1e1051a39Sopenharmony_ci/*
2e1051a39Sopenharmony_ci * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved.
4e1051a39Sopenharmony_ci *
5e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License").  You may not use
6e1051a39Sopenharmony_ci * this file except in compliance with the License.  You can obtain a copy
7e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at
8e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html
9e1051a39Sopenharmony_ci */
10e1051a39Sopenharmony_ci
11e1051a39Sopenharmony_ci/*
12e1051a39Sopenharmony_ci * According to NIST SP800-131A "Transitioning the use of cryptographic
13e1051a39Sopenharmony_ci * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
14e1051a39Sopenharmony_ci * allowed for signatures (Table 2) or key transport (Table 5). In the code
15e1051a39Sopenharmony_ci * below any attempt to generate 1024 bit RSA keys will result in an error (Note
16e1051a39Sopenharmony_ci * that digital signature verification can still use deprecated 1024 bit keys).
17e1051a39Sopenharmony_ci *
18e1051a39Sopenharmony_ci * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
19e1051a39Sopenharmony_ci * must be generated before the module generates the RSA primes p and q.
20e1051a39Sopenharmony_ci * Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
21e1051a39Sopenharmony_ci * 3072 bits only, the min/max total length of the auxiliary primes.
22e1051a39Sopenharmony_ci * FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
23e1051a39Sopenharmony_ci * included here.
24e1051a39Sopenharmony_ci */
25e1051a39Sopenharmony_ci#include <stdio.h>
26e1051a39Sopenharmony_ci#include <openssl/bn.h>
27e1051a39Sopenharmony_ci#include "bn_local.h"
28e1051a39Sopenharmony_ci#include "crypto/bn.h"
29e1051a39Sopenharmony_ci#include "internal/nelem.h"
30e1051a39Sopenharmony_ci
31e1051a39Sopenharmony_ci#if BN_BITS2 == 64
32e1051a39Sopenharmony_ci# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
33e1051a39Sopenharmony_ci#else
34e1051a39Sopenharmony_ci# define BN_DEF(lo, hi) lo, hi
35e1051a39Sopenharmony_ci#endif
36e1051a39Sopenharmony_ci
37e1051a39Sopenharmony_ci/* 1 / sqrt(2) * 2^256, rounded up */
38e1051a39Sopenharmony_cistatic const BN_ULONG inv_sqrt_2_val[] = {
39e1051a39Sopenharmony_ci    BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
40e1051a39Sopenharmony_ci    BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
41e1051a39Sopenharmony_ci};
42e1051a39Sopenharmony_ci
43e1051a39Sopenharmony_ciconst BIGNUM ossl_bn_inv_sqrt_2 = {
44e1051a39Sopenharmony_ci    (BN_ULONG *)inv_sqrt_2_val,
45e1051a39Sopenharmony_ci    OSSL_NELEM(inv_sqrt_2_val),
46e1051a39Sopenharmony_ci    OSSL_NELEM(inv_sqrt_2_val),
47e1051a39Sopenharmony_ci    0,
48e1051a39Sopenharmony_ci    BN_FLG_STATIC_DATA
49e1051a39Sopenharmony_ci};
50e1051a39Sopenharmony_ci
51e1051a39Sopenharmony_ci/*
52e1051a39Sopenharmony_ci * FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
53e1051a39Sopenharmony_ci * (FIPS 186-5 has an entry for >= 4096 bits).
54e1051a39Sopenharmony_ci *
55e1051a39Sopenharmony_ci * Params:
56e1051a39Sopenharmony_ci *     nbits The key size in bits.
57e1051a39Sopenharmony_ci * Returns:
58e1051a39Sopenharmony_ci *     The minimum size of the auxiliary primes or 0 if nbits is invalid.
59e1051a39Sopenharmony_ci */
60e1051a39Sopenharmony_cistatic int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
61e1051a39Sopenharmony_ci{
62e1051a39Sopenharmony_ci    if (nbits >= 4096)
63e1051a39Sopenharmony_ci        return 201;
64e1051a39Sopenharmony_ci    if (nbits >= 3072)
65e1051a39Sopenharmony_ci        return 171;
66e1051a39Sopenharmony_ci    if (nbits >= 2048)
67e1051a39Sopenharmony_ci        return 141;
68e1051a39Sopenharmony_ci    return 0;
69e1051a39Sopenharmony_ci}
70e1051a39Sopenharmony_ci
71e1051a39Sopenharmony_ci/*
72e1051a39Sopenharmony_ci * FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
73e1051a39Sopenharmony_ci * len(q1) + len(q2) for p,q Probable Primes".
74e1051a39Sopenharmony_ci * (FIPS 186-5 has an entry for >= 4096 bits).
75e1051a39Sopenharmony_ci * Params:
76e1051a39Sopenharmony_ci *     nbits The key size in bits.
77e1051a39Sopenharmony_ci * Returns:
78e1051a39Sopenharmony_ci *     The maximum length or 0 if nbits is invalid.
79e1051a39Sopenharmony_ci */
80e1051a39Sopenharmony_cistatic int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
81e1051a39Sopenharmony_ci{
82e1051a39Sopenharmony_ci    if (nbits >= 4096)
83e1051a39Sopenharmony_ci        return 2030;
84e1051a39Sopenharmony_ci    if (nbits >= 3072)
85e1051a39Sopenharmony_ci        return 1518;
86e1051a39Sopenharmony_ci    if (nbits >= 2048)
87e1051a39Sopenharmony_ci        return 1007;
88e1051a39Sopenharmony_ci    return 0;
89e1051a39Sopenharmony_ci}
90e1051a39Sopenharmony_ci
91e1051a39Sopenharmony_ci/*
92e1051a39Sopenharmony_ci * Find the first odd integer that is a probable prime.
93e1051a39Sopenharmony_ci *
94e1051a39Sopenharmony_ci * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
95e1051a39Sopenharmony_ci *
96e1051a39Sopenharmony_ci * Params:
97e1051a39Sopenharmony_ci *     Xp1 The passed in starting point to find a probably prime.
98e1051a39Sopenharmony_ci *     p1 The returned probable prime (first odd integer >= Xp1)
99e1051a39Sopenharmony_ci *     ctx A BN_CTX object.
100e1051a39Sopenharmony_ci *     cb An optional BIGNUM callback.
101e1051a39Sopenharmony_ci * Returns: 1 on success otherwise it returns 0.
102e1051a39Sopenharmony_ci */
103e1051a39Sopenharmony_cistatic int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
104e1051a39Sopenharmony_ci                                                BIGNUM *p1, BN_CTX *ctx,
105e1051a39Sopenharmony_ci                                                BN_GENCB *cb)
106e1051a39Sopenharmony_ci{
107e1051a39Sopenharmony_ci    int ret = 0;
108e1051a39Sopenharmony_ci    int i = 0;
109e1051a39Sopenharmony_ci    int tmp = 0;
110e1051a39Sopenharmony_ci
111e1051a39Sopenharmony_ci    if (BN_copy(p1, Xp1) == NULL)
112e1051a39Sopenharmony_ci        return 0;
113e1051a39Sopenharmony_ci    BN_set_flags(p1, BN_FLG_CONSTTIME);
114e1051a39Sopenharmony_ci
115e1051a39Sopenharmony_ci    /* Find the first odd number >= Xp1 that is probably prime */
116e1051a39Sopenharmony_ci    for(;;) {
117e1051a39Sopenharmony_ci        i++;
118e1051a39Sopenharmony_ci        BN_GENCB_call(cb, 0, i);
119e1051a39Sopenharmony_ci        /* MR test with trial division */
120e1051a39Sopenharmony_ci        tmp = BN_check_prime(p1, ctx, cb);
121e1051a39Sopenharmony_ci        if (tmp > 0)
122e1051a39Sopenharmony_ci            break;
123e1051a39Sopenharmony_ci        if (tmp < 0)
124e1051a39Sopenharmony_ci            goto err;
125e1051a39Sopenharmony_ci        /* Get next odd number */
126e1051a39Sopenharmony_ci        if (!BN_add_word(p1, 2))
127e1051a39Sopenharmony_ci            goto err;
128e1051a39Sopenharmony_ci    }
129e1051a39Sopenharmony_ci    BN_GENCB_call(cb, 2, i);
130e1051a39Sopenharmony_ci    ret = 1;
131e1051a39Sopenharmony_cierr:
132e1051a39Sopenharmony_ci    return ret;
133e1051a39Sopenharmony_ci}
134e1051a39Sopenharmony_ci
135e1051a39Sopenharmony_ci/*
136e1051a39Sopenharmony_ci * Generate a probable prime (p or q).
137e1051a39Sopenharmony_ci *
138e1051a39Sopenharmony_ci * See FIPS 186-4 B.3.6 (Steps 4 & 5)
139e1051a39Sopenharmony_ci *
140e1051a39Sopenharmony_ci * Params:
141e1051a39Sopenharmony_ci *     p The returned probable prime.
142e1051a39Sopenharmony_ci *     Xpout An optionally returned random number used during generation of p.
143e1051a39Sopenharmony_ci *     p1, p2 The returned auxiliary primes. If NULL they are not returned.
144e1051a39Sopenharmony_ci *     Xp An optional passed in value (that is random number used during
145e1051a39Sopenharmony_ci *        generation of p).
146e1051a39Sopenharmony_ci *     Xp1, Xp2 Optional passed in values that are normally generated
147e1051a39Sopenharmony_ci *              internally. Used to find p1, p2.
148e1051a39Sopenharmony_ci *     nlen The bit length of the modulus (the key size).
149e1051a39Sopenharmony_ci *     e The public exponent.
150e1051a39Sopenharmony_ci *     ctx A BN_CTX object.
151e1051a39Sopenharmony_ci *     cb An optional BIGNUM callback.
152e1051a39Sopenharmony_ci * Returns: 1 on success otherwise it returns 0.
153e1051a39Sopenharmony_ci */
154e1051a39Sopenharmony_ciint ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
155e1051a39Sopenharmony_ci                                          BIGNUM *p1, BIGNUM *p2,
156e1051a39Sopenharmony_ci                                          const BIGNUM *Xp, const BIGNUM *Xp1,
157e1051a39Sopenharmony_ci                                          const BIGNUM *Xp2, int nlen,
158e1051a39Sopenharmony_ci                                          const BIGNUM *e, BN_CTX *ctx,
159e1051a39Sopenharmony_ci                                          BN_GENCB *cb)
160e1051a39Sopenharmony_ci{
161e1051a39Sopenharmony_ci    int ret = 0;
162e1051a39Sopenharmony_ci    BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
163e1051a39Sopenharmony_ci    int bitlen;
164e1051a39Sopenharmony_ci
165e1051a39Sopenharmony_ci    if (p == NULL || Xpout == NULL)
166e1051a39Sopenharmony_ci        return 0;
167e1051a39Sopenharmony_ci
168e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
169e1051a39Sopenharmony_ci
170e1051a39Sopenharmony_ci    p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
171e1051a39Sopenharmony_ci    p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
172e1051a39Sopenharmony_ci    Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
173e1051a39Sopenharmony_ci    Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
174e1051a39Sopenharmony_ci    if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
175e1051a39Sopenharmony_ci        goto err;
176e1051a39Sopenharmony_ci
177e1051a39Sopenharmony_ci    bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
178e1051a39Sopenharmony_ci    if (bitlen == 0)
179e1051a39Sopenharmony_ci        goto err;
180e1051a39Sopenharmony_ci
181e1051a39Sopenharmony_ci    /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
182e1051a39Sopenharmony_ci    if (Xp1 == NULL) {
183e1051a39Sopenharmony_ci        /* Set the top and bottom bits to make it odd and the correct size */
184e1051a39Sopenharmony_ci        if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
185e1051a39Sopenharmony_ci                             0, ctx))
186e1051a39Sopenharmony_ci            goto err;
187e1051a39Sopenharmony_ci    }
188e1051a39Sopenharmony_ci    /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
189e1051a39Sopenharmony_ci    if (Xp2 == NULL) {
190e1051a39Sopenharmony_ci        /* Set the top and bottom bits to make it odd and the correct size */
191e1051a39Sopenharmony_ci        if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
192e1051a39Sopenharmony_ci                             0, ctx))
193e1051a39Sopenharmony_ci            goto err;
194e1051a39Sopenharmony_ci    }
195e1051a39Sopenharmony_ci
196e1051a39Sopenharmony_ci    /* (Steps 4.2/5.2) - find first auxiliary probable primes */
197e1051a39Sopenharmony_ci    if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
198e1051a39Sopenharmony_ci            || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
199e1051a39Sopenharmony_ci        goto err;
200e1051a39Sopenharmony_ci    /* (Table B.1) auxiliary prime Max length check */
201e1051a39Sopenharmony_ci    if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
202e1051a39Sopenharmony_ci            bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
203e1051a39Sopenharmony_ci        goto err;
204e1051a39Sopenharmony_ci    /* (Steps 4.3/5.3) - generate prime */
205e1051a39Sopenharmony_ci    if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
206e1051a39Sopenharmony_ci                                            ctx, cb))
207e1051a39Sopenharmony_ci        goto err;
208e1051a39Sopenharmony_ci    ret = 1;
209e1051a39Sopenharmony_cierr:
210e1051a39Sopenharmony_ci    /* Zeroize any internally generated values that are not returned */
211e1051a39Sopenharmony_ci    if (p1 == NULL)
212e1051a39Sopenharmony_ci        BN_clear(p1i);
213e1051a39Sopenharmony_ci    if (p2 == NULL)
214e1051a39Sopenharmony_ci        BN_clear(p2i);
215e1051a39Sopenharmony_ci    if (Xp1 == NULL)
216e1051a39Sopenharmony_ci        BN_clear(Xp1i);
217e1051a39Sopenharmony_ci    if (Xp2 == NULL)
218e1051a39Sopenharmony_ci        BN_clear(Xp2i);
219e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
220e1051a39Sopenharmony_ci    return ret;
221e1051a39Sopenharmony_ci}
222e1051a39Sopenharmony_ci
223e1051a39Sopenharmony_ci/*
224e1051a39Sopenharmony_ci * Constructs a probable prime (a candidate for p or q) using 2 auxiliary
225e1051a39Sopenharmony_ci * prime numbers and the Chinese Remainder Theorem.
226e1051a39Sopenharmony_ci *
227e1051a39Sopenharmony_ci * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
228e1051a39Sopenharmony_ci * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
229e1051a39Sopenharmony_ci *
230e1051a39Sopenharmony_ci * Params:
231e1051a39Sopenharmony_ci *     Y The returned prime factor (private_prime_factor) of the modulus n.
232e1051a39Sopenharmony_ci *     X The returned random number used during generation of the prime factor.
233e1051a39Sopenharmony_ci *     Xin An optional passed in value for X used for testing purposes.
234e1051a39Sopenharmony_ci *     r1 An auxiliary prime.
235e1051a39Sopenharmony_ci *     r2 An auxiliary prime.
236e1051a39Sopenharmony_ci *     nlen The desired length of n (the RSA modulus).
237e1051a39Sopenharmony_ci *     e The public exponent.
238e1051a39Sopenharmony_ci *     ctx A BN_CTX object.
239e1051a39Sopenharmony_ci *     cb An optional BIGNUM callback object.
240e1051a39Sopenharmony_ci * Returns: 1 on success otherwise it returns 0.
241e1051a39Sopenharmony_ci * Assumptions:
242e1051a39Sopenharmony_ci *     Y, X, r1, r2, e are not NULL.
243e1051a39Sopenharmony_ci */
244e1051a39Sopenharmony_ciint ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
245e1051a39Sopenharmony_ci                                       const BIGNUM *r1, const BIGNUM *r2,
246e1051a39Sopenharmony_ci                                       int nlen, const BIGNUM *e, BN_CTX *ctx,
247e1051a39Sopenharmony_ci                                       BN_GENCB *cb)
248e1051a39Sopenharmony_ci{
249e1051a39Sopenharmony_ci    int ret = 0;
250e1051a39Sopenharmony_ci    int i, imax;
251e1051a39Sopenharmony_ci    int bits = nlen >> 1;
252e1051a39Sopenharmony_ci    BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
253e1051a39Sopenharmony_ci    BIGNUM *base, *range;
254e1051a39Sopenharmony_ci
255e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
256e1051a39Sopenharmony_ci
257e1051a39Sopenharmony_ci    base = BN_CTX_get(ctx);
258e1051a39Sopenharmony_ci    range = BN_CTX_get(ctx);
259e1051a39Sopenharmony_ci    R = BN_CTX_get(ctx);
260e1051a39Sopenharmony_ci    tmp = BN_CTX_get(ctx);
261e1051a39Sopenharmony_ci    r1r2x2 = BN_CTX_get(ctx);
262e1051a39Sopenharmony_ci    y1 = BN_CTX_get(ctx);
263e1051a39Sopenharmony_ci    r1x2 = BN_CTX_get(ctx);
264e1051a39Sopenharmony_ci    if (r1x2 == NULL)
265e1051a39Sopenharmony_ci        goto err;
266e1051a39Sopenharmony_ci
267e1051a39Sopenharmony_ci    if (Xin != NULL && BN_copy(X, Xin) == NULL)
268e1051a39Sopenharmony_ci        goto err;
269e1051a39Sopenharmony_ci
270e1051a39Sopenharmony_ci    /*
271e1051a39Sopenharmony_ci     * We need to generate a random number X in the range
272e1051a39Sopenharmony_ci     * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
273e1051a39Sopenharmony_ci     * We can rewrite that as:
274e1051a39Sopenharmony_ci     * base = 1/sqrt(2) * 2^(nlen/2)
275e1051a39Sopenharmony_ci     * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
276e1051a39Sopenharmony_ci     * X = base + random(range)
277e1051a39Sopenharmony_ci     * We only have the first 256 bit of 1/sqrt(2)
278e1051a39Sopenharmony_ci     */
279e1051a39Sopenharmony_ci    if (Xin == NULL) {
280e1051a39Sopenharmony_ci        if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
281e1051a39Sopenharmony_ci            goto err;
282e1051a39Sopenharmony_ci        if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
283e1051a39Sopenharmony_ci                       bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
284e1051a39Sopenharmony_ci            || !BN_lshift(range, BN_value_one(), bits)
285e1051a39Sopenharmony_ci            || !BN_sub(range, range, base))
286e1051a39Sopenharmony_ci            goto err;
287e1051a39Sopenharmony_ci    }
288e1051a39Sopenharmony_ci
289e1051a39Sopenharmony_ci    if (!(BN_lshift1(r1x2, r1)
290e1051a39Sopenharmony_ci            /* (Step 1) GCD(2r1, r2) = 1 */
291e1051a39Sopenharmony_ci            && BN_gcd(tmp, r1x2, r2, ctx)
292e1051a39Sopenharmony_ci            && BN_is_one(tmp)
293e1051a39Sopenharmony_ci            /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
294e1051a39Sopenharmony_ci            && BN_mod_inverse(R, r2, r1x2, ctx)
295e1051a39Sopenharmony_ci            && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
296e1051a39Sopenharmony_ci            && BN_mod_inverse(tmp, r1x2, r2, ctx)
297e1051a39Sopenharmony_ci            && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
298e1051a39Sopenharmony_ci            && BN_sub(R, R, tmp)
299e1051a39Sopenharmony_ci            /* Calculate 2r1r2 */
300e1051a39Sopenharmony_ci            && BN_mul(r1r2x2, r1x2, r2, ctx)))
301e1051a39Sopenharmony_ci        goto err;
302e1051a39Sopenharmony_ci    /* Make positive by adding the modulus */
303e1051a39Sopenharmony_ci    if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
304e1051a39Sopenharmony_ci        goto err;
305e1051a39Sopenharmony_ci
306e1051a39Sopenharmony_ci    /*
307e1051a39Sopenharmony_ci     * In FIPS 186-4 imax was set to 5 * nlen/2.
308e1051a39Sopenharmony_ci     * Analysis by Allen Roginsky (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
309e1051a39Sopenharmony_ci     * page 68) indicates this has a 1 in 2 million chance of failure.
310e1051a39Sopenharmony_ci     * The number has been updated to 20 * nlen/2 as used in
311e1051a39Sopenharmony_ci     * FIPS186-5 Appendix B.9 Step 9.
312e1051a39Sopenharmony_ci     */
313e1051a39Sopenharmony_ci    imax = 20 * bits; /* max = 20/2 * nbits */
314e1051a39Sopenharmony_ci    for (;;) {
315e1051a39Sopenharmony_ci        if (Xin == NULL) {
316e1051a39Sopenharmony_ci            /*
317e1051a39Sopenharmony_ci             * (Step 3) Choose Random X such that
318e1051a39Sopenharmony_ci             *    sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
319e1051a39Sopenharmony_ci             */
320e1051a39Sopenharmony_ci            if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
321e1051a39Sopenharmony_ci                goto err;
322e1051a39Sopenharmony_ci        }
323e1051a39Sopenharmony_ci        /* (Step 4) Y = X + ((R - X) mod 2r1r2) */
324e1051a39Sopenharmony_ci        if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
325e1051a39Sopenharmony_ci            goto err;
326e1051a39Sopenharmony_ci        /* (Step 5) */
327e1051a39Sopenharmony_ci        i = 0;
328e1051a39Sopenharmony_ci        for (;;) {
329e1051a39Sopenharmony_ci            /* (Step 6) */
330e1051a39Sopenharmony_ci            if (BN_num_bits(Y) > bits) {
331e1051a39Sopenharmony_ci                if (Xin == NULL)
332e1051a39Sopenharmony_ci                    break; /* Randomly Generated X so Go back to Step 3 */
333e1051a39Sopenharmony_ci                else
334e1051a39Sopenharmony_ci                    goto err; /* X is not random so it will always fail */
335e1051a39Sopenharmony_ci            }
336e1051a39Sopenharmony_ci            BN_GENCB_call(cb, 0, 2);
337e1051a39Sopenharmony_ci
338e1051a39Sopenharmony_ci            /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
339e1051a39Sopenharmony_ci            if (BN_copy(y1, Y) == NULL
340e1051a39Sopenharmony_ci                    || !BN_sub_word(y1, 1)
341e1051a39Sopenharmony_ci                    || !BN_gcd(tmp, y1, e, ctx))
342e1051a39Sopenharmony_ci                goto err;
343e1051a39Sopenharmony_ci            if (BN_is_one(tmp)) {
344e1051a39Sopenharmony_ci                int rv = BN_check_prime(Y, ctx, cb);
345e1051a39Sopenharmony_ci
346e1051a39Sopenharmony_ci                if (rv > 0)
347e1051a39Sopenharmony_ci                    goto end;
348e1051a39Sopenharmony_ci                if (rv < 0)
349e1051a39Sopenharmony_ci                    goto err;
350e1051a39Sopenharmony_ci            }
351e1051a39Sopenharmony_ci            /* (Step 8-10) */
352e1051a39Sopenharmony_ci            if (++i >= imax) {
353e1051a39Sopenharmony_ci                ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
354e1051a39Sopenharmony_ci                goto err;
355e1051a39Sopenharmony_ci            }
356e1051a39Sopenharmony_ci            if (!BN_add(Y, Y, r1r2x2))
357e1051a39Sopenharmony_ci                goto err;
358e1051a39Sopenharmony_ci        }
359e1051a39Sopenharmony_ci    }
360e1051a39Sopenharmony_ciend:
361e1051a39Sopenharmony_ci    ret = 1;
362e1051a39Sopenharmony_ci    BN_GENCB_call(cb, 3, 0);
363e1051a39Sopenharmony_cierr:
364e1051a39Sopenharmony_ci    BN_clear(y1);
365e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
366e1051a39Sopenharmony_ci    return ret;
367e1051a39Sopenharmony_ci}
368