1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_MIPS64
6
7#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8
9#include "src/codegen/macro-assembler.h"
10#include "src/codegen/mips64/assembler-mips64-inl.h"
11#include "src/heap/factory.h"
12#include "src/logging/log.h"
13#include "src/objects/code-inl.h"
14#include "src/regexp/regexp-stack.h"
15#include "src/snapshot/embedded/embedded-data-inl.h"
16
17namespace v8 {
18namespace internal {
19
20/* clang-format off
21 *
22 * This assembler uses the following register assignment convention
23 * - s0 : Unused.
24 * - s1 : Pointer to current Code object including heap object tag.
25 * - s2 : Current position in input, as negative offset from end of string.
26 *        Please notice that this is the byte offset, not the character offset!
27 * - s5 : Currently loaded character. Must be loaded using
28 *        LoadCurrentCharacter before using any of the dispatch methods.
29 * - s6 : Points to tip of backtrack stack
30 * - s7 : End of input (points to byte after last character in input).
31 * - fp : Frame pointer. Used to access arguments, local variables and
32 *        RegExp registers.
33 * - sp : Points to tip of C stack.
34 *
35 * The remaining registers are free for computations.
36 * Each call to a public method should retain this convention.
37 *
38 * TODO(plind): O32 documented here with intent of having single 32/64 codebase
39 *              in the future.
40 *
41 * The O32 stack will have the following structure:
42 *
43 *  - fp[72]  Isolate* isolate   (address of the current isolate)
44 *  - fp[68]  direct_call  (if 1, direct call from JavaScript code,
45 *                          if 0, call through the runtime system).
46 *  - fp[64]  stack_area_base (High end of the memory area to use as
47 *                             backtracking stack).
48 *  - fp[60]  capture array size (may fit multiple sets of matches)
49 *  - fp[44..59]  MIPS O32 four argument slots
50 *  - fp[40]  int* capture_array (int[num_saved_registers_], for output).
51 *  --- sp when called ---
52 *  - fp[36]  return address      (lr).
53 *  - fp[32]  old frame pointer   (r11).
54 *  - fp[0..31]  backup of registers s0..s7.
55 *  --- frame pointer ----
56 *  - fp[-4]  end of input       (address of end of string).
57 *  - fp[-8]  start of input     (address of first character in string).
58 *  - fp[-12] start index        (character index of start).
59 *  - fp[-16] void* input_string (location of a handle containing the string).
60 *  - fp[-20] success counter    (only for global regexps to count matches).
61 *  - fp[-24] Offset of location before start of input (effectively character
62 *            string start - 1). Used to initialize capture registers to a
63 *            non-position.
64 *  - fp[-28] At start (if 1, we are starting at the start of the
65 *    string, otherwise 0)
66 *  - fp[-32] register 0         (Only positions must be stored in the first
67 *  -         register 1          num_saved_registers_ registers)
68 *  -         ...
69 *  -         register num_registers-1
70 *  --- sp ---
71 *
72 *
73 * The N64 stack will have the following structure:
74 *
75 *  - fp[80]  Isolate* isolate   (address of the current isolate)               kIsolate
76 *                                                                              kStackFrameHeader
77 *  --- sp when called ---
78 *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
79 *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
80 *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
81 *  --- frame pointer ----
82 *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
83 *  - fp[-16] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
84 *  - fp[-24] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
85 *  - fp[-32] end of input       (address of end of string).                    kInputEnd
86 *  - fp[-40] start of input     (address of first character in string).        kInputStart
87 *  - fp[-48] start index        (character index of start).                    kStartIndex
88 *  - fp[-56] void* input_string (location of a handle containing the string).  kInputString
89 *  - fp[-64] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
90 *  - fp[-72] Offset of location before start of input (effectively character   kStringStartMinusOne
91 *            position -1). Used to initialize capture registers to a
92 *            non-position.
93 *  --------- The following output registers are 32-bit values. ---------
94 *  - fp[-80] register 0         (Only positions must be stored in the first    kRegisterZero
95 *  -         register 1          num_saved_registers_ registers)
96 *  -         ...
97 *  -         register num_registers-1
98 *  --- sp ---
99 *
100 * The first num_saved_registers_ registers are initialized to point to
101 * "character -1" in the string (i.e., char_size() bytes before the first
102 * character of the string). The remaining registers start out as garbage.
103 *
104 * The data up to the return address must be placed there by the calling
105 * code and the remaining arguments are passed in registers, e.g. by calling the
106 * code entry as cast to a function with the signature:
107 * int (*match)(String input_string,
108 *              int start_index,
109 *              Address start,
110 *              Address end,
111 *              int* capture_output_array,
112 *              int num_capture_registers,
113 *              bool direct_call = false,
114 *              Isolate* isolate);
115 * The call is performed by NativeRegExpMacroAssembler::Execute()
116 * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
117 *
118 * clang-format on
119 */
120
121#define __ ACCESS_MASM(masm_)
122
123const int RegExpMacroAssemblerMIPS::kRegExpCodeSize;
124
125RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
126                                                   Mode mode,
127                                                   int registers_to_save)
128    : NativeRegExpMacroAssembler(isolate, zone),
129      masm_(std::make_unique<MacroAssembler>(
130          isolate, CodeObjectRequired::kYes,
131          NewAssemblerBuffer(kRegExpCodeSize))),
132      no_root_array_scope_(masm_.get()),
133      mode_(mode),
134      num_registers_(registers_to_save),
135      num_saved_registers_(registers_to_save),
136      entry_label_(),
137      start_label_(),
138      success_label_(),
139      backtrack_label_(),
140      exit_label_(),
141      internal_failure_label_() {
142  DCHECK_EQ(0, registers_to_save % 2);
143  __ jmp(&entry_label_);   // We'll write the entry code later.
144  // If the code gets too big or corrupted, an internal exception will be
145  // raised, and we will exit right away.
146  __ bind(&internal_failure_label_);
147  __ li(v0, Operand(FAILURE));
148  __ Ret();
149  __ bind(&start_label_);  // And then continue from here.
150}
151
152RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
153  // Unuse labels in case we throw away the assembler without calling GetCode.
154  entry_label_.Unuse();
155  start_label_.Unuse();
156  success_label_.Unuse();
157  backtrack_label_.Unuse();
158  exit_label_.Unuse();
159  check_preempt_label_.Unuse();
160  stack_overflow_label_.Unuse();
161  internal_failure_label_.Unuse();
162  fallback_label_.Unuse();
163}
164
165
166int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
167  return RegExpStack::kStackLimitSlack;
168}
169
170
171void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
172  if (by != 0) {
173    __ Daddu(current_input_offset(),
174            current_input_offset(), Operand(by * char_size()));
175  }
176}
177
178
179void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
180  DCHECK_LE(0, reg);
181  DCHECK_GT(num_registers_, reg);
182  if (by != 0) {
183    __ Ld(a0, register_location(reg));
184    __ Daddu(a0, a0, Operand(by));
185    __ Sd(a0, register_location(reg));
186  }
187}
188
189
190void RegExpMacroAssemblerMIPS::Backtrack() {
191  CheckPreemption();
192  if (has_backtrack_limit()) {
193    Label next;
194    __ Ld(a0, MemOperand(frame_pointer(), kBacktrackCount));
195    __ Daddu(a0, a0, Operand(1));
196    __ Sd(a0, MemOperand(frame_pointer(), kBacktrackCount));
197    __ Branch(&next, ne, a0, Operand(backtrack_limit()));
198
199    // Backtrack limit exceeded.
200    if (can_fallback()) {
201      __ jmp(&fallback_label_);
202    } else {
203      // Can't fallback, so we treat it as a failed match.
204      Fail();
205    }
206
207    __ bind(&next);
208  }
209  // Pop Code offset from backtrack stack, add Code and jump to location.
210  Pop(a0);
211  __ Daddu(a0, a0, code_pointer());
212  __ Jump(a0);
213}
214
215
216void RegExpMacroAssemblerMIPS::Bind(Label* label) {
217  __ bind(label);
218}
219
220
221void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
222  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
223}
224
225void RegExpMacroAssemblerMIPS::CheckCharacterGT(base::uc16 limit,
226                                                Label* on_greater) {
227  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
228}
229
230void RegExpMacroAssemblerMIPS::CheckAtStart(int cp_offset, Label* on_at_start) {
231  __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
232  __ Daddu(a0, current_input_offset(),
233           Operand(-char_size() + cp_offset * char_size()));
234  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
235}
236
237
238void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
239                                               Label* on_not_at_start) {
240  __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
241  __ Daddu(a0, current_input_offset(),
242           Operand(-char_size() + cp_offset * char_size()));
243  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
244}
245
246void RegExpMacroAssemblerMIPS::CheckCharacterLT(base::uc16 limit,
247                                                Label* on_less) {
248  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
249}
250
251void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
252  Label backtrack_non_equal;
253  __ Lw(a0, MemOperand(backtrack_stackpointer(), 0));
254  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
255  __ Daddu(backtrack_stackpointer(),
256          backtrack_stackpointer(),
257          Operand(kIntSize));
258  __ bind(&backtrack_non_equal);
259  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
260}
261
262void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
263    int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
264  Label fallthrough;
265  __ Ld(a0, register_location(start_reg));      // Index of start of capture.
266  __ Ld(a1, register_location(start_reg + 1));  // Index of end of capture.
267  __ Dsubu(a1, a1, a0);  // Length of capture.
268
269  // At this point, the capture registers are either both set or both cleared.
270  // If the capture length is zero, then the capture is either empty or cleared.
271  // Fall through in both cases.
272  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
273
274  if (read_backward) {
275    __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
276    __ Daddu(t1, t1, a1);
277    BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
278  } else {
279    __ Daddu(t1, a1, current_input_offset());
280    // Check that there are enough characters left in the input.
281    BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
282  }
283
284  if (mode_ == LATIN1) {
285    Label success;
286    Label fail;
287    Label loop_check;
288
289    // a0 - offset of start of capture.
290    // a1 - length of capture.
291    __ Daddu(a0, a0, Operand(end_of_input_address()));
292    __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
293    if (read_backward) {
294      __ Dsubu(a2, a2, Operand(a1));
295    }
296    __ Daddu(a1, a0, Operand(a1));
297
298    // a0 - Address of start of capture.
299    // a1 - Address of end of capture.
300    // a2 - Address of current input position.
301
302    Label loop;
303    __ bind(&loop);
304    __ Lbu(a3, MemOperand(a0, 0));
305    __ daddiu(a0, a0, char_size());
306    __ Lbu(a4, MemOperand(a2, 0));
307    __ daddiu(a2, a2, char_size());
308
309    __ Branch(&loop_check, eq, a4, Operand(a3));
310
311    // Mismatch, try case-insensitive match (converting letters to lower-case).
312    __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
313    __ Or(a4, a4, Operand(0x20));  // Also convert input character.
314    __ Branch(&fail, ne, a4, Operand(a3));
315    __ Dsubu(a3, a3, Operand('a'));
316    __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
317    // Latin-1: Check for values in range [224,254] but not 247.
318    __ Dsubu(a3, a3, Operand(224 - 'a'));
319    // Weren't Latin-1 letters.
320    __ Branch(&fail, hi, a3, Operand(254 - 224));
321    // Check for 247.
322    __ Branch(&fail, eq, a3, Operand(247 - 224));
323
324    __ bind(&loop_check);
325    __ Branch(&loop, lt, a0, Operand(a1));
326    __ jmp(&success);
327
328    __ bind(&fail);
329    GoTo(on_no_match);
330
331    __ bind(&success);
332    // Compute new value of character position after the matched part.
333    __ Dsubu(current_input_offset(), a2, end_of_input_address());
334    if (read_backward) {
335      __ Ld(t1, register_location(start_reg));  // Index of start of capture.
336      __ Ld(a2, register_location(start_reg + 1));  // Index of end of capture.
337      __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
338      __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
339    }
340  } else {
341    DCHECK(mode_ == UC16);
342
343    int argument_count = 4;
344    __ PrepareCallCFunction(argument_count, a2);
345
346    // a0 - offset of start of capture.
347    // a1 - length of capture.
348
349    // Put arguments into arguments registers.
350    // Parameters are
351    //   a0: Address byte_offset1 - Address captured substring's start.
352    //   a1: Address byte_offset2 - Address of current character position.
353    //   a2: size_t byte_length - length of capture in bytes(!).
354    //   a3: Isolate* isolate.
355
356    // Address of start of capture.
357    __ Daddu(a0, a0, Operand(end_of_input_address()));
358    // Length of capture.
359    __ mov(a2, a1);
360    // Save length in callee-save register for use on return.
361    __ mov(s3, a1);
362    // Address of current input position.
363    __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
364    if (read_backward) {
365      __ Dsubu(a1, a1, Operand(s3));
366    }
367    // Isolate.
368    __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
369
370    {
371      AllowExternalCallThatCantCauseGC scope(masm_.get());
372      ExternalReference function =
373          unicode
374              ? ExternalReference::re_case_insensitive_compare_unicode()
375              : ExternalReference::re_case_insensitive_compare_non_unicode();
376      __ CallCFunction(function, argument_count);
377    }
378
379    // Check if function returned non-zero for success or zero for failure.
380    BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
381    // On success, increment position by length of capture.
382    if (read_backward) {
383      __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
384    } else {
385      __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
386    }
387  }
388
389  __ bind(&fallthrough);
390}
391
392void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
393                                                     bool read_backward,
394                                                     Label* on_no_match) {
395  Label fallthrough;
396
397  // Find length of back-referenced capture.
398  __ Ld(a0, register_location(start_reg));
399  __ Ld(a1, register_location(start_reg + 1));
400  __ Dsubu(a1, a1, a0);  // Length to check.
401
402  // At this point, the capture registers are either both set or both cleared.
403  // If the capture length is zero, then the capture is either empty or cleared.
404  // Fall through in both cases.
405  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
406
407  if (read_backward) {
408    __ Ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
409    __ Daddu(t1, t1, a1);
410    BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
411  } else {
412    __ Daddu(t1, a1, current_input_offset());
413    // Check that there are enough characters left in the input.
414    BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
415  }
416
417  // Compute pointers to match string and capture string.
418  __ Daddu(a0, a0, Operand(end_of_input_address()));
419  __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
420  if (read_backward) {
421    __ Dsubu(a2, a2, Operand(a1));
422  }
423  __ Daddu(a1, a1, Operand(a0));
424
425  Label loop;
426  __ bind(&loop);
427  if (mode_ == LATIN1) {
428    __ Lbu(a3, MemOperand(a0, 0));
429    __ daddiu(a0, a0, char_size());
430    __ Lbu(a4, MemOperand(a2, 0));
431    __ daddiu(a2, a2, char_size());
432  } else {
433    DCHECK(mode_ == UC16);
434    __ Lhu(a3, MemOperand(a0, 0));
435    __ daddiu(a0, a0, char_size());
436    __ Lhu(a4, MemOperand(a2, 0));
437    __ daddiu(a2, a2, char_size());
438  }
439  BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
440  __ Branch(&loop, lt, a0, Operand(a1));
441
442  // Move current character position to position after match.
443  __ Dsubu(current_input_offset(), a2, end_of_input_address());
444  if (read_backward) {
445    __ Ld(t1, register_location(start_reg));      // Index of start of capture.
446    __ Ld(a2, register_location(start_reg + 1));  // Index of end of capture.
447    __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
448    __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
449  }
450  __ bind(&fallthrough);
451}
452
453
454void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
455                                                 Label* on_not_equal) {
456  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
457}
458
459
460void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
461                                                      uint32_t mask,
462                                                      Label* on_equal) {
463  __ And(a0, current_character(), Operand(mask));
464  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
465  BranchOrBacktrack(on_equal, eq, a0, rhs);
466}
467
468
469void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
470                                                         uint32_t mask,
471                                                         Label* on_not_equal) {
472  __ And(a0, current_character(), Operand(mask));
473  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
474  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
475}
476
477void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
478    base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) {
479  DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
480  __ Dsubu(a0, current_character(), Operand(minus));
481  __ And(a0, a0, Operand(mask));
482  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
483}
484
485void RegExpMacroAssemblerMIPS::CheckCharacterInRange(base::uc16 from,
486                                                     base::uc16 to,
487                                                     Label* on_in_range) {
488  __ Dsubu(a0, current_character(), Operand(from));
489  // Unsigned lower-or-same condition.
490  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
491}
492
493void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
494    base::uc16 from, base::uc16 to, Label* on_not_in_range) {
495  __ Dsubu(a0, current_character(), Operand(from));
496  // Unsigned higher condition.
497  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
498}
499
500void RegExpMacroAssemblerMIPS::CallIsCharacterInRangeArray(
501    const ZoneList<CharacterRange>* ranges) {
502  static const int kNumArguments = 3;
503  __ PrepareCallCFunction(kNumArguments, a0);
504
505  __ mov(a0, current_character());
506  __ li(a1, Operand(GetOrAddRangeArray(ranges)));
507  __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
508
509  {
510    // We have a frame (set up in GetCode), but the assembler doesn't know.
511    FrameScope scope(masm_.get(), StackFrame::MANUAL);
512    __ CallCFunction(ExternalReference::re_is_character_in_range_array(),
513                     kNumArguments);
514  }
515
516  __ li(code_pointer(), Operand(masm_->CodeObject()));
517}
518
519bool RegExpMacroAssemblerMIPS::CheckCharacterInRangeArray(
520    const ZoneList<CharacterRange>* ranges, Label* on_in_range) {
521  CallIsCharacterInRangeArray(ranges);
522  BranchOrBacktrack(on_in_range, ne, v0, Operand(zero_reg));
523  return true;
524}
525
526bool RegExpMacroAssemblerMIPS::CheckCharacterNotInRangeArray(
527    const ZoneList<CharacterRange>* ranges, Label* on_not_in_range) {
528  CallIsCharacterInRangeArray(ranges);
529  BranchOrBacktrack(on_not_in_range, eq, v0, Operand(zero_reg));
530  return true;
531}
532
533void RegExpMacroAssemblerMIPS::CheckBitInTable(
534    Handle<ByteArray> table,
535    Label* on_bit_set) {
536  __ li(a0, Operand(table));
537  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
538    __ And(a1, current_character(), Operand(kTableSize - 1));
539    __ Daddu(a0, a0, a1);
540  } else {
541    __ Daddu(a0, a0, current_character());
542  }
543
544  __ Lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
545  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
546}
547
548bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(
549    StandardCharacterSet type, Label* on_no_match) {
550  // Range checks (c in min..max) are generally implemented by an unsigned
551  // (c - min) <= (max - min) check.
552  // TODO(jgruber): No custom implementation (yet): s(UC16), S(UC16).
553  switch (type) {
554    case StandardCharacterSet::kWhitespace:
555      // Match space-characters.
556      if (mode_ == LATIN1) {
557        // One byte space characters are '\t'..'\r', ' ' and \u00a0.
558        Label success;
559        __ Branch(&success, eq, current_character(), Operand(' '));
560        // Check range 0x09..0x0D.
561        __ Dsubu(a0, current_character(), Operand('\t'));
562        __ Branch(&success, ls, a0, Operand('\r' - '\t'));
563        // \u00a0 (NBSP).
564        BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00A0 - '\t'));
565        __ bind(&success);
566        return true;
567      }
568      return false;
569    case StandardCharacterSet::kNotWhitespace:
570      // The emitted code for generic character classes is good enough.
571      return false;
572    case StandardCharacterSet::kDigit:
573      // Match Latin1 digits ('0'..'9').
574      __ Dsubu(a0, current_character(), Operand('0'));
575      BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
576      return true;
577    case StandardCharacterSet::kNotDigit:
578      // Match non Latin1-digits.
579      __ Dsubu(a0, current_character(), Operand('0'));
580      BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
581      return true;
582    case StandardCharacterSet::kNotLineTerminator: {
583      // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
584      __ Xor(a0, current_character(), Operand(0x01));
585      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
586      __ Dsubu(a0, a0, Operand(0x0B));
587      BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0C - 0x0B));
588      if (mode_ == UC16) {
589        // Compare original value to 0x2028 and 0x2029, using the already
590        // computed (current_char ^ 0x01 - 0x0B). I.e., check for
591        // 0x201D (0x2028 - 0x0B) or 0x201E.
592        __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
593        BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
594      }
595      return true;
596    }
597    case StandardCharacterSet::kLineTerminator: {
598      // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029).
599      __ Xor(a0, current_character(), Operand(0x01));
600      // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C.
601      __ Dsubu(a0, a0, Operand(0x0B));
602      if (mode_ == LATIN1) {
603        BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0C - 0x0B));
604      } else {
605        Label done;
606        BranchOrBacktrack(&done, ls, a0, Operand(0x0C - 0x0B));
607        // Compare original value to 0x2028 and 0x2029, using the already
608        // computed (current_char ^ 0x01 - 0x0B). I.e., check for
609        // 0x201D (0x2028 - 0x0B) or 0x201E.
610        __ Dsubu(a0, a0, Operand(0x2028 - 0x0B));
611        BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
612        __ bind(&done);
613      }
614      return true;
615    }
616    case StandardCharacterSet::kWord: {
617      if (mode_ != LATIN1) {
618        // Table is 256 entries, so all Latin1 characters can be tested.
619        BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
620      }
621      ExternalReference map = ExternalReference::re_word_character_map();
622      __ li(a0, Operand(map));
623      __ Daddu(a0, a0, current_character());
624      __ Lbu(a0, MemOperand(a0, 0));
625      BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
626      return true;
627    }
628    case StandardCharacterSet::kNotWord: {
629      Label done;
630      if (mode_ != LATIN1) {
631        // Table is 256 entries, so all Latin1 characters can be tested.
632        __ Branch(&done, hi, current_character(), Operand('z'));
633      }
634      ExternalReference map = ExternalReference::re_word_character_map();
635      __ li(a0, Operand(map));
636      __ Daddu(a0, a0, current_character());
637      __ Lbu(a0, MemOperand(a0, 0));
638      BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
639      if (mode_ != LATIN1) {
640        __ bind(&done);
641      }
642      return true;
643    }
644    case StandardCharacterSet::kEverything:
645      // Match any character.
646      return true;
647  }
648}
649
650void RegExpMacroAssemblerMIPS::Fail() {
651  __ li(v0, Operand(FAILURE));
652  __ jmp(&exit_label_);
653}
654
655void RegExpMacroAssemblerMIPS::LoadRegExpStackPointerFromMemory(Register dst) {
656  ExternalReference ref =
657      ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
658  __ li(dst, Operand(ref));
659  __ Ld(dst, MemOperand(dst));
660}
661
662void RegExpMacroAssemblerMIPS::StoreRegExpStackPointerToMemory(
663    Register src, Register scratch) {
664  ExternalReference ref =
665      ExternalReference::address_of_regexp_stack_stack_pointer(isolate());
666  __ li(scratch, Operand(ref));
667  __ Sd(src, MemOperand(scratch));
668}
669
670void RegExpMacroAssemblerMIPS::PushRegExpBasePointer(Register stack_pointer,
671                                                     Register scratch) {
672  ExternalReference ref =
673      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
674  __ li(scratch, Operand(ref));
675  __ Ld(scratch, MemOperand(scratch));
676  __ Dsubu(scratch, stack_pointer, scratch);
677  __ Sd(scratch, MemOperand(frame_pointer(), kRegExpStackBasePointer));
678}
679
680void RegExpMacroAssemblerMIPS::PopRegExpBasePointer(Register stack_pointer_out,
681                                                    Register scratch) {
682  ExternalReference ref =
683      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
684  __ Ld(stack_pointer_out,
685        MemOperand(frame_pointer(), kRegExpStackBasePointer));
686  __ li(scratch, Operand(ref));
687  __ Ld(scratch, MemOperand(scratch));
688  __ Daddu(stack_pointer_out, stack_pointer_out, scratch);
689  StoreRegExpStackPointerToMemory(stack_pointer_out, scratch);
690}
691
692Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
693  Label return_v0;
694  if (masm_->has_exception()) {
695    // If the code gets corrupted due to long regular expressions and lack of
696    // space on trampolines, an internal exception flag is set. If this case
697    // is detected, we will jump into exit sequence right away.
698    __ bind_to(&entry_label_, internal_failure_label_.pos());
699  } else {
700    // Finalize code - write the entry point code now we know how many
701    // registers we need.
702
703    // Entry code:
704    __ bind(&entry_label_);
705
706    // Tell the system that we have a stack frame.  Because the type is MANUAL,
707    // no is generated.
708    FrameScope scope(masm_.get(), StackFrame::MANUAL);
709
710    // Actually emit code to start a new stack frame.
711    // Push arguments
712    // Save callee-save registers.
713    // Start new stack frame.
714    // Store link register in existing stack-cell.
715    // Order here should correspond to order of offset constants in header file.
716    // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
717    // or dont save.
718    RegList registers_to_retain = {s0, s1, s2, s3, s4, s5, s6, s7, fp};
719    RegList argument_registers = {a0, a1, a2, a3};
720
721    argument_registers |= {a4, a5, a6, a7};
722
723    __ MultiPush(argument_registers | registers_to_retain | ra);
724    // Set frame pointer in space for it if this is not a direct call
725    // from generated code.
726    // TODO(plind): this 8 is the # of argument regs, should have definition.
727    __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
728    STATIC_ASSERT(kSuccessfulCaptures == kInputString - kSystemPointerSize);
729    __ mov(a0, zero_reg);
730    __ push(a0);  // Make room for success counter and initialize it to 0.
731    STATIC_ASSERT(kStringStartMinusOne ==
732                  kSuccessfulCaptures - kSystemPointerSize);
733    __ push(a0);  // Make room for "string start - 1" constant.
734    STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize);
735    __ push(a0);  // The backtrack counter
736    STATIC_ASSERT(kRegExpStackBasePointer ==
737                  kBacktrackCount - kSystemPointerSize);
738    __ push(a0);  // The regexp stack base ptr.
739
740    // Initialize backtrack stack pointer. It must not be clobbered from here
741    // on. Note the backtrack_stackpointer is callee-saved.
742    STATIC_ASSERT(backtrack_stackpointer() == s7);
743    LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
744
745    // Store the regexp base pointer - we'll later restore it / write it to
746    // memory when returning from this irregexp code object.
747    PushRegExpBasePointer(backtrack_stackpointer(), a1);
748
749    {
750      // Check if we have space on the stack for registers.
751      Label stack_limit_hit, stack_ok;
752
753      ExternalReference stack_limit =
754          ExternalReference::address_of_jslimit(masm_->isolate());
755      __ li(a0, Operand(stack_limit));
756      __ Ld(a0, MemOperand(a0));
757      __ Dsubu(a0, sp, a0);
758      // Handle it if the stack pointer is already below the stack limit.
759      __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
760      // Check if there is room for the variable number of registers above
761      // the stack limit.
762      __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
763      // Exit with OutOfMemory exception. There is not enough space on the stack
764      // for our working registers.
765      __ li(v0, Operand(EXCEPTION));
766      __ jmp(&return_v0);
767
768      __ bind(&stack_limit_hit);
769      CallCheckStackGuardState(a0);
770      // If returned value is non-zero, we exit with the returned value as
771      // result.
772      __ Branch(&return_v0, ne, v0, Operand(zero_reg));
773
774      __ bind(&stack_ok);
775    }
776
777    // Allocate space on stack for registers.
778    __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
779    // Load string end.
780    __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
781    // Load input start.
782    __ Ld(a0, MemOperand(frame_pointer(), kInputStart));
783    // Find negative length (offset of start relative to end).
784    __ Dsubu(current_input_offset(), a0, end_of_input_address());
785    // Set a0 to address of char before start of the input string
786    // (effectively string position -1).
787    __ Ld(a1, MemOperand(frame_pointer(), kStartIndex));
788    __ Dsubu(a0, current_input_offset(), Operand(char_size()));
789    __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
790    __ Dsubu(a0, a0, t1);
791    // Store this value in a local variable, for use when clearing
792    // position registers.
793    __ Sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
794
795    // Initialize code pointer register
796    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
797
798    Label load_char_start_regexp;
799    {
800      Label start_regexp;
801      // Load newline if index is at start, previous character otherwise.
802      __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
803      __ li(current_character(), Operand('\n'));
804      __ jmp(&start_regexp);
805
806      // Global regexp restarts matching here.
807      __ bind(&load_char_start_regexp);
808      // Load previous char as initial value of current character register.
809      LoadCurrentCharacterUnchecked(-1, 1);
810      __ bind(&start_regexp);
811    }
812
813    // Initialize on-stack registers.
814    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
815      // Fill saved registers with initial value = start offset - 1.
816      if (num_saved_registers_ > 8) {
817        // Address of register 0.
818        __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
819        __ li(a2, Operand(num_saved_registers_));
820        Label init_loop;
821        __ bind(&init_loop);
822        __ Sd(a0, MemOperand(a1));
823        __ Daddu(a1, a1, Operand(-kPointerSize));
824        __ Dsubu(a2, a2, Operand(1));
825        __ Branch(&init_loop, ne, a2, Operand(zero_reg));
826      } else {
827        for (int i = 0; i < num_saved_registers_; i++) {
828          __ Sd(a0, register_location(i));
829        }
830      }
831    }
832
833    __ jmp(&start_label_);
834
835    // Exit code:
836    if (success_label_.is_linked()) {
837      // Save captures when successful.
838      __ bind(&success_label_);
839      if (num_saved_registers_ > 0) {
840        // Copy captures to output.
841        __ Ld(a1, MemOperand(frame_pointer(), kInputStart));
842        __ Ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
843        __ Ld(a2, MemOperand(frame_pointer(), kStartIndex));
844        __ Dsubu(a1, end_of_input_address(), a1);
845        // a1 is length of input in bytes.
846        if (mode_ == UC16) {
847          __ dsrl(a1, a1, 1);
848        }
849        // a1 is length of input in characters.
850        __ Daddu(a1, a1, Operand(a2));
851        // a1 is length of string in characters.
852
853        DCHECK_EQ(0, num_saved_registers_ % 2);
854        // Always an even number of capture registers. This allows us to
855        // unroll the loop once to add an operation between a load of a register
856        // and the following use of that register.
857        for (int i = 0; i < num_saved_registers_; i += 2) {
858          __ Ld(a2, register_location(i));
859          __ Ld(a3, register_location(i + 1));
860          if (i == 0 && global_with_zero_length_check()) {
861            // Keep capture start in a4 for the zero-length check later.
862            __ mov(t3, a2);
863          }
864          if (mode_ == UC16) {
865            __ dsra(a2, a2, 1);
866            __ Daddu(a2, a2, a1);
867            __ dsra(a3, a3, 1);
868            __ Daddu(a3, a3, a1);
869          } else {
870            __ Daddu(a2, a1, Operand(a2));
871            __ Daddu(a3, a1, Operand(a3));
872          }
873          // V8 expects the output to be an int32_t array.
874          __ Sw(a2, MemOperand(a0));
875          __ Daddu(a0, a0, kIntSize);
876          __ Sw(a3, MemOperand(a0));
877          __ Daddu(a0, a0, kIntSize);
878        }
879      }
880
881      if (global()) {
882        // Restart matching if the regular expression is flagged as global.
883        __ Ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
884        __ Ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
885        __ Ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
886        // Increment success counter.
887        __ Daddu(a0, a0, 1);
888        __ Sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
889        // Capture results have been stored, so the number of remaining global
890        // output registers is reduced by the number of stored captures.
891        __ Dsubu(a1, a1, num_saved_registers_);
892        // Check whether we have enough room for another set of capture results.
893        __ mov(v0, a0);
894        __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
895
896        __ Sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
897        // Advance the location for output.
898        __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
899        __ Sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
900
901        // Prepare a0 to initialize registers with its value in the next run.
902        __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
903
904        // Restore the original regexp stack pointer value (effectively, pop the
905        // stored base pointer).
906        PopRegExpBasePointer(backtrack_stackpointer(), a2);
907
908        if (global_with_zero_length_check()) {
909          // Special case for zero-length matches.
910          // t3: capture start index
911          // Not a zero-length match, restart.
912          __ Branch(
913              &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
914          // Offset from the end is zero if we already reached the end.
915          __ Branch(&exit_label_, eq, current_input_offset(),
916                    Operand(zero_reg));
917          // Advance current position after a zero-length match.
918          Label advance;
919          __ bind(&advance);
920          __ Daddu(current_input_offset(), current_input_offset(),
921                   Operand((mode_ == UC16) ? 2 : 1));
922          if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
923        }
924
925        __ Branch(&load_char_start_regexp);
926      } else {
927        __ li(v0, Operand(SUCCESS));
928      }
929    }
930    // Exit and return v0.
931    __ bind(&exit_label_);
932    if (global()) {
933      __ Ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
934    }
935
936    __ bind(&return_v0);
937    // Restore the original regexp stack pointer value (effectively, pop the
938    // stored base pointer).
939    PopRegExpBasePointer(backtrack_stackpointer(), a1);
940
941    // Skip sp past regexp registers and local variables..
942    __ mov(sp, frame_pointer());
943    // Restore registers s0..s7 and return (restoring ra to pc).
944    __ MultiPop(registers_to_retain | ra);
945    __ Ret();
946
947    // Backtrack code (branch target for conditional backtracks).
948    if (backtrack_label_.is_linked()) {
949      __ bind(&backtrack_label_);
950      Backtrack();
951    }
952
953    Label exit_with_exception;
954
955    // Preempt-code.
956    if (check_preempt_label_.is_linked()) {
957      SafeCallTarget(&check_preempt_label_);
958      StoreRegExpStackPointerToMemory(backtrack_stackpointer(), a0);
959
960      CallCheckStackGuardState(a0);
961      // If returning non-zero, we should end execution with the given
962      // result as return value.
963      __ Branch(&return_v0, ne, v0, Operand(zero_reg));
964
965      LoadRegExpStackPointerFromMemory(backtrack_stackpointer());
966
967      // String might have moved: Reload end of string from frame.
968      __ Ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
969      SafeReturn();
970    }
971
972    // Backtrack stack overflow code.
973    if (stack_overflow_label_.is_linked()) {
974      SafeCallTarget(&stack_overflow_label_);
975      StoreRegExpStackPointerToMemory(backtrack_stackpointer(), a0);
976      // Reached if the backtrack-stack limit has been hit.
977
978      // Call GrowStack(isolate)
979      static constexpr int kNumArguments = 1;
980      __ PrepareCallCFunction(kNumArguments, a0);
981      __ li(a0, Operand(ExternalReference::isolate_address(masm_->isolate())));
982      ExternalReference grow_stack = ExternalReference::re_grow_stack();
983      __ CallCFunction(grow_stack, kNumArguments);
984      // If nullptr is returned, we have failed to grow the stack, and must exit
985      // with a stack-overflow exception.
986      __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
987      // Otherwise use return value as new stack pointer.
988      __ mov(backtrack_stackpointer(), v0);
989      SafeReturn();
990    }
991
992    if (exit_with_exception.is_linked()) {
993      // If any of the code above needed to exit with an exception.
994      __ bind(&exit_with_exception);
995      // Exit with Result EXCEPTION(-1) to signal thrown exception.
996      __ li(v0, Operand(EXCEPTION));
997      __ jmp(&return_v0);
998    }
999
1000    if (fallback_label_.is_linked()) {
1001      __ bind(&fallback_label_);
1002      __ li(v0, Operand(FALLBACK_TO_EXPERIMENTAL));
1003      __ jmp(&return_v0);
1004    }
1005  }
1006
1007  CodeDesc code_desc;
1008  masm_->GetCode(isolate(), &code_desc);
1009  Handle<Code> code =
1010      Factory::CodeBuilder(isolate(), code_desc, CodeKind::REGEXP)
1011          .set_self_reference(masm_->CodeObject())
1012          .Build();
1013  LOG(masm_->isolate(),
1014      RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
1015  return Handle<HeapObject>::cast(code);
1016}
1017
1018
1019void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
1020  if (to == nullptr) {
1021    Backtrack();
1022    return;
1023  }
1024  __ jmp(to);
1025  return;
1026}
1027
1028
1029void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
1030                                            int comparand,
1031                                            Label* if_ge) {
1032  __ Ld(a0, register_location(reg));
1033  BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
1034}
1035
1036
1037void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
1038                                            int comparand,
1039                                            Label* if_lt) {
1040  __ Ld(a0, register_location(reg));
1041  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
1042}
1043
1044
1045void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
1046                                               Label* if_eq) {
1047  __ Ld(a0, register_location(reg));
1048  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
1049}
1050
1051
1052RegExpMacroAssembler::IrregexpImplementation
1053    RegExpMacroAssemblerMIPS::Implementation() {
1054  return kMIPSImplementation;
1055}
1056
1057
1058void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
1059  Pop(current_input_offset());
1060}
1061
1062
1063void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1064  Pop(a0);
1065  __ Sd(a0, register_location(register_index));
1066}
1067
1068
1069void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1070  if (label->is_bound()) {
1071    int target = label->pos();
1072    __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1073  } else {
1074    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_.get());
1075    Label after_constant;
1076    __ Branch(&after_constant);
1077    int offset = masm_->pc_offset();
1078    int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1079    __ emit(0);
1080    masm_->label_at_put(label, offset);
1081    __ bind(&after_constant);
1082    if (is_int16(cp_offset)) {
1083      __ Lwu(a0, MemOperand(code_pointer(), cp_offset));
1084    } else {
1085      __ Daddu(a0, code_pointer(), cp_offset);
1086      __ Lwu(a0, MemOperand(a0, 0));
1087    }
1088  }
1089  Push(a0);
1090  CheckStackLimit();
1091}
1092
1093
1094void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1095  Push(current_input_offset());
1096}
1097
1098
1099void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1100                                            StackCheckFlag check_stack_limit) {
1101  __ Ld(a0, register_location(register_index));
1102  Push(a0);
1103  if (check_stack_limit) CheckStackLimit();
1104}
1105
1106
1107void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1108  __ Ld(current_input_offset(), register_location(reg));
1109}
1110
1111void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1112  ExternalReference ref =
1113      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
1114  __ li(a0, Operand(ref));
1115  __ Ld(a0, MemOperand(a0));
1116  __ Dsubu(a0, backtrack_stackpointer(), a0);
1117  __ Sd(a0, register_location(reg));
1118}
1119
1120void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1121  ExternalReference ref =
1122      ExternalReference::address_of_regexp_stack_memory_top_address(isolate());
1123  __ li(a0, Operand(ref));
1124  __ Ld(a0, MemOperand(a0));
1125  __ Ld(backtrack_stackpointer(), register_location(reg));
1126  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1127}
1128
1129void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1130  Label after_position;
1131  __ Branch(&after_position,
1132            ge,
1133            current_input_offset(),
1134            Operand(-by * char_size()));
1135  __ li(current_input_offset(), -by * char_size());
1136  // On RegExp code entry (where this operation is used), the character before
1137  // the current position is expected to be already loaded.
1138  // We have advanced the position, so it's safe to read backwards.
1139  LoadCurrentCharacterUnchecked(-1, 1);
1140  __ bind(&after_position);
1141}
1142
1143
1144void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1145  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1146  __ li(a0, Operand(to));
1147  __ Sd(a0, register_location(register_index));
1148}
1149
1150
1151bool RegExpMacroAssemblerMIPS::Succeed() {
1152  __ jmp(&success_label_);
1153  return global();
1154}
1155
1156
1157void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1158                                                              int cp_offset) {
1159  if (cp_offset == 0) {
1160    __ Sd(current_input_offset(), register_location(reg));
1161  } else {
1162    __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1163    __ Sd(a0, register_location(reg));
1164  }
1165}
1166
1167
1168void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1169  DCHECK(reg_from <= reg_to);
1170  __ Ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1171  for (int reg = reg_from; reg <= reg_to; reg++) {
1172    __ Sd(a0, register_location(reg));
1173  }
1174}
1175
1176bool RegExpMacroAssemblerMIPS::CanReadUnaligned() const { return false; }
1177
1178// Private methods:
1179
1180void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1181  DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins());
1182  DCHECK(!masm_->options().isolate_independent_code);
1183
1184  int stack_alignment = base::OS::ActivationFrameAlignment();
1185
1186  // Align the stack pointer and save the original sp value on the stack.
1187  __ mov(scratch, sp);
1188  __ Dsubu(sp, sp, Operand(kPointerSize));
1189  DCHECK(base::bits::IsPowerOfTwo(stack_alignment));
1190  __ And(sp, sp, Operand(-stack_alignment));
1191  __ Sd(scratch, MemOperand(sp));
1192
1193  __ mov(a2, frame_pointer());
1194  // Code of self.
1195  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1196
1197  // We need to make room for the return address on the stack.
1198  DCHECK(IsAligned(stack_alignment, kPointerSize));
1199  __ Dsubu(sp, sp, Operand(stack_alignment));
1200
1201  // The stack pointer now points to cell where the return address will be
1202  // written. Arguments are in registers, meaning we treat the return address as
1203  // argument 5. Since DirectCEntry will handle allocating space for the C
1204  // argument slots, we don't need to care about that here. This is how the
1205  // stack will look (sp meaning the value of sp at this moment):
1206  // [sp + 3] - empty slot if needed for alignment.
1207  // [sp + 2] - saved sp.
1208  // [sp + 1] - second word reserved for return value.
1209  // [sp + 0] - first word reserved for return value.
1210
1211  // a0 will point to the return address, placed by DirectCEntry.
1212  __ mov(a0, sp);
1213
1214  ExternalReference stack_guard_check =
1215      ExternalReference::re_check_stack_guard_state();
1216  __ li(t9, Operand(stack_guard_check));
1217
1218  EmbeddedData d = EmbeddedData::FromBlob();
1219  CHECK(Builtins::IsIsolateIndependent(Builtin::kDirectCEntry));
1220  Address entry = d.InstructionStartOfBuiltin(Builtin::kDirectCEntry);
1221  __ li(kScratchReg, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1222  __ Call(kScratchReg);
1223
1224  // DirectCEntry allocated space for the C argument slots so we have to
1225  // drop them with the return address from the stack with loading saved sp.
1226  // At this point stack must look:
1227  // [sp + 7] - empty slot if needed for alignment.
1228  // [sp + 6] - saved sp.
1229  // [sp + 5] - second word reserved for return value.
1230  // [sp + 4] - first word reserved for return value.
1231  // [sp + 3] - C argument slot.
1232  // [sp + 2] - C argument slot.
1233  // [sp + 1] - C argument slot.
1234  // [sp + 0] - C argument slot.
1235  __ Ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1236
1237  __ li(code_pointer(), Operand(masm_->CodeObject()));
1238}
1239
1240
1241// Helper function for reading a value out of a stack frame.
1242template <typename T>
1243static T& frame_entry(Address re_frame, int frame_offset) {
1244  return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1245}
1246
1247
1248template <typename T>
1249static T* frame_entry_address(Address re_frame, int frame_offset) {
1250  return reinterpret_cast<T*>(re_frame + frame_offset);
1251}
1252
1253int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1254                                                       Address raw_code,
1255                                                       Address re_frame) {
1256  Code re_code = Code::cast(Object(raw_code));
1257  return NativeRegExpMacroAssembler::CheckStackGuardState(
1258      frame_entry<Isolate*>(re_frame, kIsolate),
1259      static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1260      static_cast<RegExp::CallOrigin>(
1261          frame_entry<int64_t>(re_frame, kDirectCall)),
1262      return_address, re_code,
1263      frame_entry_address<Address>(re_frame, kInputString),
1264      frame_entry_address<const byte*>(re_frame, kInputStart),
1265      frame_entry_address<const byte*>(re_frame, kInputEnd));
1266}
1267
1268
1269MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1270  DCHECK(register_index < (1<<30));
1271  if (num_registers_ <= register_index) {
1272    num_registers_ = register_index + 1;
1273  }
1274  return MemOperand(frame_pointer(),
1275                    kRegisterZero - register_index * kPointerSize);
1276}
1277
1278
1279void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1280                                             Label* on_outside_input) {
1281  if (cp_offset >= 0) {
1282    BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1283                      Operand(-cp_offset * char_size()));
1284  } else {
1285    __ Ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1286    __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1287    BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1288  }
1289}
1290
1291
1292void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1293                                                 Condition condition,
1294                                                 Register rs,
1295                                                 const Operand& rt) {
1296  if (condition == al) {  // Unconditional.
1297    if (to == nullptr) {
1298      Backtrack();
1299      return;
1300    }
1301    __ jmp(to);
1302    return;
1303  }
1304  if (to == nullptr) {
1305    __ Branch(&backtrack_label_, condition, rs, rt);
1306    return;
1307  }
1308  __ Branch(to, condition, rs, rt);
1309}
1310
1311
1312void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1313                                        Condition cond,
1314                                        Register rs,
1315                                        const Operand& rt) {
1316  __ BranchAndLink(to, cond, rs, rt);
1317}
1318
1319
1320void RegExpMacroAssemblerMIPS::SafeReturn() {
1321  __ pop(ra);
1322  __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1323  __ Jump(t1);
1324}
1325
1326
1327void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1328  __ bind(name);
1329  __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1330  __ push(ra);
1331}
1332
1333
1334void RegExpMacroAssemblerMIPS::Push(Register source) {
1335  DCHECK(source != backtrack_stackpointer());
1336  __ Daddu(backtrack_stackpointer(),
1337          backtrack_stackpointer(),
1338          Operand(-kIntSize));
1339  __ Sw(source, MemOperand(backtrack_stackpointer()));
1340}
1341
1342
1343void RegExpMacroAssemblerMIPS::Pop(Register target) {
1344  DCHECK(target != backtrack_stackpointer());
1345  __ Lw(target, MemOperand(backtrack_stackpointer()));
1346  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1347}
1348
1349
1350void RegExpMacroAssemblerMIPS::CheckPreemption() {
1351  // Check for preemption.
1352  ExternalReference stack_limit =
1353      ExternalReference::address_of_jslimit(masm_->isolate());
1354  __ li(a0, Operand(stack_limit));
1355  __ Ld(a0, MemOperand(a0));
1356  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1357}
1358
1359
1360void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1361  ExternalReference stack_limit =
1362      ExternalReference::address_of_regexp_stack_limit_address(
1363          masm_->isolate());
1364
1365  __ li(a0, Operand(stack_limit));
1366  __ Ld(a0, MemOperand(a0));
1367  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1368}
1369
1370
1371void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1372                                                             int characters) {
1373  Register offset = current_input_offset();
1374  if (cp_offset != 0) {
1375    // t3 is not being used to store the capture start index at this point.
1376    __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1377    offset = t3;
1378  }
1379  // We assume that we cannot do unaligned loads on MIPS, so this function
1380  // must only be used to load a single character at a time.
1381  DCHECK_EQ(1, characters);
1382  __ Daddu(t1, end_of_input_address(), Operand(offset));
1383  if (mode_ == LATIN1) {
1384    __ Lbu(current_character(), MemOperand(t1, 0));
1385  } else {
1386    DCHECK(mode_ == UC16);
1387    __ Lhu(current_character(), MemOperand(t1, 0));
1388  }
1389}
1390
1391#undef __
1392
1393}  // namespace internal
1394}  // namespace v8
1395
1396#endif  // V8_TARGET_ARCH_MIPS64
1397