1e1051a39Sopenharmony_ci/*
2e1051a39Sopenharmony_ci * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3e1051a39Sopenharmony_ci *
4e1051a39Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License").  You may not use
5e1051a39Sopenharmony_ci * this file except in compliance with the License.  You can obtain a copy
6e1051a39Sopenharmony_ci * in the file LICENSE in the source distribution or at
7e1051a39Sopenharmony_ci * https://www.openssl.org/source/license.html
8e1051a39Sopenharmony_ci */
9e1051a39Sopenharmony_ci
10e1051a39Sopenharmony_ci#include "internal/cryptlib.h"
11e1051a39Sopenharmony_ci#include "bn_local.h"
12e1051a39Sopenharmony_ci
13e1051a39Sopenharmony_ci/*
14e1051a39Sopenharmony_ci * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
15e1051a39Sopenharmony_ci * not contain branches that may leak sensitive information.
16e1051a39Sopenharmony_ci *
17e1051a39Sopenharmony_ci * This is a static function, we ensure all callers in this file pass valid
18e1051a39Sopenharmony_ci * arguments: all passed pointers here are non-NULL.
19e1051a39Sopenharmony_ci */
20e1051a39Sopenharmony_cistatic ossl_inline
21e1051a39Sopenharmony_ciBIGNUM *bn_mod_inverse_no_branch(BIGNUM *in,
22e1051a39Sopenharmony_ci                                 const BIGNUM *a, const BIGNUM *n,
23e1051a39Sopenharmony_ci                                 BN_CTX *ctx, int *pnoinv)
24e1051a39Sopenharmony_ci{
25e1051a39Sopenharmony_ci    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
26e1051a39Sopenharmony_ci    BIGNUM *ret = NULL;
27e1051a39Sopenharmony_ci    int sign;
28e1051a39Sopenharmony_ci
29e1051a39Sopenharmony_ci    bn_check_top(a);
30e1051a39Sopenharmony_ci    bn_check_top(n);
31e1051a39Sopenharmony_ci
32e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
33e1051a39Sopenharmony_ci    A = BN_CTX_get(ctx);
34e1051a39Sopenharmony_ci    B = BN_CTX_get(ctx);
35e1051a39Sopenharmony_ci    X = BN_CTX_get(ctx);
36e1051a39Sopenharmony_ci    D = BN_CTX_get(ctx);
37e1051a39Sopenharmony_ci    M = BN_CTX_get(ctx);
38e1051a39Sopenharmony_ci    Y = BN_CTX_get(ctx);
39e1051a39Sopenharmony_ci    T = BN_CTX_get(ctx);
40e1051a39Sopenharmony_ci    if (T == NULL)
41e1051a39Sopenharmony_ci        goto err;
42e1051a39Sopenharmony_ci
43e1051a39Sopenharmony_ci    if (in == NULL)
44e1051a39Sopenharmony_ci        R = BN_new();
45e1051a39Sopenharmony_ci    else
46e1051a39Sopenharmony_ci        R = in;
47e1051a39Sopenharmony_ci    if (R == NULL)
48e1051a39Sopenharmony_ci        goto err;
49e1051a39Sopenharmony_ci
50e1051a39Sopenharmony_ci    if (!BN_one(X))
51e1051a39Sopenharmony_ci        goto err;
52e1051a39Sopenharmony_ci    BN_zero(Y);
53e1051a39Sopenharmony_ci    if (BN_copy(B, a) == NULL)
54e1051a39Sopenharmony_ci        goto err;
55e1051a39Sopenharmony_ci    if (BN_copy(A, n) == NULL)
56e1051a39Sopenharmony_ci        goto err;
57e1051a39Sopenharmony_ci    A->neg = 0;
58e1051a39Sopenharmony_ci
59e1051a39Sopenharmony_ci    if (B->neg || (BN_ucmp(B, A) >= 0)) {
60e1051a39Sopenharmony_ci        /*
61e1051a39Sopenharmony_ci         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
62e1051a39Sopenharmony_ci         * BN_div_no_branch will be called eventually.
63e1051a39Sopenharmony_ci         */
64e1051a39Sopenharmony_ci         {
65e1051a39Sopenharmony_ci            BIGNUM local_B;
66e1051a39Sopenharmony_ci            bn_init(&local_B);
67e1051a39Sopenharmony_ci            BN_with_flags(&local_B, B, BN_FLG_CONSTTIME);
68e1051a39Sopenharmony_ci            if (!BN_nnmod(B, &local_B, A, ctx))
69e1051a39Sopenharmony_ci                goto err;
70e1051a39Sopenharmony_ci            /* Ensure local_B goes out of scope before any further use of B */
71e1051a39Sopenharmony_ci        }
72e1051a39Sopenharmony_ci    }
73e1051a39Sopenharmony_ci    sign = -1;
74e1051a39Sopenharmony_ci    /*-
75e1051a39Sopenharmony_ci     * From  B = a mod |n|,  A = |n|  it follows that
76e1051a39Sopenharmony_ci     *
77e1051a39Sopenharmony_ci     *      0 <= B < A,
78e1051a39Sopenharmony_ci     *     -sign*X*a  ==  B   (mod |n|),
79e1051a39Sopenharmony_ci     *      sign*Y*a  ==  A   (mod |n|).
80e1051a39Sopenharmony_ci     */
81e1051a39Sopenharmony_ci
82e1051a39Sopenharmony_ci    while (!BN_is_zero(B)) {
83e1051a39Sopenharmony_ci        BIGNUM *tmp;
84e1051a39Sopenharmony_ci
85e1051a39Sopenharmony_ci        /*-
86e1051a39Sopenharmony_ci         *      0 < B < A,
87e1051a39Sopenharmony_ci         * (*) -sign*X*a  ==  B   (mod |n|),
88e1051a39Sopenharmony_ci         *      sign*Y*a  ==  A   (mod |n|)
89e1051a39Sopenharmony_ci         */
90e1051a39Sopenharmony_ci
91e1051a39Sopenharmony_ci        /*
92e1051a39Sopenharmony_ci         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
93e1051a39Sopenharmony_ci         * BN_div_no_branch will be called eventually.
94e1051a39Sopenharmony_ci         */
95e1051a39Sopenharmony_ci        {
96e1051a39Sopenharmony_ci            BIGNUM local_A;
97e1051a39Sopenharmony_ci            bn_init(&local_A);
98e1051a39Sopenharmony_ci            BN_with_flags(&local_A, A, BN_FLG_CONSTTIME);
99e1051a39Sopenharmony_ci
100e1051a39Sopenharmony_ci            /* (D, M) := (A/B, A%B) ... */
101e1051a39Sopenharmony_ci            if (!BN_div(D, M, &local_A, B, ctx))
102e1051a39Sopenharmony_ci                goto err;
103e1051a39Sopenharmony_ci            /* Ensure local_A goes out of scope before any further use of A */
104e1051a39Sopenharmony_ci        }
105e1051a39Sopenharmony_ci
106e1051a39Sopenharmony_ci        /*-
107e1051a39Sopenharmony_ci         * Now
108e1051a39Sopenharmony_ci         *      A = D*B + M;
109e1051a39Sopenharmony_ci         * thus we have
110e1051a39Sopenharmony_ci         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
111e1051a39Sopenharmony_ci         */
112e1051a39Sopenharmony_ci
113e1051a39Sopenharmony_ci        tmp = A;                /* keep the BIGNUM object, the value does not
114e1051a39Sopenharmony_ci                                 * matter */
115e1051a39Sopenharmony_ci
116e1051a39Sopenharmony_ci        /* (A, B) := (B, A mod B) ... */
117e1051a39Sopenharmony_ci        A = B;
118e1051a39Sopenharmony_ci        B = M;
119e1051a39Sopenharmony_ci        /* ... so we have  0 <= B < A  again */
120e1051a39Sopenharmony_ci
121e1051a39Sopenharmony_ci        /*-
122e1051a39Sopenharmony_ci         * Since the former  M  is now  B  and the former  B  is now  A,
123e1051a39Sopenharmony_ci         * (**) translates into
124e1051a39Sopenharmony_ci         *       sign*Y*a  ==  D*A + B    (mod |n|),
125e1051a39Sopenharmony_ci         * i.e.
126e1051a39Sopenharmony_ci         *       sign*Y*a - D*A  ==  B    (mod |n|).
127e1051a39Sopenharmony_ci         * Similarly, (*) translates into
128e1051a39Sopenharmony_ci         *      -sign*X*a  ==  A          (mod |n|).
129e1051a39Sopenharmony_ci         *
130e1051a39Sopenharmony_ci         * Thus,
131e1051a39Sopenharmony_ci         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
132e1051a39Sopenharmony_ci         * i.e.
133e1051a39Sopenharmony_ci         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
134e1051a39Sopenharmony_ci         *
135e1051a39Sopenharmony_ci         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
136e1051a39Sopenharmony_ci         *      -sign*X*a  ==  B   (mod |n|),
137e1051a39Sopenharmony_ci         *       sign*Y*a  ==  A   (mod |n|).
138e1051a39Sopenharmony_ci         * Note that  X  and  Y  stay non-negative all the time.
139e1051a39Sopenharmony_ci         */
140e1051a39Sopenharmony_ci
141e1051a39Sopenharmony_ci        if (!BN_mul(tmp, D, X, ctx))
142e1051a39Sopenharmony_ci            goto err;
143e1051a39Sopenharmony_ci        if (!BN_add(tmp, tmp, Y))
144e1051a39Sopenharmony_ci            goto err;
145e1051a39Sopenharmony_ci
146e1051a39Sopenharmony_ci        M = Y;                  /* keep the BIGNUM object, the value does not
147e1051a39Sopenharmony_ci                                 * matter */
148e1051a39Sopenharmony_ci        Y = X;
149e1051a39Sopenharmony_ci        X = tmp;
150e1051a39Sopenharmony_ci        sign = -sign;
151e1051a39Sopenharmony_ci    }
152e1051a39Sopenharmony_ci
153e1051a39Sopenharmony_ci    /*-
154e1051a39Sopenharmony_ci     * The while loop (Euclid's algorithm) ends when
155e1051a39Sopenharmony_ci     *      A == gcd(a,n);
156e1051a39Sopenharmony_ci     * we have
157e1051a39Sopenharmony_ci     *       sign*Y*a  ==  A  (mod |n|),
158e1051a39Sopenharmony_ci     * where  Y  is non-negative.
159e1051a39Sopenharmony_ci     */
160e1051a39Sopenharmony_ci
161e1051a39Sopenharmony_ci    if (sign < 0) {
162e1051a39Sopenharmony_ci        if (!BN_sub(Y, n, Y))
163e1051a39Sopenharmony_ci            goto err;
164e1051a39Sopenharmony_ci    }
165e1051a39Sopenharmony_ci    /* Now  Y*a  ==  A  (mod |n|).  */
166e1051a39Sopenharmony_ci
167e1051a39Sopenharmony_ci    if (BN_is_one(A)) {
168e1051a39Sopenharmony_ci        /* Y*a == 1  (mod |n|) */
169e1051a39Sopenharmony_ci        if (!Y->neg && BN_ucmp(Y, n) < 0) {
170e1051a39Sopenharmony_ci            if (!BN_copy(R, Y))
171e1051a39Sopenharmony_ci                goto err;
172e1051a39Sopenharmony_ci        } else {
173e1051a39Sopenharmony_ci            if (!BN_nnmod(R, Y, n, ctx))
174e1051a39Sopenharmony_ci                goto err;
175e1051a39Sopenharmony_ci        }
176e1051a39Sopenharmony_ci    } else {
177e1051a39Sopenharmony_ci        *pnoinv = 1;
178e1051a39Sopenharmony_ci        /* caller sets the BN_R_NO_INVERSE error */
179e1051a39Sopenharmony_ci        goto err;
180e1051a39Sopenharmony_ci    }
181e1051a39Sopenharmony_ci
182e1051a39Sopenharmony_ci    ret = R;
183e1051a39Sopenharmony_ci    *pnoinv = 0;
184e1051a39Sopenharmony_ci
185e1051a39Sopenharmony_ci err:
186e1051a39Sopenharmony_ci    if ((ret == NULL) && (in == NULL))
187e1051a39Sopenharmony_ci        BN_free(R);
188e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
189e1051a39Sopenharmony_ci    bn_check_top(ret);
190e1051a39Sopenharmony_ci    return ret;
191e1051a39Sopenharmony_ci}
192e1051a39Sopenharmony_ci
193e1051a39Sopenharmony_ci/*
194e1051a39Sopenharmony_ci * This is an internal function, we assume all callers pass valid arguments:
195e1051a39Sopenharmony_ci * all pointers passed here are assumed non-NULL.
196e1051a39Sopenharmony_ci */
197e1051a39Sopenharmony_ciBIGNUM *int_bn_mod_inverse(BIGNUM *in,
198e1051a39Sopenharmony_ci                           const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
199e1051a39Sopenharmony_ci                           int *pnoinv)
200e1051a39Sopenharmony_ci{
201e1051a39Sopenharmony_ci    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
202e1051a39Sopenharmony_ci    BIGNUM *ret = NULL;
203e1051a39Sopenharmony_ci    int sign;
204e1051a39Sopenharmony_ci
205e1051a39Sopenharmony_ci    /* This is invalid input so we don't worry about constant time here */
206e1051a39Sopenharmony_ci    if (BN_abs_is_word(n, 1) || BN_is_zero(n)) {
207e1051a39Sopenharmony_ci        *pnoinv = 1;
208e1051a39Sopenharmony_ci        return NULL;
209e1051a39Sopenharmony_ci    }
210e1051a39Sopenharmony_ci
211e1051a39Sopenharmony_ci    *pnoinv = 0;
212e1051a39Sopenharmony_ci
213e1051a39Sopenharmony_ci    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
214e1051a39Sopenharmony_ci        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
215e1051a39Sopenharmony_ci        return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv);
216e1051a39Sopenharmony_ci    }
217e1051a39Sopenharmony_ci
218e1051a39Sopenharmony_ci    bn_check_top(a);
219e1051a39Sopenharmony_ci    bn_check_top(n);
220e1051a39Sopenharmony_ci
221e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
222e1051a39Sopenharmony_ci    A = BN_CTX_get(ctx);
223e1051a39Sopenharmony_ci    B = BN_CTX_get(ctx);
224e1051a39Sopenharmony_ci    X = BN_CTX_get(ctx);
225e1051a39Sopenharmony_ci    D = BN_CTX_get(ctx);
226e1051a39Sopenharmony_ci    M = BN_CTX_get(ctx);
227e1051a39Sopenharmony_ci    Y = BN_CTX_get(ctx);
228e1051a39Sopenharmony_ci    T = BN_CTX_get(ctx);
229e1051a39Sopenharmony_ci    if (T == NULL)
230e1051a39Sopenharmony_ci        goto err;
231e1051a39Sopenharmony_ci
232e1051a39Sopenharmony_ci    if (in == NULL)
233e1051a39Sopenharmony_ci        R = BN_new();
234e1051a39Sopenharmony_ci    else
235e1051a39Sopenharmony_ci        R = in;
236e1051a39Sopenharmony_ci    if (R == NULL)
237e1051a39Sopenharmony_ci        goto err;
238e1051a39Sopenharmony_ci
239e1051a39Sopenharmony_ci    if (!BN_one(X))
240e1051a39Sopenharmony_ci        goto err;
241e1051a39Sopenharmony_ci    BN_zero(Y);
242e1051a39Sopenharmony_ci    if (BN_copy(B, a) == NULL)
243e1051a39Sopenharmony_ci        goto err;
244e1051a39Sopenharmony_ci    if (BN_copy(A, n) == NULL)
245e1051a39Sopenharmony_ci        goto err;
246e1051a39Sopenharmony_ci    A->neg = 0;
247e1051a39Sopenharmony_ci    if (B->neg || (BN_ucmp(B, A) >= 0)) {
248e1051a39Sopenharmony_ci        if (!BN_nnmod(B, B, A, ctx))
249e1051a39Sopenharmony_ci            goto err;
250e1051a39Sopenharmony_ci    }
251e1051a39Sopenharmony_ci    sign = -1;
252e1051a39Sopenharmony_ci    /*-
253e1051a39Sopenharmony_ci     * From  B = a mod |n|,  A = |n|  it follows that
254e1051a39Sopenharmony_ci     *
255e1051a39Sopenharmony_ci     *      0 <= B < A,
256e1051a39Sopenharmony_ci     *     -sign*X*a  ==  B   (mod |n|),
257e1051a39Sopenharmony_ci     *      sign*Y*a  ==  A   (mod |n|).
258e1051a39Sopenharmony_ci     */
259e1051a39Sopenharmony_ci
260e1051a39Sopenharmony_ci    if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) {
261e1051a39Sopenharmony_ci        /*
262e1051a39Sopenharmony_ci         * Binary inversion algorithm; requires odd modulus. This is faster
263e1051a39Sopenharmony_ci         * than the general algorithm if the modulus is sufficiently small
264e1051a39Sopenharmony_ci         * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit
265e1051a39Sopenharmony_ci         * systems)
266e1051a39Sopenharmony_ci         */
267e1051a39Sopenharmony_ci        int shift;
268e1051a39Sopenharmony_ci
269e1051a39Sopenharmony_ci        while (!BN_is_zero(B)) {
270e1051a39Sopenharmony_ci            /*-
271e1051a39Sopenharmony_ci             *      0 < B < |n|,
272e1051a39Sopenharmony_ci             *      0 < A <= |n|,
273e1051a39Sopenharmony_ci             * (1) -sign*X*a  ==  B   (mod |n|),
274e1051a39Sopenharmony_ci             * (2)  sign*Y*a  ==  A   (mod |n|)
275e1051a39Sopenharmony_ci             */
276e1051a39Sopenharmony_ci
277e1051a39Sopenharmony_ci            /*
278e1051a39Sopenharmony_ci             * Now divide B by the maximum possible power of two in the
279e1051a39Sopenharmony_ci             * integers, and divide X by the same value mod |n|. When we're
280e1051a39Sopenharmony_ci             * done, (1) still holds.
281e1051a39Sopenharmony_ci             */
282e1051a39Sopenharmony_ci            shift = 0;
283e1051a39Sopenharmony_ci            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
284e1051a39Sopenharmony_ci                shift++;
285e1051a39Sopenharmony_ci
286e1051a39Sopenharmony_ci                if (BN_is_odd(X)) {
287e1051a39Sopenharmony_ci                    if (!BN_uadd(X, X, n))
288e1051a39Sopenharmony_ci                        goto err;
289e1051a39Sopenharmony_ci                }
290e1051a39Sopenharmony_ci                /*
291e1051a39Sopenharmony_ci                 * now X is even, so we can easily divide it by two
292e1051a39Sopenharmony_ci                 */
293e1051a39Sopenharmony_ci                if (!BN_rshift1(X, X))
294e1051a39Sopenharmony_ci                    goto err;
295e1051a39Sopenharmony_ci            }
296e1051a39Sopenharmony_ci            if (shift > 0) {
297e1051a39Sopenharmony_ci                if (!BN_rshift(B, B, shift))
298e1051a39Sopenharmony_ci                    goto err;
299e1051a39Sopenharmony_ci            }
300e1051a39Sopenharmony_ci
301e1051a39Sopenharmony_ci            /*
302e1051a39Sopenharmony_ci             * Same for A and Y.  Afterwards, (2) still holds.
303e1051a39Sopenharmony_ci             */
304e1051a39Sopenharmony_ci            shift = 0;
305e1051a39Sopenharmony_ci            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
306e1051a39Sopenharmony_ci                shift++;
307e1051a39Sopenharmony_ci
308e1051a39Sopenharmony_ci                if (BN_is_odd(Y)) {
309e1051a39Sopenharmony_ci                    if (!BN_uadd(Y, Y, n))
310e1051a39Sopenharmony_ci                        goto err;
311e1051a39Sopenharmony_ci                }
312e1051a39Sopenharmony_ci                /* now Y is even */
313e1051a39Sopenharmony_ci                if (!BN_rshift1(Y, Y))
314e1051a39Sopenharmony_ci                    goto err;
315e1051a39Sopenharmony_ci            }
316e1051a39Sopenharmony_ci            if (shift > 0) {
317e1051a39Sopenharmony_ci                if (!BN_rshift(A, A, shift))
318e1051a39Sopenharmony_ci                    goto err;
319e1051a39Sopenharmony_ci            }
320e1051a39Sopenharmony_ci
321e1051a39Sopenharmony_ci            /*-
322e1051a39Sopenharmony_ci             * We still have (1) and (2).
323e1051a39Sopenharmony_ci             * Both  A  and  B  are odd.
324e1051a39Sopenharmony_ci             * The following computations ensure that
325e1051a39Sopenharmony_ci             *
326e1051a39Sopenharmony_ci             *     0 <= B < |n|,
327e1051a39Sopenharmony_ci             *      0 < A < |n|,
328e1051a39Sopenharmony_ci             * (1) -sign*X*a  ==  B   (mod |n|),
329e1051a39Sopenharmony_ci             * (2)  sign*Y*a  ==  A   (mod |n|),
330e1051a39Sopenharmony_ci             *
331e1051a39Sopenharmony_ci             * and that either  A  or  B  is even in the next iteration.
332e1051a39Sopenharmony_ci             */
333e1051a39Sopenharmony_ci            if (BN_ucmp(B, A) >= 0) {
334e1051a39Sopenharmony_ci                /* -sign*(X + Y)*a == B - A  (mod |n|) */
335e1051a39Sopenharmony_ci                if (!BN_uadd(X, X, Y))
336e1051a39Sopenharmony_ci                    goto err;
337e1051a39Sopenharmony_ci                /*
338e1051a39Sopenharmony_ci                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
339e1051a39Sopenharmony_ci                 * actually makes the algorithm slower
340e1051a39Sopenharmony_ci                 */
341e1051a39Sopenharmony_ci                if (!BN_usub(B, B, A))
342e1051a39Sopenharmony_ci                    goto err;
343e1051a39Sopenharmony_ci            } else {
344e1051a39Sopenharmony_ci                /*  sign*(X + Y)*a == A - B  (mod |n|) */
345e1051a39Sopenharmony_ci                if (!BN_uadd(Y, Y, X))
346e1051a39Sopenharmony_ci                    goto err;
347e1051a39Sopenharmony_ci                /*
348e1051a39Sopenharmony_ci                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down
349e1051a39Sopenharmony_ci                 */
350e1051a39Sopenharmony_ci                if (!BN_usub(A, A, B))
351e1051a39Sopenharmony_ci                    goto err;
352e1051a39Sopenharmony_ci            }
353e1051a39Sopenharmony_ci        }
354e1051a39Sopenharmony_ci    } else {
355e1051a39Sopenharmony_ci        /* general inversion algorithm */
356e1051a39Sopenharmony_ci
357e1051a39Sopenharmony_ci        while (!BN_is_zero(B)) {
358e1051a39Sopenharmony_ci            BIGNUM *tmp;
359e1051a39Sopenharmony_ci
360e1051a39Sopenharmony_ci            /*-
361e1051a39Sopenharmony_ci             *      0 < B < A,
362e1051a39Sopenharmony_ci             * (*) -sign*X*a  ==  B   (mod |n|),
363e1051a39Sopenharmony_ci             *      sign*Y*a  ==  A   (mod |n|)
364e1051a39Sopenharmony_ci             */
365e1051a39Sopenharmony_ci
366e1051a39Sopenharmony_ci            /* (D, M) := (A/B, A%B) ... */
367e1051a39Sopenharmony_ci            if (BN_num_bits(A) == BN_num_bits(B)) {
368e1051a39Sopenharmony_ci                if (!BN_one(D))
369e1051a39Sopenharmony_ci                    goto err;
370e1051a39Sopenharmony_ci                if (!BN_sub(M, A, B))
371e1051a39Sopenharmony_ci                    goto err;
372e1051a39Sopenharmony_ci            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
373e1051a39Sopenharmony_ci                /* A/B is 1, 2, or 3 */
374e1051a39Sopenharmony_ci                if (!BN_lshift1(T, B))
375e1051a39Sopenharmony_ci                    goto err;
376e1051a39Sopenharmony_ci                if (BN_ucmp(A, T) < 0) {
377e1051a39Sopenharmony_ci                    /* A < 2*B, so D=1 */
378e1051a39Sopenharmony_ci                    if (!BN_one(D))
379e1051a39Sopenharmony_ci                        goto err;
380e1051a39Sopenharmony_ci                    if (!BN_sub(M, A, B))
381e1051a39Sopenharmony_ci                        goto err;
382e1051a39Sopenharmony_ci                } else {
383e1051a39Sopenharmony_ci                    /* A >= 2*B, so D=2 or D=3 */
384e1051a39Sopenharmony_ci                    if (!BN_sub(M, A, T))
385e1051a39Sopenharmony_ci                        goto err;
386e1051a39Sopenharmony_ci                    if (!BN_add(D, T, B))
387e1051a39Sopenharmony_ci                        goto err; /* use D (:= 3*B) as temp */
388e1051a39Sopenharmony_ci                    if (BN_ucmp(A, D) < 0) {
389e1051a39Sopenharmony_ci                        /* A < 3*B, so D=2 */
390e1051a39Sopenharmony_ci                        if (!BN_set_word(D, 2))
391e1051a39Sopenharmony_ci                            goto err;
392e1051a39Sopenharmony_ci                        /*
393e1051a39Sopenharmony_ci                         * M (= A - 2*B) already has the correct value
394e1051a39Sopenharmony_ci                         */
395e1051a39Sopenharmony_ci                    } else {
396e1051a39Sopenharmony_ci                        /* only D=3 remains */
397e1051a39Sopenharmony_ci                        if (!BN_set_word(D, 3))
398e1051a39Sopenharmony_ci                            goto err;
399e1051a39Sopenharmony_ci                        /*
400e1051a39Sopenharmony_ci                         * currently M = A - 2*B, but we need M = A - 3*B
401e1051a39Sopenharmony_ci                         */
402e1051a39Sopenharmony_ci                        if (!BN_sub(M, M, B))
403e1051a39Sopenharmony_ci                            goto err;
404e1051a39Sopenharmony_ci                    }
405e1051a39Sopenharmony_ci                }
406e1051a39Sopenharmony_ci            } else {
407e1051a39Sopenharmony_ci                if (!BN_div(D, M, A, B, ctx))
408e1051a39Sopenharmony_ci                    goto err;
409e1051a39Sopenharmony_ci            }
410e1051a39Sopenharmony_ci
411e1051a39Sopenharmony_ci            /*-
412e1051a39Sopenharmony_ci             * Now
413e1051a39Sopenharmony_ci             *      A = D*B + M;
414e1051a39Sopenharmony_ci             * thus we have
415e1051a39Sopenharmony_ci             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
416e1051a39Sopenharmony_ci             */
417e1051a39Sopenharmony_ci
418e1051a39Sopenharmony_ci            tmp = A;    /* keep the BIGNUM object, the value does not matter */
419e1051a39Sopenharmony_ci
420e1051a39Sopenharmony_ci            /* (A, B) := (B, A mod B) ... */
421e1051a39Sopenharmony_ci            A = B;
422e1051a39Sopenharmony_ci            B = M;
423e1051a39Sopenharmony_ci            /* ... so we have  0 <= B < A  again */
424e1051a39Sopenharmony_ci
425e1051a39Sopenharmony_ci            /*-
426e1051a39Sopenharmony_ci             * Since the former  M  is now  B  and the former  B  is now  A,
427e1051a39Sopenharmony_ci             * (**) translates into
428e1051a39Sopenharmony_ci             *       sign*Y*a  ==  D*A + B    (mod |n|),
429e1051a39Sopenharmony_ci             * i.e.
430e1051a39Sopenharmony_ci             *       sign*Y*a - D*A  ==  B    (mod |n|).
431e1051a39Sopenharmony_ci             * Similarly, (*) translates into
432e1051a39Sopenharmony_ci             *      -sign*X*a  ==  A          (mod |n|).
433e1051a39Sopenharmony_ci             *
434e1051a39Sopenharmony_ci             * Thus,
435e1051a39Sopenharmony_ci             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
436e1051a39Sopenharmony_ci             * i.e.
437e1051a39Sopenharmony_ci             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
438e1051a39Sopenharmony_ci             *
439e1051a39Sopenharmony_ci             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
440e1051a39Sopenharmony_ci             *      -sign*X*a  ==  B   (mod |n|),
441e1051a39Sopenharmony_ci             *       sign*Y*a  ==  A   (mod |n|).
442e1051a39Sopenharmony_ci             * Note that  X  and  Y  stay non-negative all the time.
443e1051a39Sopenharmony_ci             */
444e1051a39Sopenharmony_ci
445e1051a39Sopenharmony_ci            /*
446e1051a39Sopenharmony_ci             * most of the time D is very small, so we can optimize tmp := D*X+Y
447e1051a39Sopenharmony_ci             */
448e1051a39Sopenharmony_ci            if (BN_is_one(D)) {
449e1051a39Sopenharmony_ci                if (!BN_add(tmp, X, Y))
450e1051a39Sopenharmony_ci                    goto err;
451e1051a39Sopenharmony_ci            } else {
452e1051a39Sopenharmony_ci                if (BN_is_word(D, 2)) {
453e1051a39Sopenharmony_ci                    if (!BN_lshift1(tmp, X))
454e1051a39Sopenharmony_ci                        goto err;
455e1051a39Sopenharmony_ci                } else if (BN_is_word(D, 4)) {
456e1051a39Sopenharmony_ci                    if (!BN_lshift(tmp, X, 2))
457e1051a39Sopenharmony_ci                        goto err;
458e1051a39Sopenharmony_ci                } else if (D->top == 1) {
459e1051a39Sopenharmony_ci                    if (!BN_copy(tmp, X))
460e1051a39Sopenharmony_ci                        goto err;
461e1051a39Sopenharmony_ci                    if (!BN_mul_word(tmp, D->d[0]))
462e1051a39Sopenharmony_ci                        goto err;
463e1051a39Sopenharmony_ci                } else {
464e1051a39Sopenharmony_ci                    if (!BN_mul(tmp, D, X, ctx))
465e1051a39Sopenharmony_ci                        goto err;
466e1051a39Sopenharmony_ci                }
467e1051a39Sopenharmony_ci                if (!BN_add(tmp, tmp, Y))
468e1051a39Sopenharmony_ci                    goto err;
469e1051a39Sopenharmony_ci            }
470e1051a39Sopenharmony_ci
471e1051a39Sopenharmony_ci            M = Y;      /* keep the BIGNUM object, the value does not matter */
472e1051a39Sopenharmony_ci            Y = X;
473e1051a39Sopenharmony_ci            X = tmp;
474e1051a39Sopenharmony_ci            sign = -sign;
475e1051a39Sopenharmony_ci        }
476e1051a39Sopenharmony_ci    }
477e1051a39Sopenharmony_ci
478e1051a39Sopenharmony_ci    /*-
479e1051a39Sopenharmony_ci     * The while loop (Euclid's algorithm) ends when
480e1051a39Sopenharmony_ci     *      A == gcd(a,n);
481e1051a39Sopenharmony_ci     * we have
482e1051a39Sopenharmony_ci     *       sign*Y*a  ==  A  (mod |n|),
483e1051a39Sopenharmony_ci     * where  Y  is non-negative.
484e1051a39Sopenharmony_ci     */
485e1051a39Sopenharmony_ci
486e1051a39Sopenharmony_ci    if (sign < 0) {
487e1051a39Sopenharmony_ci        if (!BN_sub(Y, n, Y))
488e1051a39Sopenharmony_ci            goto err;
489e1051a39Sopenharmony_ci    }
490e1051a39Sopenharmony_ci    /* Now  Y*a  ==  A  (mod |n|).  */
491e1051a39Sopenharmony_ci
492e1051a39Sopenharmony_ci    if (BN_is_one(A)) {
493e1051a39Sopenharmony_ci        /* Y*a == 1  (mod |n|) */
494e1051a39Sopenharmony_ci        if (!Y->neg && BN_ucmp(Y, n) < 0) {
495e1051a39Sopenharmony_ci            if (!BN_copy(R, Y))
496e1051a39Sopenharmony_ci                goto err;
497e1051a39Sopenharmony_ci        } else {
498e1051a39Sopenharmony_ci            if (!BN_nnmod(R, Y, n, ctx))
499e1051a39Sopenharmony_ci                goto err;
500e1051a39Sopenharmony_ci        }
501e1051a39Sopenharmony_ci    } else {
502e1051a39Sopenharmony_ci        *pnoinv = 1;
503e1051a39Sopenharmony_ci        goto err;
504e1051a39Sopenharmony_ci    }
505e1051a39Sopenharmony_ci    ret = R;
506e1051a39Sopenharmony_ci err:
507e1051a39Sopenharmony_ci    if ((ret == NULL) && (in == NULL))
508e1051a39Sopenharmony_ci        BN_free(R);
509e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
510e1051a39Sopenharmony_ci    bn_check_top(ret);
511e1051a39Sopenharmony_ci    return ret;
512e1051a39Sopenharmony_ci}
513e1051a39Sopenharmony_ci
514e1051a39Sopenharmony_ci/* solves ax == 1 (mod n) */
515e1051a39Sopenharmony_ciBIGNUM *BN_mod_inverse(BIGNUM *in,
516e1051a39Sopenharmony_ci                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
517e1051a39Sopenharmony_ci{
518e1051a39Sopenharmony_ci    BN_CTX *new_ctx = NULL;
519e1051a39Sopenharmony_ci    BIGNUM *rv;
520e1051a39Sopenharmony_ci    int noinv = 0;
521e1051a39Sopenharmony_ci
522e1051a39Sopenharmony_ci    if (ctx == NULL) {
523e1051a39Sopenharmony_ci        ctx = new_ctx = BN_CTX_new_ex(NULL);
524e1051a39Sopenharmony_ci        if (ctx == NULL) {
525e1051a39Sopenharmony_ci            ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
526e1051a39Sopenharmony_ci            return NULL;
527e1051a39Sopenharmony_ci        }
528e1051a39Sopenharmony_ci    }
529e1051a39Sopenharmony_ci
530e1051a39Sopenharmony_ci    rv = int_bn_mod_inverse(in, a, n, ctx, &noinv);
531e1051a39Sopenharmony_ci    if (noinv)
532e1051a39Sopenharmony_ci        ERR_raise(ERR_LIB_BN, BN_R_NO_INVERSE);
533e1051a39Sopenharmony_ci    BN_CTX_free(new_ctx);
534e1051a39Sopenharmony_ci    return rv;
535e1051a39Sopenharmony_ci}
536e1051a39Sopenharmony_ci
537e1051a39Sopenharmony_ci/*-
538e1051a39Sopenharmony_ci * This function is based on the constant-time GCD work by Bernstein and Yang:
539e1051a39Sopenharmony_ci * https://eprint.iacr.org/2019/266
540e1051a39Sopenharmony_ci * Generalized fast GCD function to allow even inputs.
541e1051a39Sopenharmony_ci * The algorithm first finds the shared powers of 2 between
542e1051a39Sopenharmony_ci * the inputs, and removes them, reducing at least one of the
543e1051a39Sopenharmony_ci * inputs to an odd value. Then it proceeds to calculate the GCD.
544e1051a39Sopenharmony_ci * Before returning the resulting GCD, we take care of adding
545e1051a39Sopenharmony_ci * back the powers of two removed at the beginning.
546e1051a39Sopenharmony_ci * Note 1: we assume the bit length of both inputs is public information,
547e1051a39Sopenharmony_ci * since access to top potentially leaks this information.
548e1051a39Sopenharmony_ci */
549e1051a39Sopenharmony_ciint BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
550e1051a39Sopenharmony_ci{
551e1051a39Sopenharmony_ci    BIGNUM *g, *temp = NULL;
552e1051a39Sopenharmony_ci    BN_ULONG mask = 0;
553e1051a39Sopenharmony_ci    int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0;
554e1051a39Sopenharmony_ci
555e1051a39Sopenharmony_ci    /* Note 2: zero input corner cases are not constant-time since they are
556e1051a39Sopenharmony_ci     * handled immediately. An attacker can run an attack under this
557e1051a39Sopenharmony_ci     * assumption without the need of side-channel information. */
558e1051a39Sopenharmony_ci    if (BN_is_zero(in_b)) {
559e1051a39Sopenharmony_ci        ret = BN_copy(r, in_a) != NULL;
560e1051a39Sopenharmony_ci        r->neg = 0;
561e1051a39Sopenharmony_ci        return ret;
562e1051a39Sopenharmony_ci    }
563e1051a39Sopenharmony_ci    if (BN_is_zero(in_a)) {
564e1051a39Sopenharmony_ci        ret = BN_copy(r, in_b) != NULL;
565e1051a39Sopenharmony_ci        r->neg = 0;
566e1051a39Sopenharmony_ci        return ret;
567e1051a39Sopenharmony_ci    }
568e1051a39Sopenharmony_ci
569e1051a39Sopenharmony_ci    bn_check_top(in_a);
570e1051a39Sopenharmony_ci    bn_check_top(in_b);
571e1051a39Sopenharmony_ci
572e1051a39Sopenharmony_ci    BN_CTX_start(ctx);
573e1051a39Sopenharmony_ci    temp = BN_CTX_get(ctx);
574e1051a39Sopenharmony_ci    g = BN_CTX_get(ctx);
575e1051a39Sopenharmony_ci
576e1051a39Sopenharmony_ci    /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */
577e1051a39Sopenharmony_ci    if (g == NULL
578e1051a39Sopenharmony_ci        || !BN_lshift1(g, in_b)
579e1051a39Sopenharmony_ci        || !BN_lshift1(r, in_a))
580e1051a39Sopenharmony_ci        goto err;
581e1051a39Sopenharmony_ci
582e1051a39Sopenharmony_ci    /* find shared powers of two, i.e. "shifts" >= 1 */
583e1051a39Sopenharmony_ci    for (i = 0; i < r->dmax && i < g->dmax; i++) {
584e1051a39Sopenharmony_ci        mask = ~(r->d[i] | g->d[i]);
585e1051a39Sopenharmony_ci        for (j = 0; j < BN_BITS2; j++) {
586e1051a39Sopenharmony_ci            bit &= mask;
587e1051a39Sopenharmony_ci            shifts += bit;
588e1051a39Sopenharmony_ci            mask >>= 1;
589e1051a39Sopenharmony_ci        }
590e1051a39Sopenharmony_ci    }
591e1051a39Sopenharmony_ci
592e1051a39Sopenharmony_ci    /* subtract shared powers of two; shifts >= 1 */
593e1051a39Sopenharmony_ci    if (!BN_rshift(r, r, shifts)
594e1051a39Sopenharmony_ci        || !BN_rshift(g, g, shifts))
595e1051a39Sopenharmony_ci        goto err;
596e1051a39Sopenharmony_ci
597e1051a39Sopenharmony_ci    /* expand to biggest nword, with room for a possible extra word */
598e1051a39Sopenharmony_ci    top = 1 + ((r->top >= g->top) ? r->top : g->top);
599e1051a39Sopenharmony_ci    if (bn_wexpand(r, top) == NULL
600e1051a39Sopenharmony_ci        || bn_wexpand(g, top) == NULL
601e1051a39Sopenharmony_ci        || bn_wexpand(temp, top) == NULL)
602e1051a39Sopenharmony_ci        goto err;
603e1051a39Sopenharmony_ci
604e1051a39Sopenharmony_ci    /* re arrange inputs s.t. r is odd */
605e1051a39Sopenharmony_ci    BN_consttime_swap((~r->d[0]) & 1, r, g, top);
606e1051a39Sopenharmony_ci
607e1051a39Sopenharmony_ci    /* compute the number of iterations */
608e1051a39Sopenharmony_ci    rlen = BN_num_bits(r);
609e1051a39Sopenharmony_ci    glen = BN_num_bits(g);
610e1051a39Sopenharmony_ci    m = 4 + 3 * ((rlen >= glen) ? rlen : glen);
611e1051a39Sopenharmony_ci
612e1051a39Sopenharmony_ci    for (i = 0; i < m; i++) {
613e1051a39Sopenharmony_ci        /* conditionally flip signs if delta is positive and g is odd */
614e1051a39Sopenharmony_ci        cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1
615e1051a39Sopenharmony_ci            /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
616e1051a39Sopenharmony_ci            & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1)));
617e1051a39Sopenharmony_ci        delta = (-cond & -delta) | ((cond - 1) & delta);
618e1051a39Sopenharmony_ci        r->neg ^= cond;
619e1051a39Sopenharmony_ci        /* swap */
620e1051a39Sopenharmony_ci        BN_consttime_swap(cond, r, g, top);
621e1051a39Sopenharmony_ci
622e1051a39Sopenharmony_ci        /* elimination step */
623e1051a39Sopenharmony_ci        delta++;
624e1051a39Sopenharmony_ci        if (!BN_add(temp, g, r))
625e1051a39Sopenharmony_ci            goto err;
626e1051a39Sopenharmony_ci        BN_consttime_swap(g->d[0] & 1 /* g is odd */
627e1051a39Sopenharmony_ci                /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */
628e1051a39Sopenharmony_ci                & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))),
629e1051a39Sopenharmony_ci                g, temp, top);
630e1051a39Sopenharmony_ci        if (!BN_rshift1(g, g))
631e1051a39Sopenharmony_ci            goto err;
632e1051a39Sopenharmony_ci    }
633e1051a39Sopenharmony_ci
634e1051a39Sopenharmony_ci    /* remove possible negative sign */
635e1051a39Sopenharmony_ci    r->neg = 0;
636e1051a39Sopenharmony_ci    /* add powers of 2 removed, then correct the artificial shift */
637e1051a39Sopenharmony_ci    if (!BN_lshift(r, r, shifts)
638e1051a39Sopenharmony_ci        || !BN_rshift1(r, r))
639e1051a39Sopenharmony_ci        goto err;
640e1051a39Sopenharmony_ci
641e1051a39Sopenharmony_ci    ret = 1;
642e1051a39Sopenharmony_ci
643e1051a39Sopenharmony_ci err:
644e1051a39Sopenharmony_ci    BN_CTX_end(ctx);
645e1051a39Sopenharmony_ci    bn_check_top(r);
646e1051a39Sopenharmony_ci    return ret;
647e1051a39Sopenharmony_ci}
648