1e1051a39Sopenharmony_ci/* 2e1051a39Sopenharmony_ci * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. 3e1051a39Sopenharmony_ci * 4e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License"). You may not use 5e1051a39Sopenharmony_ci * this file except in compliance with the License. You can obtain a copy 6e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at 7e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html 8e1051a39Sopenharmony_ci */ 9e1051a39Sopenharmony_ci 10e1051a39Sopenharmony_ci#include "internal/cryptlib.h" 11e1051a39Sopenharmony_ci#include "bn_local.h" 12e1051a39Sopenharmony_ci 13e1051a39Sopenharmony_ci/* least significant word */ 14e1051a39Sopenharmony_ci#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) 15e1051a39Sopenharmony_ci 16e1051a39Sopenharmony_ci/* Returns -2 for errors because both -1 and 0 are valid results. */ 17e1051a39Sopenharmony_ciint BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) 18e1051a39Sopenharmony_ci{ 19e1051a39Sopenharmony_ci int i; 20e1051a39Sopenharmony_ci int ret = -2; /* avoid 'uninitialized' warning */ 21e1051a39Sopenharmony_ci int err = 0; 22e1051a39Sopenharmony_ci BIGNUM *A, *B, *tmp; 23e1051a39Sopenharmony_ci /*- 24e1051a39Sopenharmony_ci * In 'tab', only odd-indexed entries are relevant: 25e1051a39Sopenharmony_ci * For any odd BIGNUM n, 26e1051a39Sopenharmony_ci * tab[BN_lsw(n) & 7] 27e1051a39Sopenharmony_ci * is $(-1)^{(n^2-1)/8}$ (using TeX notation). 28e1051a39Sopenharmony_ci * Note that the sign of n does not matter. 29e1051a39Sopenharmony_ci */ 30e1051a39Sopenharmony_ci static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 }; 31e1051a39Sopenharmony_ci 32e1051a39Sopenharmony_ci bn_check_top(a); 33e1051a39Sopenharmony_ci bn_check_top(b); 34e1051a39Sopenharmony_ci 35e1051a39Sopenharmony_ci BN_CTX_start(ctx); 36e1051a39Sopenharmony_ci A = BN_CTX_get(ctx); 37e1051a39Sopenharmony_ci B = BN_CTX_get(ctx); 38e1051a39Sopenharmony_ci if (B == NULL) 39e1051a39Sopenharmony_ci goto end; 40e1051a39Sopenharmony_ci 41e1051a39Sopenharmony_ci err = !BN_copy(A, a); 42e1051a39Sopenharmony_ci if (err) 43e1051a39Sopenharmony_ci goto end; 44e1051a39Sopenharmony_ci err = !BN_copy(B, b); 45e1051a39Sopenharmony_ci if (err) 46e1051a39Sopenharmony_ci goto end; 47e1051a39Sopenharmony_ci 48e1051a39Sopenharmony_ci /* 49e1051a39Sopenharmony_ci * Kronecker symbol, implemented according to Henri Cohen, 50e1051a39Sopenharmony_ci * "A Course in Computational Algebraic Number Theory" 51e1051a39Sopenharmony_ci * (algorithm 1.4.10). 52e1051a39Sopenharmony_ci */ 53e1051a39Sopenharmony_ci 54e1051a39Sopenharmony_ci /* Cohen's step 1: */ 55e1051a39Sopenharmony_ci 56e1051a39Sopenharmony_ci if (BN_is_zero(B)) { 57e1051a39Sopenharmony_ci ret = BN_abs_is_word(A, 1); 58e1051a39Sopenharmony_ci goto end; 59e1051a39Sopenharmony_ci } 60e1051a39Sopenharmony_ci 61e1051a39Sopenharmony_ci /* Cohen's step 2: */ 62e1051a39Sopenharmony_ci 63e1051a39Sopenharmony_ci if (!BN_is_odd(A) && !BN_is_odd(B)) { 64e1051a39Sopenharmony_ci ret = 0; 65e1051a39Sopenharmony_ci goto end; 66e1051a39Sopenharmony_ci } 67e1051a39Sopenharmony_ci 68e1051a39Sopenharmony_ci /* now B is non-zero */ 69e1051a39Sopenharmony_ci i = 0; 70e1051a39Sopenharmony_ci while (!BN_is_bit_set(B, i)) 71e1051a39Sopenharmony_ci i++; 72e1051a39Sopenharmony_ci err = !BN_rshift(B, B, i); 73e1051a39Sopenharmony_ci if (err) 74e1051a39Sopenharmony_ci goto end; 75e1051a39Sopenharmony_ci if (i & 1) { 76e1051a39Sopenharmony_ci /* i is odd */ 77e1051a39Sopenharmony_ci /* (thus B was even, thus A must be odd!) */ 78e1051a39Sopenharmony_ci 79e1051a39Sopenharmony_ci /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ 80e1051a39Sopenharmony_ci ret = tab[BN_lsw(A) & 7]; 81e1051a39Sopenharmony_ci } else { 82e1051a39Sopenharmony_ci /* i is even */ 83e1051a39Sopenharmony_ci ret = 1; 84e1051a39Sopenharmony_ci } 85e1051a39Sopenharmony_ci 86e1051a39Sopenharmony_ci if (B->neg) { 87e1051a39Sopenharmony_ci B->neg = 0; 88e1051a39Sopenharmony_ci if (A->neg) 89e1051a39Sopenharmony_ci ret = -ret; 90e1051a39Sopenharmony_ci } 91e1051a39Sopenharmony_ci 92e1051a39Sopenharmony_ci /* 93e1051a39Sopenharmony_ci * now B is positive and odd, so what remains to be done is to compute 94e1051a39Sopenharmony_ci * the Jacobi symbol (A/B) and multiply it by 'ret' 95e1051a39Sopenharmony_ci */ 96e1051a39Sopenharmony_ci 97e1051a39Sopenharmony_ci while (1) { 98e1051a39Sopenharmony_ci /* Cohen's step 3: */ 99e1051a39Sopenharmony_ci 100e1051a39Sopenharmony_ci /* B is positive and odd */ 101e1051a39Sopenharmony_ci 102e1051a39Sopenharmony_ci if (BN_is_zero(A)) { 103e1051a39Sopenharmony_ci ret = BN_is_one(B) ? ret : 0; 104e1051a39Sopenharmony_ci goto end; 105e1051a39Sopenharmony_ci } 106e1051a39Sopenharmony_ci 107e1051a39Sopenharmony_ci /* now A is non-zero */ 108e1051a39Sopenharmony_ci i = 0; 109e1051a39Sopenharmony_ci while (!BN_is_bit_set(A, i)) 110e1051a39Sopenharmony_ci i++; 111e1051a39Sopenharmony_ci err = !BN_rshift(A, A, i); 112e1051a39Sopenharmony_ci if (err) 113e1051a39Sopenharmony_ci goto end; 114e1051a39Sopenharmony_ci if (i & 1) { 115e1051a39Sopenharmony_ci /* i is odd */ 116e1051a39Sopenharmony_ci /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */ 117e1051a39Sopenharmony_ci ret = ret * tab[BN_lsw(B) & 7]; 118e1051a39Sopenharmony_ci } 119e1051a39Sopenharmony_ci 120e1051a39Sopenharmony_ci /* Cohen's step 4: */ 121e1051a39Sopenharmony_ci /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */ 122e1051a39Sopenharmony_ci if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) 123e1051a39Sopenharmony_ci ret = -ret; 124e1051a39Sopenharmony_ci 125e1051a39Sopenharmony_ci /* (A, B) := (B mod |A|, |A|) */ 126e1051a39Sopenharmony_ci err = !BN_nnmod(B, B, A, ctx); 127e1051a39Sopenharmony_ci if (err) 128e1051a39Sopenharmony_ci goto end; 129e1051a39Sopenharmony_ci tmp = A; 130e1051a39Sopenharmony_ci A = B; 131e1051a39Sopenharmony_ci B = tmp; 132e1051a39Sopenharmony_ci tmp->neg = 0; 133e1051a39Sopenharmony_ci } 134e1051a39Sopenharmony_ci end: 135e1051a39Sopenharmony_ci BN_CTX_end(ctx); 136e1051a39Sopenharmony_ci if (err) 137e1051a39Sopenharmony_ci return -2; 138e1051a39Sopenharmony_ci else 139e1051a39Sopenharmony_ci return ret; 140e1051a39Sopenharmony_ci} 141