {
178e1051a39Sopenharmony_ci        /*
179e1051a39Sopenharmony_ci         * For efficiency, try small numbers first; if this fails, try random
180e1051a39Sopenharmony_ci         * numbers.
181e1051a39Sopenharmony_ci         */
182e1051a39Sopenharmony_ci        if (i < 22) {
183e1051a39Sopenharmony_ci            if (!BN_set_word(y, i))
184e1051a39Sopenharmony_ci                goto end;
185e1051a39Sopenharmony_ci        } else {
186e1051a39Sopenharmony_ci            if (!BN_priv_rand_ex(y, BN_num_bits(p), 0, 0, 0, ctx))
187e1051a39Sopenharmony_ci                goto end;
188e1051a39Sopenharmony_ci            if (BN_ucmp(y, p) >= 0) {
189e1051a39Sopenharmony_ci                if (!(p->neg ? BN_add : BN_sub) (y, y, p))
190e1051a39Sopenharmony_ci                    goto end;
191e1051a39Sopenharmony_ci            }
192e1051a39Sopenharmony_ci            /* now 0 <= y < |p| */
193e1051a39Sopenharmony_ci            if (BN_is_zero(y))
194e1051a39Sopenharmony_ci                if (!BN_set_word(y, i))
195e1051a39Sopenharmony_ci                    goto end;
196e1051a39Sopenharmony_ci        }
197e1051a39Sopenharmony_ci
198e1051a39Sopenharmony_ci        r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
199e1051a39Sopenharmony_ci        if (r < -1)
200e1051a39Sopenharmony_ci            goto end;
201e1051a39Sopenharmony_ci        if (r == 0) {
202e1051a39Sopenharmony_ci            /* m divides p */
203e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
204e1051a39Sopenharmony_ci            goto end;
205e1051a39Sopenharmony_ci        }
206e1051a39Sopenharmony_ci    }
207e1051a39Sopenharmony_ci    while (r == 1 && ++i < 82);
208e1051a39Sopenharmony_ci
209e1051a39Sopenharmony_ci    if (r != -1) {
210e1051a39Sopenharmony_ci        /*
211e1051a39Sopenharmony_ci         * Many rounds and still no non-square -- this is more likely a bug
212e1051a39Sopenharmony_ci         * than just bad luck. Even if p is not prime, we should have found
213e1051a39Sopenharmony_ci         * some y such that r == -1.
214e1051a39Sopenharmony_ci         */
215e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
216e1051a39Sopenharmony_ci        goto end;
217e1051a39Sopenharmony_ci    }
218e1051a39Sopenharmony_ci
219e1051a39Sopenharmony_ci    /* Here's our actual 'q': */
220e1051a39Sopenharmony_ci    if (!BN_rshift(q, q, e))
221e1051a39Sopenharmony_ci        goto end;
222e1051a39Sopenharmony_ci
223e1051a39Sopenharmony_ci    /*
224e1051a39Sopenharmony_ci     * Now that we have some non-square, we can find an element of order 2^e
225e1051a39Sopenharmony_ci     * by computing its q'th power.
226e1051a39Sopenharmony_ci     */
227e1051a39Sopenharmony_ci    if (!BN_mod_exp(y, y, q, p, ctx))
228e1051a39Sopenharmony_ci        goto end;
229e1051a39Sopenharmony_ci    if (BN_is_one(y)) {
230e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_BN, BN_R_P_IS_NOT_PRIME);
231e1051a39Sopenharmony_ci        goto end;
232e1051a39Sopenharmony_ci    }
233e1051a39Sopenharmony_ci
234e1051a39Sopenharmony_ci    /*-
235e1051a39Sopenharmony_ci     * Now we know that (if  p  is indeed prime) there is an integer
236e1051a39Sopenharmony_ci     * k,  0 <= k < 2^e,  such that
237e1051a39Sopenharmony_ci     *
238e1051a39Sopenharmony_ci     *      a^q * y^k == 1   (mod p).
239e1051a39Sopenharmony_ci     *
240e1051a39Sopenharmony_ci     * As  a^q  is a square and  y  is not,  k  must be even.
241e1051a39Sopenharmony_ci     * q+1  is even, too, so there is an element
242e1051a39Sopenharmony_ci     *
243e1051a39Sopenharmony_ci     *     X := a^((q+1)/2) * y^(k/2),
244e1051a39Sopenharmony_ci     *
245e1051a39Sopenharmony_ci     * and it satisfies
246e1051a39Sopenharmony_ci     *
247e1051a39Sopenharmony_ci     *     X^2 = a^q * a     * y^k
248e1051a39Sopenharmony_ci     *         = a,
249e1051a39Sopenharmony_ci     *
250e1051a39Sopenharmony_ci     * so it is the square root that we are looking for.
251e1051a39Sopenharmony_ci     */
252e1051a39Sopenharmony_ci
253e1051a39Sopenharmony_ci    /* t := (q-1)/2  (note that  q  is odd) */
254e1051a39Sopenharmony_ci    if (!BN_rshift1(t, q))
255e1051a39Sopenharmony_ci        goto end;
256e1051a39Sopenharmony_ci
257e1051a39Sopenharmony_ci    /* x := a^((q-1)/2) */
258e1051a39Sopenharmony_ci    if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
259e1051a39Sopenharmony_ci        if (!BN_nnmod(t, A, p, ctx))
260e1051a39Sopenharmony_ci            goto end;
261e1051a39Sopenharmony_ci        if (BN_is_zero(t)) {
262e1051a39Sopenharmony_ci            /* special case: a == 0  (mod p) */
263e1051a39Sopenharmony_ci            BN_zero(ret);
264e1051a39Sopenharmony_ci            err = 0;
265e1051a39Sopenharmony_ci            goto end;
266e1051a39Sopenharmony_ci        } else if (!BN_one(x))
267e1051a39Sopenharmony_ci            goto end;
268e1051a39Sopenharmony_ci    } else {
269e1051a39Sopenharmony_ci        if (!BN_mod_exp(x, A, t, p, ctx))
270e1051a39Sopenharmony_ci            goto end;
271e1051a39Sopenharmony_ci        if (BN_is_zero(x)) {
272e1051a39Sopenharmony_ci            /* special case: a == 0  (mod p) */
273e1051a39Sopenharmony_ci            BN_zero(ret);
274e1051a39Sopenharmony_ci            err = 0;
275e1051a39Sopenharmony_ci            goto end;
276e1051a39Sopenharmony_ci        }
277e1051a39Sopenharmony_ci    }
278e1051a39Sopenharmony_ci
279e1051a39Sopenharmony_ci    /* b := a*x^2  (= a^q) */
280e1051a39Sopenharmony_ci    if (!BN_mod_sqr(b, x, p, ctx))
281e1051a39Sopenharmony_ci        goto end;
282e1051a39Sopenharmony_ci    if (!BN_mod_mul(b, b, A, p, ctx))
283e1051a39Sopenharmony_ci        goto end;
284e1051a39Sopenharmony_ci
285e1051a39Sopenharmony_ci    /* x := a*x    (= a^((q+1)/2)) */
286e1051a39Sopenharmony_ci    if (!BN_mod_mul(x, x, A, p, ctx))
287e1051a39Sopenharmony_ci        goto end;
288e1051a39Sopenharmony_ci
289e1051a39Sopenharmony_ci    while (1) {
290e1051a39Sopenharmony_ci        /*-
291e1051a39Sopenharmony_ci         * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
292e1051a39Sopenharmony_ci         * where  E  refers to the original value of  e,  which we
293e1051a39Sopenharmony_ci         * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
294e1051a39Sopenharmony_ci         *
295e1051a39Sopenharmony_ci         * We have  a*b = x^2,
296e1051a39Sopenharmony_ci         *    y^2^(e-1) = -1,
297e1051a39Sopenharmony_ci         *    b^2^(e-1) = 1.
298e1051a39Sopenharmony_ci         */
299e1051a39Sopenharmony_ci
300e1051a39Sopenharmony_ci        if (BN_is_one(b)) {
301e1051a39Sopenharmony_ci            if (!BN_copy(ret, x))
302e1051a39Sopenharmony_ci                goto end;
303e1051a39Sopenharmony_ci            err = 0;
304e1051a39Sopenharmony_ci            goto vrfy;
305e1051a39Sopenharmony_ci        }
306e1051a39Sopenharmony_ci
307e1051a39Sopenharmony_ci        /* Find the smallest i, 0 < i < e, such that b^(2^i) = 1. */
308e1051a39Sopenharmony_ci        for (i = 1; i < e; i++) {
309e1051a39Sopenharmony_ci            if (i == 1) {
310e1051a39Sopenharmony_ci                if (!BN_mod_sqr(t, b, p, ctx))
311e1051a39Sopenharmony_ci                    goto end;
312e1051a39Sopenharmony_ci
313e1051a39Sopenharmony_ci            } else {
314e1051a39Sopenharmony_ci                if (!BN_mod_mul(t, t, t, p, ctx))
315e1051a39Sopenharmony_ci                    goto end;
316e1051a39Sopenharmony_ci            }
317e1051a39Sopenharmony_ci            if (BN_is_one(t))
318e1051a39Sopenharmony_ci                break;
319e1051a39Sopenharmony_ci        }
320e1051a39Sopenharmony_ci        /* If not found, a is not a square or p is not prime. */
321e1051a39Sopenharmony_ci        if (i >= e) {
322e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
323e1051a39Sopenharmony_ci            goto end;
324e1051a39Sopenharmony_ci        }
325e1051a39Sopenharmony_ci
326e1051a39Sopenharmony_ci        /* t := y^2^(e - i - 1) */
327e1051a39Sopenharmony_ci        if (!BN_copy(t, y))
328e1051a39Sopenharmony_ci            goto end;
329e1051a39Sopenharmony_ci        for (j = e - i - 1; j > 0; j--) {
330e1051a39Sopenharmony_ci            if (!BN_mod_sqr(t, t, p, ctx))
331e1051a39Sopenharmony_ci                goto end;
332e1051a39Sopenharmony_ci        }
333e1051a39Sopenharmony_ci        if (!BN_mod_mul(y, t, t, p, ctx))
334e1051a39Sopenharmony_ci            goto end;
335e1051a39Sopenharmony_ci        if (!BN_mod_mul(x, x, t, p, ctx))
336e1051a39Sopenharmony_ci            goto end;
337e1051a39Sopenharmony_ci        if (!BN_mod_mul(b, b, y, p, ctx))
338e1051a39Sopenharmony_ci            goto end;
339e1051a39Sopenharmony_ci        e = i;
340e1051a39Sopenharmony_ci    }
341e1051a39Sopenharmony_ci
342e1051a39Sopenharmony_ci vrfy:
343e1051a39Sopenharmony_ci    if (!err) {
344e1051a39Sopenharmony_ci        /*
345e1051a39Sopenharmony_ci         * verify the result -- the input might have been not a square (test
346e1051a39Sopenharmony_ci         * added in 0.9.8)
347e1051a39Sopenharmony_ci         */
348e1051a39Sopenharmony_ci
349e1051a39Sopenharmony_ci        if (!BN_mod_sqr(x, ret, p, ctx))
350e1051a39Sopenharmony_ci            err = 1;
351e1051a39Sopenharmony_ci
352e1051a39Sopenharmony_ci        if (!err && 0 != BN_cmp(x, A)) {
353e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_BN, BN_R_NOT_A_SQUARE);
354e1051a39Sopenharmony_ci            err = 1;
355e1051a39Sopenharmony_ci        }
356e1051a39Sopenharmony_ci    }
357e1051a39Sopenharmony_ci
358e1051a39Sopenharmony_ci end:
359e1051a39Sopenharmony_ci    if (err) {
360e1051a39Sopenharmony_ci        if (ret != in)
361e1051a39Sopenharmony_ci            BN_clear_free(ret);
362e1051a39Sopenharmony_ci        ret = NULL;
363e1051a39Sopenharmony_ci    }
364e1051a39Sopenharmony_ci    if (used_ctx)
365e1051a39Sopenharmony_ci        BN_CTX_end(ctx);
366e1051a39Sopenharmony_ci    bn_check_top(ret);
367e1051a39Sopenharmony_ci    return ret;
368e1051a39Sopenharmony_ci}
369