1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X64
6
7#include "src/regexp/x64/regexp-macro-assembler-x64.h"
8
9#include "src/codegen/code-desc.h"
10#include "src/codegen/macro-assembler.h"
11#include "src/heap/factory.h"
12#include "src/logging/log.h"
13#include "src/objects/code-inl.h"
14#include "src/regexp/regexp-macro-assembler.h"
15#include "src/regexp/regexp-stack.h"
16
17namespace v8 {
18namespace internal {
19
20/*
21 * This assembler uses the following register assignment convention
22 * - rdx : Currently loaded character(s) as Latin1 or UC16.  Must be loaded
23 *         using LoadCurrentCharacter before using any of the dispatch methods.
24 *         Temporarily stores the index of capture start after a matching pass
25 *         for a global regexp.
26 * - rdi : Current position in input, as negative offset from end of string.
27 *         Please notice that this is the byte offset, not the character
28 *         offset!  Is always a 32-bit signed (negative) offset, but must be
29 *         maintained sign-extended to 64 bits, since it is used as index.
30 * - rsi : End of input (points to byte after last character in input),
31 *         so that rsi+rdi points to the current character.
32 * - rbp : Frame pointer.  Used to access arguments, local variables and
33 *         RegExp registers.
34 * - rsp : Points to tip of C stack.
35 * - rcx : Points to tip of backtrack stack.  The backtrack stack contains
36 *         only 32-bit values.  Most are offsets from some base (e.g., character
37 *         positions from end of string or code location from Code pointer).
38 * - r8  : Code object pointer.  Used to convert between absolute and
39 *         code-object-relative addresses.
40 *
41 * The registers rax, rbx, r9 and r11 are free to use for computations.
42 * If changed to use r12+, they should be saved as callee-save registers.
43 * The macro assembler special register r13 (kRootRegister) isn't special
44 * during execution of RegExp code (it doesn't hold the value assumed when
45 * creating JS code), so Root related macro operations can be used.
46 *
47 * Each call to a C++ method should retain these registers.
48 *
49 * The stack will have the following content, in some order, indexable from the
50 * frame pointer (see, e.g., kDirectCall):
51 *    - Address regexp       (address of the JSRegExp object; unused in native
52 *                            code, passed to match signature of interpreter)
53 *    - Isolate* isolate     (address of the current isolate)
54 *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
55 *                            through the runtime system)
56 *    - capture array size   (may fit multiple sets of matches)
57 *    - int* capture_array   (int[num_saved_registers_], for output).
58 *    - end of input         (address of end of string)
59 *    - start of input       (address of first character in string)
60 *    - start index          (character index of start)
61 *    - String input_string  (input string)
62 *    - return address
63 *    - backup of callee save registers (rbx, possibly rsi and rdi).
64 *    - success counter      (only useful for global regexp to count matches)
65 *    - Offset of location before start of input (effectively character
66 *      string start - 1).  Used to initialize capture registers to a
67 *      non-position.
68 *    - At start of string (if 1, we are starting at the start of the
69 *      string, otherwise 0)
70 *    - register 0  rbp[-n]   (Only positions must be stored in the first
71 *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
72 *    - ...
73 *
74 * The first num_saved_registers_ registers are initialized to point to
75 * "character -1" in the string (i.e., char_size() bytes before the first
76 * character of the string).  The remaining registers starts out uninitialized.
77 *
78 * The argument values must be provided by the calling code by calling the
79 * code's entry address cast to a function pointer with the following signature:
80 * int (*match)(String input_string,
81 *              int start_index,
82 *              Address start,
83 *              Address end,
84 *              int* capture_output_array,
85 *              int num_capture_registers,
86 *              bool direct_call = false,
87 *              Isolate* isolate,
88 *              Address regexp);
89 */
90
91#define __ ACCESS_MASM((&masm_))
92
93const int RegExpMacroAssemblerX64::kRegExpCodeSize;
94
95RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
96                                                 Mode mode,
97                                                 int registers_to_save)
98    : NativeRegExpMacroAssembler(isolate, zone),
99      masm_(isolate, CodeObjectRequired::kYes,
100            NewAssemblerBuffer(kRegExpCodeSize)),
101      no_root_array_scope_(&masm_),
102      code_relative_fixup_positions_(zone),
103      mode_(mode),
104      num_registers_(registers_to_save),
105      num_saved_registers_(registers_to_save),
106      entry_label_(),
107      start_label_(),
108      success_label_(),
109      backtrack_label_(),
110      exit_label_() {
111  DCHECK_EQ(0, registers_to_save % 2);
112  __ jmp(&entry_label_);   // We'll write the entry code when we know more.
113  __ bind(&start_label_);  // And then continue from here.
114}
115
116RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
117  // Unuse labels in case we throw away the assembler without calling GetCode.
118  entry_label_.Unuse();
119  start_label_.Unuse();
120  success_label_.Unuse();
121  backtrack_label_.Unuse();
122  exit_label_.Unuse();
123  check_preempt_label_.Unuse();
124  stack_overflow_label_.Unuse();
125  fallback_label_.Unuse();
126}
127
128
129int RegExpMacroAssemblerX64::stack_limit_slack()  {
130  return RegExpStack::kStackLimitSlack;
131}
132
133
134void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
135  if (by != 0) {
136    __ addq(rdi, Immediate(by * char_size()));
137  }
138}
139
140
141void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
142  DCHECK_LE(0, reg);
143  DCHECK_GT(num_registers_, reg);
144  if (by != 0) {
145    __ addq(register_location(reg), Immediate(by));
146  }
147}
148
149
150void RegExpMacroAssemblerX64::Backtrack() {
151  CheckPreemption();
152  if (has_backtrack_limit()) {
153    Label next;
154    __ incq(Operand(rbp, kBacktrackCount));
155    __ cmpq(Operand(rbp, kBacktrackCount), Immediate(backtrack_limit()));
156    __ j(not_equal, &next);
157
158    // Backtrack limit exceeded.
159    if (can_fallback()) {
160      __ jmp(&fallback_label_);
161    } else {
162      // Can't fallback, so we treat it as a failed match.
163      Fail();
164    }
165
166    __ bind(&next);
167  }
168  // Pop Code offset from backtrack stack, add Code and jump to location.
169  Pop(rbx);
170  __ addq(rbx, code_object_pointer());
171  __ jmp(rbx);
172}
173
174
175void RegExpMacroAssemblerX64::Bind(Label* label) {
176  __ bind(label);
177}
178
179
180void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
181  __ cmpl(current_character(), Immediate(c));
182  BranchOrBacktrack(equal, on_equal);
183}
184
185void RegExpMacroAssemblerX64::CheckCharacterGT(base::uc16 limit,
186                                               Label* on_greater) {
187  __ cmpl(current_character(), Immediate(limit));
188  BranchOrBacktrack(greater, on_greater);
189}
190
191void RegExpMacroAssemblerX64::CheckAtStart(int cp_offset, Label* on_at_start) {
192  __ leaq(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
193  __ cmpq(rax, Operand(rbp, kStringStartMinusOne));
194  BranchOrBacktrack(equal, on_at_start);
195}
196
197void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset,
198                                              Label* on_not_at_start) {
199  __ leaq(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
200  __ cmpq(rax, Operand(rbp, kStringStartMinusOne));
201  BranchOrBacktrack(not_equal, on_not_at_start);
202}
203
204void RegExpMacroAssemblerX64::CheckCharacterLT(base::uc16 limit,
205                                               Label* on_less) {
206  __ cmpl(current_character(), Immediate(limit));
207  BranchOrBacktrack(less, on_less);
208}
209
210void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
211  Label fallthrough;
212  __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
213  __ j(not_equal, &fallthrough);
214  Drop();
215  BranchOrBacktrack(no_condition, on_equal);
216  __ bind(&fallthrough);
217}
218
219// Push (pop) caller-saved registers used by irregexp.
220void RegExpMacroAssemblerX64::PushCallerSavedRegisters() {
221#ifndef V8_TARGET_OS_WIN
222  // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
223  __ pushq(rsi);
224  __ pushq(rdi);
225#endif
226  __ pushq(rcx);
227}
228
229void RegExpMacroAssemblerX64::PopCallerSavedRegisters() {
230  __ popq(rcx);
231#ifndef V8_TARGET_OS_WIN
232  __ popq(rdi);
233  __ popq(rsi);
234#endif
235}
236
237void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
238    int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
239  Label fallthrough;
240  ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
241  ReadPositionFromRegister(rbx, start_reg + 1);  // Offset of end of capture
242  __ subq(rbx, rdx);                             // Length of capture.
243
244  // -----------------------
245  // rdx  = Start offset of capture.
246  // rbx = Length of capture
247
248  // At this point, the capture registers are either both set or both cleared.
249  // If the capture length is zero, then the capture is either empty or cleared.
250  // Fall through in both cases.
251  __ j(equal, &fallthrough);
252
253  // -----------------------
254  // rdx - Start of capture
255  // rbx - length of capture
256  // Check that there are sufficient characters left in the input.
257  if (read_backward) {
258    __ movl(rax, Operand(rbp, kStringStartMinusOne));
259    __ addl(rax, rbx);
260    __ cmpl(rdi, rax);
261    BranchOrBacktrack(less_equal, on_no_match);
262  } else {
263    __ movl(rax, rdi);
264    __ addl(rax, rbx);
265    BranchOrBacktrack(greater, on_no_match);
266  }
267
268  if (mode_ == LATIN1) {
269    Label loop_increment;
270    if (on_no_match == nullptr) {
271      on_no_match = &backtrack_label_;
272    }
273
274    __ leaq(r9, Operand(rsi, rdx, times_1, 0));
275    __ leaq(r11, Operand(rsi, rdi, times_1, 0));
276    if (read_backward) {
277      __ subq(r11, rbx);  // Offset by length when matching backwards.
278    }
279    __ addq(rbx, r9);  // End of capture
280    // ---------------------
281    // r11 - current input character address
282    // r9 - current capture character address
283    // rbx - end of capture
284
285    Label loop;
286    __ bind(&loop);
287    __ movzxbl(rdx, Operand(r9, 0));
288    __ movzxbl(rax, Operand(r11, 0));
289    // al - input character
290    // dl - capture character
291    __ cmpb(rax, rdx);
292    __ j(equal, &loop_increment);
293
294    // Mismatch, try case-insensitive match (converting letters to lower-case).
295    // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
296    // a match.
297    __ orq(rax, Immediate(0x20));  // Convert match character to lower-case.
298    __ orq(rdx, Immediate(0x20));  // Convert capture character to lower-case.
299    __ cmpb(rax, rdx);
300    __ j(not_equal, on_no_match);  // Definitely not equal.
301    __ subb(rax, Immediate('a'));
302    __ cmpb(rax, Immediate('z' - 'a'));
303    __ j(below_equal, &loop_increment);  // In range 'a'-'z'.
304    // Latin-1: Check for values in range [224,254] but not 247.
305    __ subb(rax, Immediate(224 - 'a'));
306    __ cmpb(rax, Immediate(254 - 224));
307    __ j(above, on_no_match);  // Weren't Latin-1 letters.
308    __ cmpb(rax, Immediate(247 - 224));  // Check for 247.
309    __ j(equal, on_no_match);
310    __ bind(&loop_increment);
311    // Increment pointers into match and capture strings.
312    __ addq(r11, Immediate(1));
313    __ addq(r9, Immediate(1));
314    // Compare to end of capture, and loop if not done.
315    __ cmpq(r9, rbx);
316    __ j(below, &loop);
317
318    // Compute new value of character position after the matched part.
319    __ movq(rdi, r11);
320    __ subq(rdi, rsi);
321    if (read_backward) {
322      // Subtract match length if we matched backward.
323      __ addq(rdi, register_location(start_reg));
324      __ subq(rdi, register_location(start_reg + 1));
325    }
326  } else {
327    DCHECK(mode_ == UC16);
328    PushCallerSavedRegisters();
329
330    static const int num_arguments = 4;
331    __ PrepareCallCFunction(num_arguments);
332
333    // Put arguments into parameter registers. Parameters are
334    //   Address byte_offset1 - Address captured substring's start.
335    //   Address byte_offset2 - Address of current character position.
336    //   size_t byte_length - length of capture in bytes(!)
337    //   Isolate* isolate.
338#ifdef V8_TARGET_OS_WIN
339    DCHECK(rcx == arg_reg_1);
340    DCHECK(rdx == arg_reg_2);
341    // Compute and set byte_offset1 (start of capture).
342    __ leaq(rcx, Operand(rsi, rdx, times_1, 0));
343    // Set byte_offset2.
344    __ leaq(rdx, Operand(rsi, rdi, times_1, 0));
345    if (read_backward) {
346      __ subq(rdx, rbx);
347    }
348#else  // AMD64 calling convention
349    DCHECK(rdi == arg_reg_1);
350    DCHECK(rsi == arg_reg_2);
351    // Compute byte_offset2 (current position = rsi+rdi).
352    __ leaq(rax, Operand(rsi, rdi, times_1, 0));
353    // Compute and set byte_offset1 (start of capture).
354    __ leaq(rdi, Operand(rsi, rdx, times_1, 0));
355    // Set byte_offset2.
356    __ movq(rsi, rax);
357    if (read_backward) {
358      __ subq(rsi, rbx);
359    }
360#endif  // V8_TARGET_OS_WIN
361
362    // Set byte_length.
363    __ movq(arg_reg_3, rbx);
364    // Isolate.
365    __ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate()));
366
367    {
368      AllowExternalCallThatCantCauseGC scope(&masm_);
369      ExternalReference compare =
370          unicode
371              ? ExternalReference::re_case_insensitive_compare_unicode()
372              : ExternalReference::re_case_insensitive_compare_non_unicode();
373      __ CallCFunction(compare, num_arguments);
374    }
375
376    // Restore original values before reacting on result value.
377    __ Move(code_object_pointer(), masm_.CodeObject());
378    PopCallerSavedRegisters();
379
380    // Check if function returned non-zero for success or zero for failure.
381    __ testq(rax, rax);
382    BranchOrBacktrack(zero, on_no_match);
383    // On success, advance position by length of capture.
384    // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
385    if (read_backward) {
386      __ subq(rdi, rbx);
387    } else {
388      __ addq(rdi, rbx);
389    }
390  }
391  __ bind(&fallthrough);
392}
393
394void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg,
395                                                    bool read_backward,
396                                                    Label* on_no_match) {
397  Label fallthrough;
398
399  // Find length of back-referenced capture.
400  ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
401  ReadPositionFromRegister(rax, start_reg + 1);  // Offset of end of capture
402  __ subq(rax, rdx);                             // Length to check.
403
404  // At this point, the capture registers are either both set or both cleared.
405  // If the capture length is zero, then the capture is either empty or cleared.
406  // Fall through in both cases.
407  __ j(equal, &fallthrough);
408
409  // -----------------------
410  // rdx - Start of capture
411  // rax - length of capture
412  // Check that there are sufficient characters left in the input.
413  if (read_backward) {
414    __ movl(rbx, Operand(rbp, kStringStartMinusOne));
415    __ addl(rbx, rax);
416    __ cmpl(rdi, rbx);
417    BranchOrBacktrack(less_equal, on_no_match);
418  } else {
419    __ movl(rbx, rdi);
420    __ addl(rbx, rax);
421    BranchOrBacktrack(greater, on_no_match);
422  }
423
424  // Compute pointers to match string and capture string
425  __ leaq(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
426  if (read_backward) {
427    __ subq(rbx, rax);  // Offset by length when matching backwards.
428  }
429  __ addq(rdx, rsi);                           // Start of capture.
430  __ leaq(r9, Operand(rdx, rax, times_1, 0));  // End of capture
431
432  // -----------------------
433  // rbx - current capture character address.
434  // rbx - current input character address .
435  // r9 - end of input to match (capture length after rbx).
436
437  Label loop;
438  __ bind(&loop);
439  if (mode_ == LATIN1) {
440    __ movzxbl(rax, Operand(rdx, 0));
441    __ cmpb(rax, Operand(rbx, 0));
442  } else {
443    DCHECK(mode_ == UC16);
444    __ movzxwl(rax, Operand(rdx, 0));
445    __ cmpw(rax, Operand(rbx, 0));
446  }
447  BranchOrBacktrack(not_equal, on_no_match);
448  // Increment pointers into capture and match string.
449  __ addq(rbx, Immediate(char_size()));
450  __ addq(rdx, Immediate(char_size()));
451  // Check if we have reached end of match area.
452  __ cmpq(rdx, r9);
453  __ j(below, &loop);
454
455  // Success.
456  // Set current character position to position after match.
457  __ movq(rdi, rbx);
458  __ subq(rdi, rsi);
459  if (read_backward) {
460    // Subtract match length if we matched backward.
461    __ addq(rdi, register_location(start_reg));
462    __ subq(rdi, register_location(start_reg + 1));
463  }
464
465  __ bind(&fallthrough);
466}
467
468
469void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
470                                                Label* on_not_equal) {
471  __ cmpl(current_character(), Immediate(c));
472  BranchOrBacktrack(not_equal, on_not_equal);
473}
474
475
476void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
477                                                     uint32_t mask,
478                                                     Label* on_equal) {
479  if (c == 0) {
480    __ testl(current_character(), Immediate(mask));
481  } else {
482    __ Move(rax, mask);
483    __ andq(rax, current_character());
484    __ cmpl(rax, Immediate(c));
485  }
486  BranchOrBacktrack(equal, on_equal);
487}
488
489
490void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
491                                                        uint32_t mask,
492                                                        Label* on_not_equal) {
493  if (c == 0) {
494    __ testl(current_character(), Immediate(mask));
495  } else {
496    __ Move(rax, mask);
497    __ andq(rax, current_character());
498    __ cmpl(rax, Immediate(c));
499  }
500  BranchOrBacktrack(not_equal, on_not_equal);
501}
502
503void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
504    base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
505  DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
506  __ leal(rax, Operand(current_character(), -minus));
507  __ andl(rax, Immediate(mask));
508  __ cmpl(rax, Immediate(c));
509  BranchOrBacktrack(not_equal, on_not_equal);
510}
511
512void RegExpMacroAssemblerX64::CheckCharacterInRange(base::uc16 from,
513                                                    base::uc16 to,
514                                                    Label* on_in_range) {
515  __ leal(rax, Operand(current_character(), -from));
516  __ cmpl(rax, Immediate(to - from));
517  BranchOrBacktrack(below_equal, on_in_range);
518}
519
520void RegExpMacroAssemblerX64::CheckCharacterNotInRange(base::uc16 from,
521                                                       base::uc16 to,
522                                                       Label* on_not_in_range) {
523  __ leal(rax, Operand(current_character(), -from));
524  __ cmpl(rax, Immediate(to - from));
525  BranchOrBacktrack(above, on_not_in_range);
526}
527
528void RegExpMacroAssemblerX64::CallIsCharacterInRangeArray(
529    const ZoneList<CharacterRange>* ranges) {
530  PushCallerSavedRegisters();
531
532  static const int kNumArguments = 3;
533  __ PrepareCallCFunction(kNumArguments);
534
535  __ Move(arg_reg_1, current_character());
536  __ Move(arg_reg_2, GetOrAddRangeArray(ranges));
537  __ LoadAddress(arg_reg_3, ExternalReference::isolate_address(isolate()));
538
539  {
540    // We have a frame (set up in GetCode), but the assembler doesn't know.
541    FrameScope scope(&masm_, StackFrame::MANUAL);
542    __ CallCFunction(ExternalReference::re_is_character_in_range_array(),
543                     kNumArguments);
544  }
545
546  PopCallerSavedRegisters();
547  __ Move(code_object_pointer(), masm_.CodeObject());
548}
549
550bool RegExpMacroAssemblerX64::CheckCharacterInRangeArray(
551    const ZoneList<CharacterRange>* ranges, Label* on_in_range) {
552  CallIsCharacterInRangeArray(ranges);
553  __ testq(rax, rax);
554  BranchOrBacktrack(not_zero, on_in_range);
555  return true;
556}
557
558bool RegExpMacroAssemblerX64::CheckCharacterNotInRangeArray(
559    const ZoneList<CharacterRange>* ranges, Label* on_not_in_range) {
560  CallIsCharacterInRangeArray(ranges);
561  __ testq(rax, rax);
562  BranchOrBacktrack(zero, on_not_in_range);
563  return true;
564}
565
566void RegExpMacroAssemblerX64::CheckBitInTable(
567    Handle<ByteArray> table,
568    Label* on_bit_set) {
569  __ Move(rax, table);
570  Register index = current_character();
571  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
572    __ movq(rbx, current_character());
573    __ andq(rbx, Immediate(kTableMask));
574    index = rbx;
575  }
576  __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
577          Immediate(0));
578  BranchOrBacktrack(not_equal, on_bit_set);
579}
580
581bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(
582    StandardCharacterSet type, Label* on_no_match) {
583  // Range checks (c in min..max) are generally implemented by an unsigned
584  // (c - min) <= (max - min) check, using the sequence:
585  //   leal(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
586  //   cmpl(rax, Immediate(max - min))
587  // TODO(jgruber): No custom implementation (yet): s(UC16), S(UC16).
588  switch (type) {
589    case StandardCharacterSet::kWhitespace:
590      // Match space-characters.
591      if (mode_ == LATIN1) {
592        // One byte space characters are '\t'..'\r', ' ' and \u00a0.
593        Label success;
594        __ cmpl(current_character(), Immediate(' '));
595        __ j(equal, &success, Label::kNear);
596        // Check range 0x09..0x0D.
597        __ leal(rax, Operand(current_character(), -'\t'));
598        __ cmpl(rax, Immediate('\r' - '\t'));
599        __ j(below_equal, &success, Label::kNear);
600        // \u00a0 (NBSP).
601        __ cmpl(rax, Immediate(0x00A0 - '\t'));
602        BranchOrBacktrack(not_equal, on_no_match);
603        __ bind(&success);
604        return true;
605      }
606      return false;
607    case StandardCharacterSet::kNotWhitespace:
608      // The emitted code for generic character classes is good enough.
609      return false;
610    case StandardCharacterSet::kDigit:
611      // Match ASCII digits ('0'..'9').
612      __ leal(rax, Operand(current_character(), -'0'));
613      __ cmpl(rax, Immediate('9' - '0'));
614      BranchOrBacktrack(above, on_no_match);
615      return true;
616    case StandardCharacterSet::kNotDigit:
617      // Match non ASCII-digits.
618      __ leal(rax, Operand(current_character(), -'0'));
619      __ cmpl(rax, Immediate('9' - '0'));
620      BranchOrBacktrack(below_equal, on_no_match);
621      return true;
622    case StandardCharacterSet::kNotLineTerminator: {
623      // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
624      __ movl(rax, current_character());
625      __ xorl(rax, Immediate(0x01));
626      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
627      __ subl(rax, Immediate(0x0B));
628      __ cmpl(rax, Immediate(0x0C - 0x0B));
629      BranchOrBacktrack(below_equal, on_no_match);
630      if (mode_ == UC16) {
631        // Compare original value to 0x2028 and 0x2029, using the already
632        // computed (current_char ^ 0x01 - 0x0B). I.e., check for
633        // 0x201D (0x2028 - 0x0B) or 0x201E.
634        __ subl(rax, Immediate(0x2028 - 0x0B));
635        __ cmpl(rax, Immediate(0x2029 - 0x2028));
636        BranchOrBacktrack(below_equal, on_no_match);
637      }
638      return true;
639    }
640    case StandardCharacterSet::kLineTerminator: {
641      // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
642      __ movl(rax, current_character());
643      __ xorl(rax, Immediate(0x01));
644      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
645      __ subl(rax, Immediate(0x0B));
646      __ cmpl(rax, Immediate(0x0C - 0x0B));
647      if (mode_ == LATIN1) {
648        BranchOrBacktrack(above, on_no_match);
649      } else {
650        Label done;
651        BranchOrBacktrack(below_equal, &done);
652        // Compare original value to 0x2028 and 0x2029, using the already
653        // computed (current_char ^ 0x01 - 0x0B). I.e., check for
654        // 0x201D (0x2028 - 0x0B) or 0x201E.
655        __ subl(rax, Immediate(0x2028 - 0x0B));
656        __ cmpl(rax, Immediate(0x2029 - 0x2028));
657        BranchOrBacktrack(above, on_no_match);
658        __ bind(&done);
659      }
660      return true;
661    }
662    case StandardCharacterSet::kWord: {
663      if (mode_ != LATIN1) {
664        // Table is 256 entries, so all Latin1 characters can be tested.
665        __ cmpl(current_character(), Immediate('z'));
666        BranchOrBacktrack(above, on_no_match);
667      }
668      __ Move(rbx, ExternalReference::re_word_character_map());
669      DCHECK_EQ(0,
670                word_character_map[0]);  // Character '\0' is not a word char.
671      __ testb(Operand(rbx, current_character(), times_1, 0),
672               current_character());
673      BranchOrBacktrack(zero, on_no_match);
674      return true;
675    }
676    case StandardCharacterSet::kNotWord: {
677      Label done;
678      if (mode_ != LATIN1) {
679        // Table is 256 entries, so all Latin1 characters can be tested.
680        __ cmpl(current_character(), Immediate('z'));
681        __ j(above, &done);
682      }
683      __ Move(rbx, ExternalReference::re_word_character_map());
684      DCHECK_EQ(0,
685                word_character_map[0]);  // Character '\0' is not a word char.
686      __ testb(Operand(rbx, current_character(), times_1, 0),
687               current_character());
688      BranchOrBacktrack(not_zero, on_no_match);
689      if (mode_ != LATIN1) {
690        __ bind(&done);
691      }
692      return true;
693    }
694
695    case StandardCharacterSet::kEverything:
696      // Match any character.
697      return true;
698  }
699}
700
701void RegExpMacroAssemblerX64::Fail() {
702  STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
703  if (!global()) {
704    __ Move(rax, FAILURE);
705  }
706  __ jmp(&exit_label_);
707}
708
709void RegExpMacroAssemblerX64::LoadRegExpStackPointerFromMemory(Register dst) {
710  ExternalReference ref =
711      ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
712  __ movq(dst, __ ExternalReferenceAsOperand(ref, dst));
713}
714
715void RegExpMacroAssemblerX64::StoreRegExpStackPointerToMemory(
716    Register src, Register scratch) {
717  ExternalReference ref =
718      ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
719  __ movq(__ ExternalReferenceAsOperand(ref, scratch), src);
720}
721
722void RegExpMacroAssemblerX64::PushRegExpBasePointer(Register stack_pointer,
723                                                    Register scratch) {
724  ExternalReference ref =
725      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
726  __ movq(scratch, __ ExternalReferenceAsOperand(ref, scratch));
727  __ subq(scratch, stack_pointer);
728  __ movq(Operand(rbp, kRegExpStackBasePointer), scratch);
729}
730
731void RegExpMacroAssemblerX64::PopRegExpBasePointer(Register stack_pointer_out,
732                                                   Register scratch) {
733  ExternalReference ref =
734      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
735  __ movq(scratch, Operand(rbp, kRegExpStackBasePointer));
736  __ movq(stack_pointer_out,
737          __ ExternalReferenceAsOperand(ref, stack_pointer_out));
738  __ subq(stack_pointer_out, scratch);
739  StoreRegExpStackPointerToMemory(stack_pointer_out, scratch);
740}
741
742Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
743  Label return_rax;
744  // Finalize code - write the entry point code now we know how many registers
745  // we need.
746  __ bind(&entry_label_);
747
748  // Tell the system that we have a stack frame. Because the type is MANUAL, no
749  // physical frame is generated.
750  FrameScope scope(&masm_, StackFrame::MANUAL);
751
752  // Actually emit code to start a new stack frame.
753  __ pushq(rbp);
754  __ movq(rbp, rsp);
755
756  // Save parameters and callee-save registers. Order here should correspond
757  //  to order of kBackup_ebx etc.
758#ifdef V8_TARGET_OS_WIN
759  // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
760  // Store register parameters in pre-allocated stack slots.
761  __ movq(Operand(rbp, kInputString), arg_reg_1);
762  __ movq(Operand(rbp, kStartIndex), arg_reg_2);  // Passed as int32 in edx.
763  __ movq(Operand(rbp, kInputStart), arg_reg_3);
764  __ movq(Operand(rbp, kInputEnd), arg_reg_4);
765
766  STATIC_ASSERT(kNumCalleeSaveRegisters == 3);
767  __ pushq(rsi);
768  __ pushq(rdi);
769  __ pushq(rbx);
770#else
771  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
772  // Push register parameters on stack for reference.
773  DCHECK_EQ(kInputString, -1 * kSystemPointerSize);
774  DCHECK_EQ(kStartIndex, -2 * kSystemPointerSize);
775  DCHECK_EQ(kInputStart, -3 * kSystemPointerSize);
776  DCHECK_EQ(kInputEnd, -4 * kSystemPointerSize);
777  DCHECK_EQ(kRegisterOutput, -5 * kSystemPointerSize);
778  DCHECK_EQ(kNumOutputRegisters, -6 * kSystemPointerSize);
779  __ pushq(arg_reg_1);
780  __ pushq(arg_reg_2);
781  __ pushq(arg_reg_3);
782  __ pushq(arg_reg_4);
783  __ pushq(r8);
784  __ pushq(r9);
785
786  STATIC_ASSERT(kNumCalleeSaveRegisters == 1);
787  __ pushq(rbx);
788#endif
789
790  STATIC_ASSERT(kSuccessfulCaptures ==
791                kLastCalleeSaveRegister - kSystemPointerSize);
792  __ Push(Immediate(0));  // Number of successful matches in a global regexp.
793  STATIC_ASSERT(kStringStartMinusOne ==
794                kSuccessfulCaptures - kSystemPointerSize);
795  __ Push(Immediate(0));  // Make room for "string start - 1" constant.
796  STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize);
797  __ Push(Immediate(0));  // The backtrack counter.
798  STATIC_ASSERT(kRegExpStackBasePointer ==
799                kBacktrackCount - kSystemPointerSize);
800  __ Push(Immediate(0));  // The regexp stack base ptr.
801
802  // Initialize backtrack stack pointer. It must not be clobbered from here on.
803  // Note the backtrack_stackpointer is *not* callee-saved.
804  STATIC_ASSERT(backtrack_stackpointer() == rcx);
805  LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
806
807  // Store the regexp base pointer - we'll later restore it / write it to
808  // memory when returning from this irregexp code object.
809  PushRegExpBasePointer(backtrack_stackpointer(), kScratchRegister);
810
811  {
812    // Check if we have space on the stack for registers.
813    Label stack_limit_hit, stack_ok;
814
815    ExternalReference stack_limit =
816        ExternalReference::address_of_jslimit(isolate());
817    __ movq(r9, rsp);
818    __ Move(kScratchRegister, stack_limit);
819    __ subq(r9, Operand(kScratchRegister, 0));
820    // Handle it if the stack pointer is already below the stack limit.
821    __ j(below_equal, &stack_limit_hit);
822    // Check if there is room for the variable number of registers above
823    // the stack limit.
824    __ cmpq(r9, Immediate(num_registers_ * kSystemPointerSize));
825    __ j(above_equal, &stack_ok);
826    // Exit with OutOfMemory exception. There is not enough space on the stack
827    // for our working registers.
828    __ Move(rax, EXCEPTION);
829    __ jmp(&return_rax);
830
831    __ bind(&stack_limit_hit);
832    __ Move(code_object_pointer(), masm_.CodeObject());
833    __ pushq(backtrack_stackpointer());
834    CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
835    __ popq(backtrack_stackpointer());
836    __ testq(rax, rax);
837    // If returned value is non-zero, we exit with the returned value as result.
838    __ j(not_zero, &return_rax);
839
840    __ bind(&stack_ok);
841  }
842
843  // Allocate space on stack for registers.
844  __ AllocateStackSpace(num_registers_ * kSystemPointerSize);
845  // Load string length.
846  __ movq(rsi, Operand(rbp, kInputEnd));
847  // Load input position.
848  __ movq(rdi, Operand(rbp, kInputStart));
849  // Set up rdi to be negative offset from string end.
850  __ subq(rdi, rsi);
851  // Set rax to address of char before start of the string
852  // (effectively string position -1).
853  __ movq(rbx, Operand(rbp, kStartIndex));
854  __ negq(rbx);
855  if (mode_ == UC16) {
856    __ leaq(rax, Operand(rdi, rbx, times_2, -char_size()));
857  } else {
858    __ leaq(rax, Operand(rdi, rbx, times_1, -char_size()));
859  }
860  // Store this value in a local variable, for use when clearing
861  // position registers.
862  __ movq(Operand(rbp, kStringStartMinusOne), rax);
863
864  // Initialize code object pointer.
865  __ Move(code_object_pointer(), masm_.CodeObject());
866
867  Label load_char_start_regexp;  // Execution restarts here for global regexps.
868  {
869    Label start_regexp;
870
871    // Load newline if index is at start, previous character otherwise.
872    __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
873    __ j(not_equal, &load_char_start_regexp, Label::kNear);
874    __ Move(current_character(), '\n');
875    __ jmp(&start_regexp, Label::kNear);
876
877    // Global regexp restarts matching here.
878    __ bind(&load_char_start_regexp);
879    // Load previous char as initial value of current character register.
880    LoadCurrentCharacterUnchecked(-1, 1);
881
882    __ bind(&start_regexp);
883  }
884
885  // Initialize on-stack registers.
886  if (num_saved_registers_ > 0) {
887    // Fill saved registers with initial value = start offset - 1
888    // Fill in stack push order, to avoid accessing across an unwritten
889    // page (a problem on Windows).
890    if (num_saved_registers_ > 8) {
891      __ Move(r9, kRegisterZero);
892      Label init_loop;
893      __ bind(&init_loop);
894      __ movq(Operand(rbp, r9, times_1, 0), rax);
895      __ subq(r9, Immediate(kSystemPointerSize));
896      __ cmpq(r9, Immediate(kRegisterZero -
897                            num_saved_registers_ * kSystemPointerSize));
898      __ j(greater, &init_loop);
899    } else {  // Unroll the loop.
900      for (int i = 0; i < num_saved_registers_; i++) {
901        __ movq(register_location(i), rax);
902      }
903    }
904  }
905
906  __ jmp(&start_label_);
907
908  // Exit code:
909  if (success_label_.is_linked()) {
910    // Save captures when successful.
911    __ bind(&success_label_);
912    if (num_saved_registers_ > 0) {
913      // copy captures to output
914      __ movq(rdx, Operand(rbp, kStartIndex));
915      __ movq(rbx, Operand(rbp, kRegisterOutput));
916      __ movq(rcx, Operand(rbp, kInputEnd));
917      __ subq(rcx, Operand(rbp, kInputStart));
918      if (mode_ == UC16) {
919        __ leaq(rcx, Operand(rcx, rdx, times_2, 0));
920      } else {
921        __ addq(rcx, rdx);
922      }
923      for (int i = 0; i < num_saved_registers_; i++) {
924        __ movq(rax, register_location(i));
925        if (i == 0 && global_with_zero_length_check()) {
926          // Keep capture start in rdx for the zero-length check later.
927          __ movq(rdx, rax);
928        }
929        __ addq(rax, rcx);  // Convert to index from start, not end.
930        if (mode_ == UC16) {
931          __ sarq(rax, Immediate(1));  // Convert byte index to character index.
932        }
933        __ movl(Operand(rbx, i * kIntSize), rax);
934      }
935    }
936
937    if (global()) {
938      // Restart matching if the regular expression is flagged as global.
939      // Increment success counter.
940      __ incq(Operand(rbp, kSuccessfulCaptures));
941      // Capture results have been stored, so the number of remaining global
942      // output registers is reduced by the number of stored captures.
943      __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
944      __ subq(rcx, Immediate(num_saved_registers_));
945      // Check whether we have enough room for another set of capture results.
946      __ cmpq(rcx, Immediate(num_saved_registers_));
947      __ j(less, &exit_label_);
948
949      __ movq(Operand(rbp, kNumOutputRegisters), rcx);
950      // Advance the location for output.
951      __ addq(Operand(rbp, kRegisterOutput),
952              Immediate(num_saved_registers_ * kIntSize));
953
954      // Prepare rax to initialize registers with its value in the next run.
955      __ movq(rax, Operand(rbp, kStringStartMinusOne));
956
957      // Restore the original regexp stack pointer value (effectively, pop the
958      // stored base pointer).
959      PopRegExpBasePointer(backtrack_stackpointer(), kScratchRegister);
960
961      if (global_with_zero_length_check()) {
962        // Special case for zero-length matches.
963        // rdx: capture start index
964        __ cmpq(rdi, rdx);
965        // Not a zero-length match, restart.
966        __ j(not_equal, &load_char_start_regexp);
967        // rdi (offset from the end) is zero if we already reached the end.
968        __ testq(rdi, rdi);
969        __ j(zero, &exit_label_, Label::kNear);
970        // Advance current position after a zero-length match.
971        Label advance;
972        __ bind(&advance);
973        if (mode_ == UC16) {
974          __ addq(rdi, Immediate(2));
975        } else {
976          __ incq(rdi);
977        }
978        if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
979      }
980
981      __ jmp(&load_char_start_regexp);
982    } else {
983      __ Move(rax, SUCCESS);
984    }
985  }
986
987  __ bind(&exit_label_);
988  if (global()) {
989    // Return the number of successful captures.
990    __ movq(rax, Operand(rbp, kSuccessfulCaptures));
991  }
992
993  __ bind(&return_rax);
994  // Restore the original regexp stack pointer value (effectively, pop the
995  // stored base pointer).
996  PopRegExpBasePointer(backtrack_stackpointer(), kScratchRegister);
997
998#ifdef V8_TARGET_OS_WIN
999  // Restore callee save registers.
1000  __ leaq(rsp, Operand(rbp, kLastCalleeSaveRegister));
1001  STATIC_ASSERT(kNumCalleeSaveRegisters == 3);
1002  __ popq(rbx);
1003  __ popq(rdi);
1004  __ popq(rsi);
1005  // Stack now at rbp.
1006#else
1007  // Restore callee save register.
1008  STATIC_ASSERT(kNumCalleeSaveRegisters == 1);
1009  __ movq(rbx, Operand(rbp, kBackup_rbx));
1010  // Skip rsp to rbp.
1011  __ movq(rsp, rbp);
1012#endif
1013
1014  // Exit function frame, restore previous one.
1015  __ popq(rbp);
1016  __ ret(0);
1017
1018  // Backtrack code (branch target for conditional backtracks).
1019  if (backtrack_label_.is_linked()) {
1020    __ bind(&backtrack_label_);
1021    Backtrack();
1022  }
1023
1024  Label exit_with_exception;
1025
1026  // Preempt-code
1027  if (check_preempt_label_.is_linked()) {
1028    SafeCallTarget(&check_preempt_label_);
1029
1030    __ pushq(rdi);
1031
1032    StoreRegExpStackPointerToMemory(backtrack_stackpointer(), kScratchRegister);
1033
1034    CallCheckStackGuardState();
1035    __ testq(rax, rax);
1036    // If returning non-zero, we should end execution with the given
1037    // result as return value.
1038    __ j(not_zero, &return_rax);
1039
1040    // Restore registers.
1041    __ Move(code_object_pointer(), masm_.CodeObject());
1042    __ popq(rdi);
1043
1044    LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
1045
1046    // String might have moved: Reload esi from frame.
1047    __ movq(rsi, Operand(rbp, kInputEnd));
1048    SafeReturn();
1049  }
1050
1051  // Backtrack stack overflow code.
1052  if (stack_overflow_label_.is_linked()) {
1053    SafeCallTarget(&stack_overflow_label_);
1054    // Reached if the backtrack-stack limit has been hit.
1055
1056    PushCallerSavedRegisters();
1057
1058    // Call GrowStack(isolate).
1059
1060    StoreRegExpStackPointerToMemory(backtrack_stackpointer(), kScratchRegister);
1061
1062    static constexpr int kNumArguments = 1;
1063    __ PrepareCallCFunction(kNumArguments);
1064    __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate()));
1065
1066    ExternalReference grow_stack = ExternalReference::re_grow_stack();
1067    __ CallCFunction(grow_stack, kNumArguments);
1068    // If nullptr is returned, we have failed to grow the stack, and must exit
1069    // with a stack-overflow exception.
1070    __ testq(rax, rax);
1071    __ j(equal, &exit_with_exception);
1072    PopCallerSavedRegisters();
1073    // Otherwise use return value as new stack pointer.
1074    __ movq(backtrack_stackpointer(), rax);
1075    // Restore saved registers and continue.
1076    __ Move(code_object_pointer(), masm_.CodeObject());
1077    SafeReturn();
1078  }
1079
1080  if (exit_with_exception.is_linked()) {
1081    // If any of the code above needed to exit with an exception.
1082    __ bind(&exit_with_exception);
1083    // Exit with Result EXCEPTION(-1) to signal thrown exception.
1084    __ Move(rax, EXCEPTION);
1085    __ jmp(&return_rax);
1086  }
1087
1088  if (fallback_label_.is_linked()) {
1089    __ bind(&fallback_label_);
1090    __ Move(rax, FALLBACK_TO_EXPERIMENTAL);
1091    __ jmp(&return_rax);
1092  }
1093
1094  FixupCodeRelativePositions();
1095
1096  CodeDesc code_desc;
1097  Isolate* isolate = this->isolate();
1098  masm_.GetCode(isolate, &code_desc);
1099  Handle<Code> code = Factory::CodeBuilder(isolate, code_desc, CodeKind::REGEXP)
1100                          .set_self_reference(masm_.CodeObject())
1101                          .Build();
1102  PROFILE(isolate,
1103          RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
1104  return Handle<HeapObject>::cast(code);
1105}
1106
1107
1108void RegExpMacroAssemblerX64::GoTo(Label* to) {
1109  BranchOrBacktrack(no_condition, to);
1110}
1111
1112
1113void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
1114                                           int comparand,
1115                                           Label* if_ge) {
1116  __ cmpq(register_location(reg), Immediate(comparand));
1117  BranchOrBacktrack(greater_equal, if_ge);
1118}
1119
1120
1121void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
1122                                           int comparand,
1123                                           Label* if_lt) {
1124  __ cmpq(register_location(reg), Immediate(comparand));
1125  BranchOrBacktrack(less, if_lt);
1126}
1127
1128
1129void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
1130                                              Label* if_eq) {
1131  __ cmpq(rdi, register_location(reg));
1132  BranchOrBacktrack(equal, if_eq);
1133}
1134
1135
1136RegExpMacroAssembler::IrregexpImplementation
1137    RegExpMacroAssemblerX64::Implementation() {
1138  return kX64Implementation;
1139}
1140
1141
1142void RegExpMacroAssemblerX64::PopCurrentPosition() {
1143  Pop(rdi);
1144}
1145
1146
1147void RegExpMacroAssemblerX64::PopRegister(int register_index) {
1148  Pop(rax);
1149  __ movq(register_location(register_index), rax);
1150}
1151
1152
1153void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
1154  Push(label);
1155  CheckStackLimit();
1156}
1157
1158
1159void RegExpMacroAssemblerX64::PushCurrentPosition() {
1160  Push(rdi);
1161}
1162
1163
1164void RegExpMacroAssemblerX64::PushRegister(int register_index,
1165                                           StackCheckFlag check_stack_limit) {
1166  __ movq(rax, register_location(register_index));
1167  Push(rax);
1168  if (check_stack_limit) CheckStackLimit();
1169}
1170
1171void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
1172  __ movq(rdi, register_location(reg));
1173}
1174
1175
1176void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
1177  __ movq(dst, register_location(reg));
1178}
1179
1180// Preserves a position-independent representation of the stack pointer in reg:
1181// reg = top - sp.
1182void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
1183  ExternalReference stack_top_address =
1184      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
1185  __ movq(rax, __ ExternalReferenceAsOperand(stack_top_address, rax));
1186  __ subq(rax, backtrack_stackpointer());
1187  __ movq(register_location(reg), rax);
1188}
1189
1190void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
1191  ExternalReference stack_top_address =
1192      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
1193  __ movq(backtrack_stackpointer(),
1194          __ ExternalReferenceAsOperand(stack_top_address,
1195                                        backtrack_stackpointer()));
1196  __ subq(backtrack_stackpointer(), register_location(reg));
1197}
1198
1199void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
1200  Label after_position;
1201  __ cmpq(rdi, Immediate(-by * char_size()));
1202  __ j(greater_equal, &after_position, Label::kNear);
1203  __ Move(rdi, -by * char_size());
1204  // On RegExp code entry (where this operation is used), the character before
1205  // the current position is expected to be already loaded.
1206  // We have advanced the position, so it's safe to read backwards.
1207  LoadCurrentCharacterUnchecked(-1, 1);
1208  __ bind(&after_position);
1209}
1210
1211
1212void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
1213  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1214  __ movq(register_location(register_index), Immediate(to));
1215}
1216
1217
1218bool RegExpMacroAssemblerX64::Succeed() {
1219  __ jmp(&success_label_);
1220  return global();
1221}
1222
1223
1224void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
1225                                                             int cp_offset) {
1226  if (cp_offset == 0) {
1227    __ movq(register_location(reg), rdi);
1228  } else {
1229    __ leaq(rax, Operand(rdi, cp_offset * char_size()));
1230    __ movq(register_location(reg), rax);
1231  }
1232}
1233
1234
1235void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
1236  DCHECK(reg_from <= reg_to);
1237  __ movq(rax, Operand(rbp, kStringStartMinusOne));
1238  for (int reg = reg_from; reg <= reg_to; reg++) {
1239    __ movq(register_location(reg), rax);
1240  }
1241}
1242
1243// Private methods:
1244
1245void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
1246  // This function call preserves no register values. Caller should
1247  // store anything volatile in a C call or overwritten by this function.
1248  static const int num_arguments = 3;
1249  __ PrepareCallCFunction(num_arguments);
1250#ifdef V8_TARGET_OS_WIN
1251  // Second argument: Code of self. (Do this before overwriting r8).
1252  __ movq(rdx, code_object_pointer());
1253  // Third argument: RegExp code frame pointer.
1254  __ movq(r8, rbp);
1255  // First argument: Next address on the stack (will be address of
1256  // return address).
1257  __ leaq(rcx, Operand(rsp, -kSystemPointerSize));
1258#else
1259  // Third argument: RegExp code frame pointer.
1260  __ movq(rdx, rbp);
1261  // Second argument: Code of self.
1262  __ movq(rsi, code_object_pointer());
1263  // First argument: Next address on the stack (will be address of
1264  // return address).
1265  __ leaq(rdi, Operand(rsp, -kSystemPointerSize));
1266#endif
1267  ExternalReference stack_check =
1268      ExternalReference::re_check_stack_guard_state();
1269  __ CallCFunction(stack_check, num_arguments);
1270}
1271
1272
1273// Helper function for reading a value out of a stack frame.
1274template <typename T>
1275static T& frame_entry(Address re_frame, int frame_offset) {
1276  return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1277}
1278
1279
1280template <typename T>
1281static T* frame_entry_address(Address re_frame, int frame_offset) {
1282  return reinterpret_cast<T*>(re_frame + frame_offset);
1283}
1284
1285int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
1286                                                  Address raw_code,
1287                                                  Address re_frame) {
1288  Code re_code = Code::cast(Object(raw_code));
1289  return NativeRegExpMacroAssembler::CheckStackGuardState(
1290      frame_entry<Isolate*>(re_frame, kIsolate),
1291      frame_entry<int>(re_frame, kStartIndex),
1292      static_cast<RegExp::CallOrigin>(frame_entry<int>(re_frame, kDirectCall)),
1293      return_address, re_code,
1294      frame_entry_address<Address>(re_frame, kInputString),
1295      frame_entry_address<const byte*>(re_frame, kInputStart),
1296      frame_entry_address<const byte*>(re_frame, kInputEnd));
1297}
1298
1299
1300Operand RegExpMacroAssemblerX64::register_location(int register_index) {
1301  DCHECK(register_index < (1<<30));
1302  if (num_registers_ <= register_index) {
1303    num_registers_ = register_index + 1;
1304  }
1305  return Operand(rbp, kRegisterZero - register_index * kSystemPointerSize);
1306}
1307
1308
1309void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
1310                                            Label* on_outside_input) {
1311  if (cp_offset >= 0) {
1312    __ cmpl(rdi, Immediate(-cp_offset * char_size()));
1313    BranchOrBacktrack(greater_equal, on_outside_input);
1314  } else {
1315    __ leaq(rax, Operand(rdi, cp_offset * char_size()));
1316    __ cmpq(rax, Operand(rbp, kStringStartMinusOne));
1317    BranchOrBacktrack(less_equal, on_outside_input);
1318  }
1319}
1320
1321
1322void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
1323                                                Label* to) {
1324  if (condition < 0) {  // No condition
1325    if (to == nullptr) {
1326      Backtrack();
1327      return;
1328    }
1329    __ jmp(to);
1330    return;
1331  }
1332  if (to == nullptr) {
1333    __ j(condition, &backtrack_label_);
1334    return;
1335  }
1336  __ j(condition, to);
1337}
1338
1339
1340void RegExpMacroAssemblerX64::SafeCall(Label* to) {
1341  __ call(to);
1342}
1343
1344
1345void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
1346  __ bind(label);
1347  __ subq(Operand(rsp, 0), code_object_pointer());
1348}
1349
1350
1351void RegExpMacroAssemblerX64::SafeReturn() {
1352  __ addq(Operand(rsp, 0), code_object_pointer());
1353  __ ret(0);
1354}
1355
1356
1357void RegExpMacroAssemblerX64::Push(Register source) {
1358  DCHECK(source != backtrack_stackpointer());
1359  // Notice: This updates flags, unlike normal Push.
1360  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1361  __ movl(Operand(backtrack_stackpointer(), 0), source);
1362}
1363
1364
1365void RegExpMacroAssemblerX64::Push(Immediate value) {
1366  // Notice: This updates flags, unlike normal Push.
1367  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1368  __ movl(Operand(backtrack_stackpointer(), 0), value);
1369}
1370
1371
1372void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
1373  for (int position : code_relative_fixup_positions_) {
1374    // The position succeeds a relative label offset from position.
1375    // Patch the relative offset to be relative to the Code object pointer
1376    // instead.
1377    int patch_position = position - kIntSize;
1378    int offset = masm_.long_at(patch_position);
1379    masm_.long_at_put(patch_position,
1380                       offset
1381                       + position
1382                       + Code::kHeaderSize
1383                       - kHeapObjectTag);
1384  }
1385  code_relative_fixup_positions_.Rewind(0);
1386}
1387
1388
1389void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
1390  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1391  __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
1392  MarkPositionForCodeRelativeFixup();
1393}
1394
1395
1396void RegExpMacroAssemblerX64::Pop(Register target) {
1397  DCHECK(target != backtrack_stackpointer());
1398  __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
1399  // Notice: This updates flags, unlike normal Pop.
1400  __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1401}
1402
1403
1404void RegExpMacroAssemblerX64::Drop() {
1405  __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1406}
1407
1408
1409void RegExpMacroAssemblerX64::CheckPreemption() {
1410  // Check for preemption.
1411  Label no_preempt;
1412  ExternalReference stack_limit =
1413      ExternalReference::address_of_jslimit(isolate());
1414  __ load_rax(stack_limit);
1415  __ cmpq(rsp, rax);
1416  __ j(above, &no_preempt);
1417
1418  SafeCall(&check_preempt_label_);
1419
1420  __ bind(&no_preempt);
1421}
1422
1423
1424void RegExpMacroAssemblerX64::CheckStackLimit() {
1425  Label no_stack_overflow;
1426  ExternalReference stack_limit =
1427      ExternalReference::address_of_regexp_stack_limit_address(isolate());
1428  __ load_rax(stack_limit);
1429  __ cmpq(backtrack_stackpointer(), rax);
1430  __ j(above, &no_stack_overflow);
1431
1432  SafeCall(&stack_overflow_label_);
1433
1434  __ bind(&no_stack_overflow);
1435}
1436
1437
1438void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
1439                                                            int characters) {
1440  if (mode_ == LATIN1) {
1441    if (characters == 4) {
1442      __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1443    } else if (characters == 2) {
1444      __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1445    } else {
1446      DCHECK_EQ(1, characters);
1447      __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1448    }
1449  } else {
1450    DCHECK(mode_ == UC16);
1451    if (characters == 2) {
1452      __ movl(current_character(),
1453              Operand(rsi, rdi, times_1, cp_offset * sizeof(base::uc16)));
1454    } else {
1455      DCHECK_EQ(1, characters);
1456      __ movzxwl(current_character(),
1457                 Operand(rsi, rdi, times_1, cp_offset * sizeof(base::uc16)));
1458    }
1459  }
1460}
1461
1462#undef __
1463
1464}  // namespace internal
1465}  // namespace v8
1466
1467#endif  // V8_TARGET_ARCH_X64
1468