xref: /third_party/node/deps/zlib/adler32_simd.c (revision 1cb0ef41)
1/* adler32_simd.c
2 *
3 * Copyright 2017 The Chromium Authors
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the Chromium source repository LICENSE file.
6 *
7 * Per http://en.wikipedia.org/wiki/Adler-32 the adler32 A value (aka s1) is
8 * the sum of N input data bytes D1 ... DN,
9 *
10 *   A = A0 + D1 + D2 + ... + DN
11 *
12 * where A0 is the initial value.
13 *
14 * SSE2 _mm_sad_epu8() can be used for byte sums (see http://bit.ly/2wpUOeD,
15 * for example) and accumulating the byte sums can use SSE shuffle-adds (see
16 * the "Integer" section of http://bit.ly/2erPT8t for details). Arm NEON has
17 * similar instructions.
18 *
19 * The adler32 B value (aka s2) sums the A values from each step:
20 *
21 *   B0 + (A0 + D1) + (A0 + D1 + D2) + ... + (A0 + D1 + D2 + ... + DN) or
22 *
23 *       B0 + N.A0 + N.D1 + (N-1).D2 + (N-2).D3 + ... + (N-(N-1)).DN
24 *
25 * B0 being the initial value. For 32 bytes (ideal for garden-variety SIMD):
26 *
27 *   B = B0 + 32.A0 + [D1 D2 D3 ... D32] x [32 31 30 ... 1].
28 *
29 * Adjacent blocks of 32 input bytes can be iterated with the expressions to
30 * compute the adler32 s1 s2 of M >> 32 input bytes [1].
31 *
32 * As M grows, the s1 s2 sums grow. If left unchecked, they would eventually
33 * overflow the precision of their integer representation (bad). However, s1
34 * and s2 also need to be computed modulo the adler BASE value (reduced). If
35 * at most NMAX bytes are processed before a reduce, s1 s2 _cannot_ overflow
36 * a uint32_t type (the NMAX constraint) [2].
37 *
38 * [1] the iterative equations for s2 contain constant factors; these can be
39 * hoisted from the n-blocks do loop of the SIMD code.
40 *
41 * [2] zlib adler32_z() uses this fact to implement NMAX-block-based updates
42 * of the adler s1 s2 of uint32_t type (see adler32.c).
43 */
44
45#include "adler32_simd.h"
46
47/* Definitions from adler32.c: largest prime smaller than 65536 */
48#define BASE 65521U
49/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
50#define NMAX 5552
51
52#if defined(ADLER32_SIMD_SSSE3)
53
54#include <tmmintrin.h>
55
56uint32_t ZLIB_INTERNAL adler32_simd_(  /* SSSE3 */
57    uint32_t adler,
58    const unsigned char *buf,
59    z_size_t len)
60{
61    /*
62     * Split Adler-32 into component sums.
63     */
64    uint32_t s1 = adler & 0xffff;
65    uint32_t s2 = adler >> 16;
66
67    /*
68     * Process the data in blocks.
69     */
70    const unsigned BLOCK_SIZE = 1 << 5;
71
72    z_size_t blocks = len / BLOCK_SIZE;
73    len -= blocks * BLOCK_SIZE;
74
75    while (blocks)
76    {
77        unsigned n = NMAX / BLOCK_SIZE;  /* The NMAX constraint. */
78        if (n > blocks)
79            n = (unsigned) blocks;
80        blocks -= n;
81
82        const __m128i tap1 =
83            _mm_setr_epi8(32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17);
84        const __m128i tap2 =
85            _mm_setr_epi8(16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
86        const __m128i zero =
87            _mm_setr_epi8( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
88        const __m128i ones =
89            _mm_set_epi16( 1, 1, 1, 1, 1, 1, 1, 1);
90
91        /*
92         * Process n blocks of data. At most NMAX data bytes can be
93         * processed before s2 must be reduced modulo BASE.
94         */
95        __m128i v_ps = _mm_set_epi32(0, 0, 0, s1 * n);
96        __m128i v_s2 = _mm_set_epi32(0, 0, 0, s2);
97        __m128i v_s1 = _mm_set_epi32(0, 0, 0, 0);
98
99        do {
100            /*
101             * Load 32 input bytes.
102             */
103            const __m128i bytes1 = _mm_loadu_si128((__m128i*)(buf));
104            const __m128i bytes2 = _mm_loadu_si128((__m128i*)(buf + 16));
105
106            /*
107             * Add previous block byte sum to v_ps.
108             */
109            v_ps = _mm_add_epi32(v_ps, v_s1);
110
111            /*
112             * Horizontally add the bytes for s1, multiply-adds the
113             * bytes by [ 32, 31, 30, ... ] for s2.
114             */
115            v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes1, zero));
116            const __m128i mad1 = _mm_maddubs_epi16(bytes1, tap1);
117            v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad1, ones));
118
119            v_s1 = _mm_add_epi32(v_s1, _mm_sad_epu8(bytes2, zero));
120            const __m128i mad2 = _mm_maddubs_epi16(bytes2, tap2);
121            v_s2 = _mm_add_epi32(v_s2, _mm_madd_epi16(mad2, ones));
122
123            buf += BLOCK_SIZE;
124
125        } while (--n);
126
127        v_s2 = _mm_add_epi32(v_s2, _mm_slli_epi32(v_ps, 5));
128
129        /*
130         * Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
131         */
132
133#define S23O1 _MM_SHUFFLE(2,3,0,1)  /* A B C D -> B A D C */
134#define S1O32 _MM_SHUFFLE(1,0,3,2)  /* A B C D -> C D A B */
135
136        v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S23O1));
137        v_s1 = _mm_add_epi32(v_s1, _mm_shuffle_epi32(v_s1, S1O32));
138
139        s1 += _mm_cvtsi128_si32(v_s1);
140
141        v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S23O1));
142        v_s2 = _mm_add_epi32(v_s2, _mm_shuffle_epi32(v_s2, S1O32));
143
144        s2 = _mm_cvtsi128_si32(v_s2);
145
146#undef S23O1
147#undef S1O32
148
149        /*
150         * Reduce.
151         */
152        s1 %= BASE;
153        s2 %= BASE;
154    }
155
156    /*
157     * Handle leftover data.
158     */
159    if (len) {
160        if (len >= 16) {
161            s2 += (s1 += *buf++);
162            s2 += (s1 += *buf++);
163            s2 += (s1 += *buf++);
164            s2 += (s1 += *buf++);
165
166            s2 += (s1 += *buf++);
167            s2 += (s1 += *buf++);
168            s2 += (s1 += *buf++);
169            s2 += (s1 += *buf++);
170
171            s2 += (s1 += *buf++);
172            s2 += (s1 += *buf++);
173            s2 += (s1 += *buf++);
174            s2 += (s1 += *buf++);
175
176            s2 += (s1 += *buf++);
177            s2 += (s1 += *buf++);
178            s2 += (s1 += *buf++);
179            s2 += (s1 += *buf++);
180
181            len -= 16;
182        }
183
184        while (len--) {
185            s2 += (s1 += *buf++);
186        }
187
188        if (s1 >= BASE)
189            s1 -= BASE;
190        s2 %= BASE;
191    }
192
193    /*
194     * Return the recombined sums.
195     */
196    return s1 | (s2 << 16);
197}
198
199#elif defined(ADLER32_SIMD_NEON)
200
201#include <arm_neon.h>
202
203uint32_t ZLIB_INTERNAL adler32_simd_(  /* NEON */
204    uint32_t adler,
205    const unsigned char *buf,
206    z_size_t len)
207{
208    /*
209     * Split Adler-32 into component sums.
210     */
211    uint32_t s1 = adler & 0xffff;
212    uint32_t s2 = adler >> 16;
213
214    /*
215     * Serially compute s1 & s2, until the data is 16-byte aligned.
216     */
217    if ((uintptr_t)buf & 15) {
218        while ((uintptr_t)buf & 15) {
219            s2 += (s1 += *buf++);
220            --len;
221        }
222
223        if (s1 >= BASE)
224            s1 -= BASE;
225        s2 %= BASE;
226    }
227
228    /*
229     * Process the data in blocks.
230     */
231    const unsigned BLOCK_SIZE = 1 << 5;
232
233    z_size_t blocks = len / BLOCK_SIZE;
234    len -= blocks * BLOCK_SIZE;
235
236    while (blocks)
237    {
238        unsigned n = NMAX / BLOCK_SIZE;  /* The NMAX constraint. */
239        if (n > blocks)
240            n = (unsigned) blocks;
241        blocks -= n;
242
243        /*
244         * Process n blocks of data. At most NMAX data bytes can be
245         * processed before s2 must be reduced modulo BASE.
246         */
247        uint32x4_t v_s2 = (uint32x4_t) { 0, 0, 0, s1 * n };
248        uint32x4_t v_s1 = (uint32x4_t) { 0, 0, 0, 0 };
249
250        uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
251        uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
252        uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
253        uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
254
255        do {
256            /*
257             * Load 32 input bytes.
258             */
259            const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(buf));
260            const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(buf + 16));
261
262            /*
263             * Add previous block byte sum to v_s2.
264             */
265            v_s2 = vaddq_u32(v_s2, v_s1);
266
267            /*
268             * Horizontally add the bytes for s1.
269             */
270            v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
271
272            /*
273             * Vertically add the bytes for s2.
274             */
275            v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8 (bytes1));
276            v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
277            v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8 (bytes2));
278            v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
279
280            buf += BLOCK_SIZE;
281
282        } while (--n);
283
284        v_s2 = vshlq_n_u32(v_s2, 5);
285
286        /*
287         * Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
288         */
289        v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_1),
290            (uint16x4_t) { 32, 31, 30, 29 });
291        v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1),
292            (uint16x4_t) { 28, 27, 26, 25 });
293        v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_2),
294            (uint16x4_t) { 24, 23, 22, 21 });
295        v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2),
296            (uint16x4_t) { 20, 19, 18, 17 });
297        v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_3),
298            (uint16x4_t) { 16, 15, 14, 13 });
299        v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3),
300            (uint16x4_t) { 12, 11, 10,  9 });
301        v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_4),
302            (uint16x4_t) {  8,  7,  6,  5 });
303        v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4),
304            (uint16x4_t) {  4,  3,  2,  1 });
305
306        /*
307         * Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
308         */
309        uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
310        uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
311        uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
312
313        s1 += vget_lane_u32(s1s2, 0);
314        s2 += vget_lane_u32(s1s2, 1);
315
316        /*
317         * Reduce.
318         */
319        s1 %= BASE;
320        s2 %= BASE;
321    }
322
323    /*
324     * Handle leftover data.
325     */
326    if (len) {
327        if (len >= 16) {
328            s2 += (s1 += *buf++);
329            s2 += (s1 += *buf++);
330            s2 += (s1 += *buf++);
331            s2 += (s1 += *buf++);
332
333            s2 += (s1 += *buf++);
334            s2 += (s1 += *buf++);
335            s2 += (s1 += *buf++);
336            s2 += (s1 += *buf++);
337
338            s2 += (s1 += *buf++);
339            s2 += (s1 += *buf++);
340            s2 += (s1 += *buf++);
341            s2 += (s1 += *buf++);
342
343            s2 += (s1 += *buf++);
344            s2 += (s1 += *buf++);
345            s2 += (s1 += *buf++);
346            s2 += (s1 += *buf++);
347
348            len -= 16;
349        }
350
351        while (len--) {
352            s2 += (s1 += *buf++);
353        }
354
355        if (s1 >= BASE)
356            s1 -= BASE;
357        s2 %= BASE;
358    }
359
360    /*
361     * Return the recombined sums.
362     */
363    return s1 | (s2 << 16);
364}
365
366#endif  /* ADLER32_SIMD_SSSE3 */
367