xref: /third_party/node/deps/v8/src/heap/factory.cc (revision 1cb0ef41)
1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/heap/factory.h"
6
7#include <algorithm>  // For copy
8#include <memory>     // For shared_ptr<>
9#include <string>
10#include <utility>  // For move
11
12#include "src/ast/ast-source-ranges.h"
13#include "src/base/bits.h"
14#include "src/builtins/accessors.h"
15#include "src/builtins/constants-table-builder.h"
16#include "src/codegen/compilation-cache.h"
17#include "src/codegen/compiler.h"
18#include "src/common/assert-scope.h"
19#include "src/common/globals.h"
20#include "src/diagnostics/basic-block-profiler.h"
21#include "src/execution/isolate-inl.h"
22#include "src/execution/protectors-inl.h"
23#include "src/heap/basic-memory-chunk.h"
24#include "src/heap/heap-allocator-inl.h"
25#include "src/heap/heap-inl.h"
26#include "src/heap/incremental-marking.h"
27#include "src/heap/mark-compact-inl.h"
28#include "src/heap/memory-chunk.h"
29#include "src/heap/read-only-heap.h"
30#include "src/ic/handler-configuration-inl.h"
31#include "src/init/bootstrapper.h"
32#include "src/interpreter/interpreter.h"
33#include "src/logging/counters.h"
34#include "src/logging/log.h"
35#include "src/numbers/conversions.h"
36#include "src/numbers/hash-seed-inl.h"
37#include "src/objects/allocation-site-inl.h"
38#include "src/objects/allocation-site-scopes.h"
39#include "src/objects/api-callbacks.h"
40#include "src/objects/arguments-inl.h"
41#include "src/objects/bigint.h"
42#include "src/objects/call-site-info-inl.h"
43#include "src/objects/cell-inl.h"
44#include "src/objects/debug-objects-inl.h"
45#include "src/objects/embedder-data-array-inl.h"
46#include "src/objects/feedback-cell-inl.h"
47#include "src/objects/fixed-array-inl.h"
48#include "src/objects/foreign-inl.h"
49#include "src/objects/instance-type-inl.h"
50#include "src/objects/js-array-buffer-inl.h"
51#include "src/objects/js-array-inl.h"
52#include "src/objects/js-collection-inl.h"
53#include "src/objects/js-generator-inl.h"
54#include "src/objects/js-objects.h"
55#include "src/objects/js-regexp-inl.h"
56#include "src/objects/js-weak-refs-inl.h"
57#include "src/objects/literal-objects-inl.h"
58#include "src/objects/megadom-handler-inl.h"
59#include "src/objects/microtask-inl.h"
60#include "src/objects/module-inl.h"
61#include "src/objects/promise-inl.h"
62#include "src/objects/property-descriptor-object-inl.h"
63#include "src/objects/scope-info.h"
64#include "src/objects/string-set-inl.h"
65#include "src/objects/struct-inl.h"
66#include "src/objects/synthetic-module-inl.h"
67#include "src/objects/template-objects-inl.h"
68#include "src/objects/transitions-inl.h"
69#include "src/roots/roots.h"
70#include "src/strings/unicode-inl.h"
71#if V8_ENABLE_WEBASSEMBLY
72#include "src/wasm/wasm-value.h"
73#endif
74
75#include "src/heap/local-factory-inl.h"
76#include "src/heap/local-heap-inl.h"
77
78namespace v8 {
79namespace internal {
80
81Factory::CodeBuilder::CodeBuilder(Isolate* isolate, const CodeDesc& desc,
82                                  CodeKind kind)
83    : isolate_(isolate),
84      local_isolate_(isolate_->main_thread_local_isolate()),
85      code_desc_(desc),
86      kind_(kind),
87      position_table_(isolate_->factory()->empty_byte_array()) {}
88
89Factory::CodeBuilder::CodeBuilder(LocalIsolate* local_isolate,
90                                  const CodeDesc& desc, CodeKind kind)
91    : isolate_(local_isolate->GetMainThreadIsolateUnsafe()),
92      local_isolate_(local_isolate),
93      code_desc_(desc),
94      kind_(kind),
95      position_table_(isolate_->factory()->empty_byte_array()) {}
96
97MaybeHandle<Code> Factory::CodeBuilder::BuildInternal(
98    bool retry_allocation_or_fail) {
99  const auto factory = isolate_->factory();
100  // Allocate objects needed for code initialization.
101  Handle<ByteArray> reloc_info =
102      CompiledWithConcurrentBaseline()
103          ? local_isolate_->factory()->NewByteArray(code_desc_.reloc_size,
104                                                    AllocationType::kOld)
105          : factory->NewByteArray(code_desc_.reloc_size, AllocationType::kOld);
106  Handle<CodeDataContainer> data_container;
107
108  // Use a canonical off-heap trampoline CodeDataContainer if possible.
109  const int32_t promise_rejection_flag =
110      Code::IsPromiseRejectionField::encode(true);
111  if (read_only_data_container_ &&
112      (kind_specific_flags_ == 0 ||
113       kind_specific_flags_ == promise_rejection_flag)) {
114    const ReadOnlyRoots roots(isolate_);
115    const auto canonical_code_data_container = Handle<CodeDataContainer>::cast(
116        kind_specific_flags_ == 0
117            ? roots.trampoline_trivial_code_data_container_handle()
118            : roots.trampoline_promise_rejection_code_data_container_handle());
119    DCHECK_EQ(canonical_code_data_container->kind_specific_flags(kRelaxedLoad),
120              kind_specific_flags_);
121    data_container = canonical_code_data_container;
122  } else {
123    if (CompiledWithConcurrentBaseline()) {
124      data_container = local_isolate_->factory()->NewCodeDataContainer(
125          0, AllocationType::kOld);
126    } else {
127      data_container = factory->NewCodeDataContainer(
128          0, read_only_data_container_ ? AllocationType::kReadOnly
129                                       : AllocationType::kOld);
130    }
131    if (V8_EXTERNAL_CODE_SPACE_BOOL) {
132      data_container->initialize_flags(kind_, builtin_);
133    }
134    data_container->set_kind_specific_flags(kind_specific_flags_,
135                                            kRelaxedStore);
136  }
137
138  // Basic block profiling data for builtins is stored in the JS heap rather
139  // than in separately-allocated C++ objects. Allocate that data now if
140  // appropriate.
141  Handle<OnHeapBasicBlockProfilerData> on_heap_profiler_data;
142  if (profiler_data_ && isolate_->IsGeneratingEmbeddedBuiltins()) {
143    on_heap_profiler_data = profiler_data_->CopyToJSHeap(isolate_);
144
145    // Add the on-heap data to a global list, which keeps it alive and allows
146    // iteration.
147    Handle<ArrayList> list(isolate_->heap()->basic_block_profiling_data(),
148                           isolate_);
149    Handle<ArrayList> new_list =
150        ArrayList::Add(isolate_, list, on_heap_profiler_data);
151    isolate_->heap()->SetBasicBlockProfilingData(new_list);
152  }
153
154  STATIC_ASSERT(Code::kOnHeapBodyIsContiguous);
155  Heap* heap = isolate_->heap();
156  CodePageCollectionMemoryModificationScope code_allocation(heap);
157
158  Handle<Code> code;
159  if (CompiledWithConcurrentBaseline()) {
160    if (!AllocateConcurrentSparkplugCode(retry_allocation_or_fail)
161             .ToHandle(&code)) {
162      return MaybeHandle<Code>();
163    }
164  } else if (!AllocateCode(retry_allocation_or_fail).ToHandle(&code)) {
165    return MaybeHandle<Code>();
166  }
167
168  {
169    Code raw_code = *code;
170    constexpr bool kIsNotOffHeapTrampoline = false;
171    DisallowGarbageCollection no_gc;
172
173    raw_code.set_raw_instruction_size(code_desc_.instruction_size());
174    raw_code.set_raw_metadata_size(code_desc_.metadata_size());
175    raw_code.set_relocation_info(*reloc_info);
176    raw_code.initialize_flags(kind_, is_turbofanned_, stack_slots_,
177                              kIsNotOffHeapTrampoline);
178    raw_code.set_builtin_id(builtin_);
179    // This might impact direct concurrent reads from TF if we are resetting
180    // this field. We currently assume it's immutable thus a relaxed read (after
181    // passing IsPendingAllocation).
182    raw_code.set_inlined_bytecode_size(inlined_bytecode_size_);
183    raw_code.set_code_data_container(*data_container, kReleaseStore);
184    if (kind_ == CodeKind::BASELINE) {
185      raw_code.set_bytecode_or_interpreter_data(*interpreter_data_);
186      raw_code.set_bytecode_offset_table(*position_table_);
187    } else {
188      raw_code.set_deoptimization_data(*deoptimization_data_);
189      raw_code.set_source_position_table(*position_table_);
190    }
191    raw_code.set_handler_table_offset(
192        code_desc_.handler_table_offset_relative());
193    raw_code.set_constant_pool_offset(
194        code_desc_.constant_pool_offset_relative());
195    raw_code.set_code_comments_offset(
196        code_desc_.code_comments_offset_relative());
197    raw_code.set_unwinding_info_offset(
198        code_desc_.unwinding_info_offset_relative());
199
200    // Allow self references to created code object by patching the handle to
201    // point to the newly allocated Code object.
202    Handle<Object> self_reference;
203    if (self_reference_.ToHandle(&self_reference)) {
204      DCHECK(self_reference->IsOddball());
205      DCHECK_EQ(Oddball::cast(*self_reference).kind(),
206                Oddball::kSelfReferenceMarker);
207      DCHECK_NE(kind_, CodeKind::BASELINE);
208      if (isolate_->IsGeneratingEmbeddedBuiltins()) {
209        isolate_->builtins_constants_table_builder()->PatchSelfReference(
210            self_reference, code);
211      }
212      self_reference.PatchValue(*code);
213    }
214
215    // Likewise, any references to the basic block counters marker need to be
216    // updated to point to the newly-allocated counters array.
217    if (!on_heap_profiler_data.is_null()) {
218      isolate_->builtins_constants_table_builder()
219          ->PatchBasicBlockCountersReference(
220              handle(on_heap_profiler_data->counts(), isolate_));
221    }
222
223    // Migrate generated code.
224    // The generated code can contain embedded objects (typically from
225    // handles) in a pointer-to-tagged-value format (i.e. with indirection
226    // like a handle) that are dereferenced during the copy to point directly
227    // to the actual heap objects. These pointers can include references to
228    // the code object itself, through the self_reference parameter.
229    raw_code.CopyFromNoFlush(*reloc_info, heap, code_desc_);
230
231    raw_code.clear_padding();
232
233    if (V8_EXTERNAL_CODE_SPACE_BOOL) {
234      raw_code.set_main_cage_base(isolate_->cage_base(), kRelaxedStore);
235      data_container->SetCodeAndEntryPoint(isolate_, raw_code);
236    }
237#ifdef VERIFY_HEAP
238    if (FLAG_verify_heap) HeapObject::VerifyCodePointer(isolate_, raw_code);
239#endif
240
241    // Flush the instruction cache before changing the permissions.
242    // Note: we do this before setting permissions to ReadExecute because on
243    // some older ARM kernels there is a bug which causes an access error on
244    // cache flush instructions to trigger access error on non-writable memory.
245    // See https://bugs.chromium.org/p/v8/issues/detail?id=8157
246    raw_code.FlushICache();
247  }
248
249  if (profiler_data_ && FLAG_turbo_profiling_verbose) {
250#ifdef ENABLE_DISASSEMBLER
251    std::ostringstream os;
252    code->Disassemble(nullptr, os, isolate_);
253    if (!on_heap_profiler_data.is_null()) {
254      Handle<String> disassembly =
255          isolate_->factory()->NewStringFromAsciiChecked(os.str().c_str(),
256                                                         AllocationType::kOld);
257      on_heap_profiler_data->set_code(*disassembly);
258    } else {
259      profiler_data_->SetCode(os);
260    }
261#endif  // ENABLE_DISASSEMBLER
262  }
263
264  return code;
265}
266
267// TODO(victorgomes): Unify the two AllocateCodes
268MaybeHandle<Code> Factory::CodeBuilder::AllocateCode(
269    bool retry_allocation_or_fail) {
270  Heap* heap = isolate_->heap();
271  HeapAllocator* allocator = heap->allocator();
272  HeapObject result;
273  AllocationType allocation_type = V8_EXTERNAL_CODE_SPACE_BOOL || is_executable_
274                                       ? AllocationType::kCode
275                                       : AllocationType::kReadOnly;
276  const int object_size = Code::SizeFor(code_desc_.body_size());
277  if (retry_allocation_or_fail) {
278    result = allocator->AllocateRawWith<HeapAllocator::kRetryOrFail>(
279        object_size, allocation_type, AllocationOrigin::kRuntime);
280  } else {
281    result = allocator->AllocateRawWith<HeapAllocator::kLightRetry>(
282        object_size, allocation_type, AllocationOrigin::kRuntime);
283    // Return an empty handle if we cannot allocate the code object.
284    if (result.is_null()) return MaybeHandle<Code>();
285  }
286
287  // The code object has not been fully initialized yet.  We rely on the
288  // fact that no allocation will happen from this point on.
289  DisallowGarbageCollection no_gc;
290  result.set_map_after_allocation(*isolate_->factory()->code_map(),
291                                  SKIP_WRITE_BARRIER);
292  Handle<Code> code = handle(Code::cast(result), isolate_);
293  if (is_executable_) {
294    DCHECK(IsAligned(code->address(), kCodeAlignment));
295    DCHECK_IMPLIES(
296        !V8_ENABLE_THIRD_PARTY_HEAP_BOOL && !heap->code_region().is_empty(),
297        heap->code_region().contains(code->address()));
298  }
299  return code;
300}
301
302MaybeHandle<Code> Factory::CodeBuilder::AllocateConcurrentSparkplugCode(
303    bool retry_allocation_or_fail) {
304  LocalHeap* heap = local_isolate_->heap();
305  AllocationType allocation_type = V8_EXTERNAL_CODE_SPACE_BOOL || is_executable_
306                                       ? AllocationType::kCode
307                                       : AllocationType::kReadOnly;
308  const int object_size = Code::SizeFor(code_desc_.body_size());
309  HeapObject result;
310  if (!heap->AllocateRaw(object_size, allocation_type).To(&result)) {
311    return MaybeHandle<Code>();
312  }
313  CHECK(!result.is_null());
314
315  // The code object has not been fully initialized yet.  We rely on the
316  // fact that no allocation will happen from this point on.
317  DisallowGarbageCollection no_gc;
318  result.set_map_after_allocation(*local_isolate_->factory()->code_map(),
319                                  SKIP_WRITE_BARRIER);
320  Handle<Code> code = handle(Code::cast(result), local_isolate_);
321  DCHECK_IMPLIES(is_executable_, IsAligned(code->address(), kCodeAlignment));
322  return code;
323}
324
325MaybeHandle<Code> Factory::CodeBuilder::TryBuild() {
326  return BuildInternal(false);
327}
328
329Handle<Code> Factory::CodeBuilder::Build() {
330  return BuildInternal(true).ToHandleChecked();
331}
332
333HeapObject Factory::AllocateRaw(int size, AllocationType allocation,
334                                AllocationAlignment alignment) {
335  return allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
336      size, allocation, AllocationOrigin::kRuntime, alignment);
337}
338
339HeapObject Factory::AllocateRawWithAllocationSite(
340    Handle<Map> map, AllocationType allocation,
341    Handle<AllocationSite> allocation_site) {
342  DCHECK(map->instance_type() != MAP_TYPE);
343  int size = map->instance_size();
344  if (!allocation_site.is_null()) {
345    DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
346    size += AllocationMemento::kSize;
347  }
348  HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
349      size, allocation);
350  WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
351                                            ? SKIP_WRITE_BARRIER
352                                            : UPDATE_WRITE_BARRIER;
353  result.set_map_after_allocation(*map, write_barrier_mode);
354  if (!allocation_site.is_null()) {
355    AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
356        Object(result.ptr() + map->instance_size()));
357    InitializeAllocationMemento(alloc_memento, *allocation_site);
358  }
359  return result;
360}
361
362void Factory::InitializeAllocationMemento(AllocationMemento memento,
363                                          AllocationSite allocation_site) {
364  DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
365  memento.set_map_after_allocation(*allocation_memento_map(),
366                                   SKIP_WRITE_BARRIER);
367  memento.set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
368  if (FLAG_allocation_site_pretenuring) {
369    allocation_site.IncrementMementoCreateCount();
370  }
371}
372
373HeapObject Factory::New(Handle<Map> map, AllocationType allocation) {
374  DCHECK(map->instance_type() != MAP_TYPE);
375  int size = map->instance_size();
376  HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
377      size, allocation);
378  // New space objects are allocated white.
379  WriteBarrierMode write_barrier_mode = allocation == AllocationType::kYoung
380                                            ? SKIP_WRITE_BARRIER
381                                            : UPDATE_WRITE_BARRIER;
382  result.set_map_after_allocation(*map, write_barrier_mode);
383  return result;
384}
385
386Handle<HeapObject> Factory::NewFillerObject(int size,
387                                            AllocationAlignment alignment,
388                                            AllocationType allocation,
389                                            AllocationOrigin origin) {
390  Heap* heap = isolate()->heap();
391  HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
392      size, allocation, origin, alignment);
393  heap->CreateFillerObjectAt(result.address(), size, ClearRecordedSlots::kNo);
394  return Handle<HeapObject>(result, isolate());
395}
396
397Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
398  auto result = NewStructInternal<PrototypeInfo>(PROTOTYPE_INFO_TYPE,
399                                                 AllocationType::kOld);
400  DisallowGarbageCollection no_gc;
401  result.set_prototype_users(Smi::zero());
402  result.set_registry_slot(PrototypeInfo::UNREGISTERED);
403  result.set_bit_field(0);
404  result.set_module_namespace(*undefined_value(), SKIP_WRITE_BARRIER);
405  return handle(result, isolate());
406}
407
408Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
409                                        Handle<FixedArray> indices) {
410  auto result =
411      NewStructInternal<EnumCache>(ENUM_CACHE_TYPE, AllocationType::kOld);
412  DisallowGarbageCollection no_gc;
413  result.set_keys(*keys);
414  result.set_indices(*indices);
415  return handle(result, isolate());
416}
417
418Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
419                                  AllocationType allocation) {
420  auto result = NewStructInternal<Tuple2>(TUPLE2_TYPE, allocation);
421  DisallowGarbageCollection no_gc;
422  result.set_value1(*value1);
423  result.set_value2(*value2);
424  return handle(result, isolate());
425}
426
427Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
428                                    Handle<Object> to_number,
429                                    const char* type_of, byte kind) {
430  Handle<Oddball> oddball(Oddball::cast(New(map, AllocationType::kReadOnly)),
431                          isolate());
432  Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
433  return oddball;
434}
435
436Handle<Oddball> Factory::NewSelfReferenceMarker() {
437  return NewOddball(self_reference_marker_map(), "self_reference_marker",
438                    handle(Smi::FromInt(-1), isolate()), "undefined",
439                    Oddball::kSelfReferenceMarker);
440}
441
442Handle<Oddball> Factory::NewBasicBlockCountersMarker() {
443  return NewOddball(basic_block_counters_marker_map(),
444                    "basic_block_counters_marker",
445                    handle(Smi::FromInt(-1), isolate()), "undefined",
446                    Oddball::kBasicBlockCountersMarker);
447}
448
449Handle<PropertyArray> Factory::NewPropertyArray(int length,
450                                                AllocationType allocation) {
451  DCHECK_LE(0, length);
452  if (length == 0) return empty_property_array();
453  HeapObject result = AllocateRawFixedArray(length, allocation);
454  DisallowGarbageCollection no_gc;
455  result.set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
456  PropertyArray array = PropertyArray::cast(result);
457  array.initialize_length(length);
458  MemsetTagged(array.data_start(), read_only_roots().undefined_value(), length);
459  return handle(array, isolate());
460}
461
462MaybeHandle<FixedArray> Factory::TryNewFixedArray(
463    int length, AllocationType allocation_type) {
464  DCHECK_LE(0, length);
465  if (length == 0) return empty_fixed_array();
466
467  int size = FixedArray::SizeFor(length);
468  Heap* heap = isolate()->heap();
469  AllocationResult allocation = heap->AllocateRaw(size, allocation_type);
470  HeapObject result;
471  if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
472  if ((size > heap->MaxRegularHeapObjectSize(allocation_type)) &&
473      FLAG_use_marking_progress_bar) {
474    LargePage::FromHeapObject(result)->ProgressBar().Enable();
475  }
476  DisallowGarbageCollection no_gc;
477  result.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
478  FixedArray array = FixedArray::cast(result);
479  array.set_length(length);
480  MemsetTagged(array.data_start(), *undefined_value(), length);
481  return handle(array, isolate());
482}
483
484Handle<ClosureFeedbackCellArray> Factory::NewClosureFeedbackCellArray(
485    int length) {
486  if (length == 0) return empty_closure_feedback_cell_array();
487
488  Handle<ClosureFeedbackCellArray> feedback_cell_array =
489      Handle<ClosureFeedbackCellArray>::cast(NewFixedArrayWithMap(
490          read_only_roots().closure_feedback_cell_array_map_handle(), length,
491          AllocationType::kOld));
492
493  return feedback_cell_array;
494}
495
496Handle<FeedbackVector> Factory::NewFeedbackVector(
497    Handle<SharedFunctionInfo> shared,
498    Handle<ClosureFeedbackCellArray> closure_feedback_cell_array) {
499  int length = shared->feedback_metadata().slot_count();
500  DCHECK_LE(0, length);
501  int size = FeedbackVector::SizeFor(length);
502
503  FeedbackVector vector = FeedbackVector::cast(AllocateRawWithImmortalMap(
504      size, AllocationType::kOld, *feedback_vector_map()));
505  DisallowGarbageCollection no_gc;
506  vector.set_shared_function_info(*shared);
507  vector.set_maybe_optimized_code(HeapObjectReference::ClearedValue(isolate()),
508                                  kReleaseStore);
509  vector.set_length(length);
510  vector.set_invocation_count(0);
511  vector.set_profiler_ticks(0);
512  vector.reset_flags();
513  vector.set_closure_feedback_cell_array(*closure_feedback_cell_array);
514
515  // TODO(leszeks): Initialize based on the feedback metadata.
516  MemsetTagged(ObjectSlot(vector.slots_start()), *undefined_value(), length);
517  return handle(vector, isolate());
518}
519
520Handle<EmbedderDataArray> Factory::NewEmbedderDataArray(int length) {
521  DCHECK_LE(0, length);
522  int size = EmbedderDataArray::SizeFor(length);
523  EmbedderDataArray array = EmbedderDataArray::cast(AllocateRawWithImmortalMap(
524      size, AllocationType::kYoung, *embedder_data_array_map()));
525  DisallowGarbageCollection no_gc;
526  array.set_length(length);
527
528  if (length > 0) {
529    for (int i = 0; i < length; i++) {
530      // TODO(v8): consider initializing embedded data array with Smi::zero().
531      EmbedderDataSlot(array, i).Initialize(*undefined_value());
532    }
533  }
534  return handle(array, isolate());
535}
536
537Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(int length) {
538  DCHECK_LE(0, length);
539  Handle<FixedArrayBase> array = NewFixedDoubleArray(length);
540  if (length > 0) {
541    Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
542  }
543  return array;
544}
545
546template <typename T>
547Handle<T> Factory::AllocateSmallOrderedHashTable(Handle<Map> map, int capacity,
548                                                 AllocationType allocation) {
549  // Capacity must be a power of two, since we depend on being able
550  // to divide and multiple by 2 (kLoadFactor) to derive capacity
551  // from number of buckets. If we decide to change kLoadFactor
552  // to something other than 2, capacity should be stored as another
553  // field of this object.
554  DCHECK_EQ(T::kLoadFactor, 2);
555  capacity =
556      base::bits::RoundUpToPowerOfTwo32(std::max({T::kMinCapacity, capacity}));
557  capacity = std::min({capacity, T::kMaxCapacity});
558
559  DCHECK_LT(0, capacity);
560  DCHECK_EQ(0, capacity % T::kLoadFactor);
561
562  int size = T::SizeFor(capacity);
563  HeapObject result = AllocateRawWithImmortalMap(size, allocation, *map);
564  Handle<T> table(T::cast(result), isolate());
565  table->Initialize(isolate(), capacity);
566  return table;
567}
568
569Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
570    int capacity, AllocationType allocation) {
571  return AllocateSmallOrderedHashTable<SmallOrderedHashSet>(
572      small_ordered_hash_set_map(), capacity, allocation);
573}
574
575Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
576    int capacity, AllocationType allocation) {
577  return AllocateSmallOrderedHashTable<SmallOrderedHashMap>(
578      small_ordered_hash_map_map(), capacity, allocation);
579}
580
581Handle<SmallOrderedNameDictionary> Factory::NewSmallOrderedNameDictionary(
582    int capacity, AllocationType allocation) {
583  Handle<SmallOrderedNameDictionary> dict =
584      AllocateSmallOrderedHashTable<SmallOrderedNameDictionary>(
585          small_ordered_name_dictionary_map(), capacity, allocation);
586  dict->SetHash(PropertyArray::kNoHashSentinel);
587  return dict;
588}
589
590Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
591  return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kInitialCapacity,
592                                  AllocationType::kYoung)
593      .ToHandleChecked();
594}
595
596Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
597  return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kInitialCapacity,
598                                  AllocationType::kYoung)
599      .ToHandleChecked();
600}
601
602Handle<OrderedNameDictionary> Factory::NewOrderedNameDictionary(int capacity) {
603  return OrderedNameDictionary::Allocate(isolate(), capacity,
604                                         AllocationType::kYoung)
605      .ToHandleChecked();
606}
607
608Handle<NameDictionary> Factory::NewNameDictionary(int at_least_space_for) {
609  return NameDictionary::New(isolate(), at_least_space_for);
610}
611
612Handle<PropertyDescriptorObject> Factory::NewPropertyDescriptorObject() {
613  auto object = NewStructInternal<PropertyDescriptorObject>(
614      PROPERTY_DESCRIPTOR_OBJECT_TYPE, AllocationType::kYoung);
615  DisallowGarbageCollection no_gc;
616  object.set_flags(0);
617  Oddball the_hole = read_only_roots().the_hole_value();
618  object.set_value(the_hole, SKIP_WRITE_BARRIER);
619  object.set_get(the_hole, SKIP_WRITE_BARRIER);
620  object.set_set(the_hole, SKIP_WRITE_BARRIER);
621  return handle(object, isolate());
622}
623
624Handle<SwissNameDictionary> Factory::CreateCanonicalEmptySwissNameDictionary() {
625  // This function is only supposed to be used to create the canonical empty
626  // version and should not be used afterwards.
627  DCHECK_EQ(kNullAddress, ReadOnlyRoots(isolate()).at(
628                              RootIndex::kEmptySwissPropertyDictionary));
629
630  ReadOnlyRoots roots(isolate());
631
632  Handle<ByteArray> empty_meta_table =
633      NewByteArray(SwissNameDictionary::kMetaTableEnumerationDataStartIndex,
634                   AllocationType::kReadOnly);
635
636  Map map = roots.swiss_name_dictionary_map();
637  int size = SwissNameDictionary::SizeFor(0);
638  HeapObject obj =
639      AllocateRawWithImmortalMap(size, AllocationType::kReadOnly, map);
640  SwissNameDictionary result = SwissNameDictionary::cast(obj);
641  result.Initialize(isolate(), *empty_meta_table, 0);
642  return handle(result, isolate());
643}
644
645// Internalized strings are created in the old generation (data space).
646Handle<String> Factory::InternalizeUtf8String(
647    const base::Vector<const char>& string) {
648  base::Vector<const uint8_t> utf8_data =
649      base::Vector<const uint8_t>::cast(string);
650  Utf8Decoder decoder(utf8_data);
651  if (decoder.is_ascii()) return InternalizeString(utf8_data);
652  if (decoder.is_one_byte()) {
653    std::unique_ptr<uint8_t[]> buffer(new uint8_t[decoder.utf16_length()]);
654    decoder.Decode(buffer.get(), utf8_data);
655    return InternalizeString(
656        base::Vector<const uint8_t>(buffer.get(), decoder.utf16_length()));
657  }
658  std::unique_ptr<uint16_t[]> buffer(new uint16_t[decoder.utf16_length()]);
659  decoder.Decode(buffer.get(), utf8_data);
660  return InternalizeString(
661      base::Vector<const base::uc16>(buffer.get(), decoder.utf16_length()));
662}
663
664template <typename SeqString>
665Handle<String> Factory::InternalizeString(Handle<SeqString> string, int from,
666                                          int length, bool convert_encoding) {
667  SeqSubStringKey<SeqString> key(isolate(), string, from, length,
668                                 convert_encoding);
669  return InternalizeStringWithKey(&key);
670}
671
672template Handle<String> Factory::InternalizeString(
673    Handle<SeqOneByteString> string, int from, int length,
674    bool convert_encoding);
675template Handle<String> Factory::InternalizeString(
676    Handle<SeqTwoByteString> string, int from, int length,
677    bool convert_encoding);
678
679MaybeHandle<String> Factory::NewStringFromOneByte(
680    const base::Vector<const uint8_t>& string, AllocationType allocation) {
681  DCHECK_NE(allocation, AllocationType::kReadOnly);
682  int length = string.length();
683  if (length == 0) return empty_string();
684  if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
685  Handle<SeqOneByteString> result;
686  ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
687                             NewRawOneByteString(string.length(), allocation),
688                             String);
689
690  DisallowGarbageCollection no_gc;
691  // Copy the characters into the new object.
692  CopyChars(SeqOneByteString::cast(*result).GetChars(no_gc), string.begin(),
693            length);
694  return result;
695}
696
697MaybeHandle<String> Factory::NewStringFromUtf8(
698    const base::Vector<const char>& string, AllocationType allocation) {
699  base::Vector<const uint8_t> utf8_data =
700      base::Vector<const uint8_t>::cast(string);
701  Utf8Decoder decoder(utf8_data);
702
703  if (decoder.utf16_length() == 0) return empty_string();
704
705  if (decoder.is_one_byte()) {
706    // Allocate string.
707    Handle<SeqOneByteString> result;
708    ASSIGN_RETURN_ON_EXCEPTION(
709        isolate(), result,
710        NewRawOneByteString(decoder.utf16_length(), allocation), String);
711
712    DisallowGarbageCollection no_gc;
713    decoder.Decode(result->GetChars(no_gc), utf8_data);
714    return result;
715  }
716
717  // Allocate string.
718  Handle<SeqTwoByteString> result;
719  ASSIGN_RETURN_ON_EXCEPTION(
720      isolate(), result,
721      NewRawTwoByteString(decoder.utf16_length(), allocation), String);
722
723  DisallowGarbageCollection no_gc;
724  decoder.Decode(result->GetChars(no_gc), utf8_data);
725  return result;
726}
727
728MaybeHandle<String> Factory::NewStringFromUtf8SubString(
729    Handle<SeqOneByteString> str, int begin, int length,
730    AllocationType allocation) {
731  base::Vector<const uint8_t> utf8_data;
732  {
733    DisallowGarbageCollection no_gc;
734    utf8_data =
735        base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
736  }
737  Utf8Decoder decoder(utf8_data);
738
739  if (length == 1) {
740    uint16_t t;
741    // Decode even in the case of length 1 since it can be a bad character.
742    decoder.Decode(&t, utf8_data);
743    return LookupSingleCharacterStringFromCode(t);
744  }
745
746  if (decoder.is_ascii()) {
747    // If the string is ASCII, we can just make a substring.
748    // TODO(v8): the allocation flag is ignored in this case.
749    return NewSubString(str, begin, begin + length);
750  }
751
752  DCHECK_GT(decoder.utf16_length(), 0);
753
754  if (decoder.is_one_byte()) {
755    // Allocate string.
756    Handle<SeqOneByteString> result;
757    ASSIGN_RETURN_ON_EXCEPTION(
758        isolate(), result,
759        NewRawOneByteString(decoder.utf16_length(), allocation), String);
760    DisallowGarbageCollection no_gc;
761    // Update pointer references, since the original string may have moved after
762    // allocation.
763    utf8_data =
764        base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
765    decoder.Decode(result->GetChars(no_gc), utf8_data);
766    return result;
767  }
768
769  // Allocate string.
770  Handle<SeqTwoByteString> result;
771  ASSIGN_RETURN_ON_EXCEPTION(
772      isolate(), result,
773      NewRawTwoByteString(decoder.utf16_length(), allocation), String);
774
775  DisallowGarbageCollection no_gc;
776  // Update pointer references, since the original string may have moved after
777  // allocation.
778  utf8_data = base::Vector<const uint8_t>(str->GetChars(no_gc) + begin, length);
779  decoder.Decode(result->GetChars(no_gc), utf8_data);
780  return result;
781}
782
783MaybeHandle<String> Factory::NewStringFromTwoByte(const base::uc16* string,
784                                                  int length,
785                                                  AllocationType allocation) {
786  DCHECK_NE(allocation, AllocationType::kReadOnly);
787  if (length == 0) return empty_string();
788  if (String::IsOneByte(string, length)) {
789    if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
790    Handle<SeqOneByteString> result;
791    ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
792                               NewRawOneByteString(length, allocation), String);
793    DisallowGarbageCollection no_gc;
794    CopyChars(result->GetChars(no_gc), string, length);
795    return result;
796  } else {
797    Handle<SeqTwoByteString> result;
798    ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
799                               NewRawTwoByteString(length, allocation), String);
800    DisallowGarbageCollection no_gc;
801    CopyChars(result->GetChars(no_gc), string, length);
802    return result;
803  }
804}
805
806MaybeHandle<String> Factory::NewStringFromTwoByte(
807    const base::Vector<const base::uc16>& string, AllocationType allocation) {
808  return NewStringFromTwoByte(string.begin(), string.length(), allocation);
809}
810
811MaybeHandle<String> Factory::NewStringFromTwoByte(
812    const ZoneVector<base::uc16>* string, AllocationType allocation) {
813  return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
814                              allocation);
815}
816
817namespace {
818
819inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) {
820  DCHECK(s->length() == len);
821  String::WriteToFlat(*s, chars, 0, len);
822}
823
824inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) {
825  DCHECK(s->length() == len);
826  String::WriteToFlat(*s, chars, 0, len);
827}
828
829}  // namespace
830
831template <bool is_one_byte, typename T>
832Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars,
833                                                       uint32_t hash_field) {
834  DCHECK_LE(0, chars);
835  DCHECK_GE(String::kMaxLength, chars);
836
837  // Compute map and object size.
838  int size;
839  Map map;
840  if (is_one_byte) {
841    map = *one_byte_internalized_string_map();
842    size = SeqOneByteString::SizeFor(chars);
843  } else {
844    map = *internalized_string_map();
845    size = SeqTwoByteString::SizeFor(chars);
846  }
847
848  String result = String::cast(AllocateRawWithImmortalMap(
849      size,
850      RefineAllocationTypeForInPlaceInternalizableString(
851          CanAllocateInReadOnlySpace() ? AllocationType::kReadOnly
852                                       : AllocationType::kOld,
853          map),
854      map));
855  DisallowGarbageCollection no_gc;
856  result.set_length(chars);
857  result.set_raw_hash_field(hash_field);
858  DCHECK_EQ(size, result.Size());
859
860  if (is_one_byte) {
861    WriteOneByteData(t, SeqOneByteString::cast(result).GetChars(no_gc), chars);
862  } else {
863    WriteTwoByteData(t, SeqTwoByteString::cast(result).GetChars(no_gc), chars);
864  }
865  return handle(result, isolate());
866}
867
868Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
869                                                  int chars,
870                                                  uint32_t hash_field) {
871  if (string->IsOneByteRepresentation()) {
872    return AllocateInternalizedStringImpl<true>(string, chars, hash_field);
873  }
874  return AllocateInternalizedStringImpl<false>(string, chars, hash_field);
875}
876
877StringTransitionStrategy Factory::ComputeInternalizationStrategyForString(
878    Handle<String> string, MaybeHandle<Map>* internalized_map) {
879  // Do not internalize young strings in-place: This allows us to ignore both
880  // string table and stub cache on scavenges.
881  if (Heap::InYoungGeneration(*string)) {
882    return StringTransitionStrategy::kCopy;
883  }
884  DCHECK_NOT_NULL(internalized_map);
885  DisallowGarbageCollection no_gc;
886  // This method may be called concurrently, so snapshot the map from the input
887  // string instead of the calling IsType methods on HeapObject, which would
888  // reload the map each time.
889  Map map = string->map();
890  *internalized_map = GetInPlaceInternalizedStringMap(map);
891  if (!internalized_map->is_null()) {
892    return StringTransitionStrategy::kInPlace;
893  }
894  if (InstanceTypeChecker::IsInternalizedString(map.instance_type())) {
895    return StringTransitionStrategy::kAlreadyTransitioned;
896  }
897  return StringTransitionStrategy::kCopy;
898}
899
900template <class StringClass>
901Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
902  Handle<Map> map =
903      GetInPlaceInternalizedStringMap(string->map()).ToHandleChecked();
904  StringClass external_string =
905      StringClass::cast(New(map, AllocationType::kOld));
906  DisallowGarbageCollection no_gc;
907  external_string.AllocateExternalPointerEntries(isolate());
908  StringClass cast_string = StringClass::cast(*string);
909  external_string.set_length(cast_string.length());
910  external_string.set_raw_hash_field(cast_string.raw_hash_field());
911  external_string.SetResource(isolate(), nullptr);
912  isolate()->heap()->RegisterExternalString(external_string);
913  return handle(external_string, isolate());
914}
915
916template Handle<ExternalOneByteString>
917    Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
918template Handle<ExternalTwoByteString>
919    Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
920
921StringTransitionStrategy Factory::ComputeSharingStrategyForString(
922    Handle<String> string, MaybeHandle<Map>* shared_map) {
923  DCHECK(FLAG_shared_string_table);
924  // Do not share young strings in-place: there is no shared young space.
925  if (Heap::InYoungGeneration(*string)) {
926    return StringTransitionStrategy::kCopy;
927  }
928  DCHECK_NOT_NULL(shared_map);
929  DisallowGarbageCollection no_gc;
930  InstanceType instance_type = string->map().instance_type();
931  if (StringShape(instance_type).IsShared()) {
932    return StringTransitionStrategy::kAlreadyTransitioned;
933  }
934  switch (instance_type) {
935    case STRING_TYPE:
936      *shared_map = read_only_roots().shared_string_map_handle();
937      return StringTransitionStrategy::kInPlace;
938    case ONE_BYTE_STRING_TYPE:
939      *shared_map = read_only_roots().shared_one_byte_string_map_handle();
940      return StringTransitionStrategy::kInPlace;
941    default:
942      return StringTransitionStrategy::kCopy;
943  }
944}
945
946Handle<String> Factory::LookupSingleCharacterStringFromCode(uint16_t code) {
947  if (code <= unibrow::Latin1::kMaxChar) {
948    {
949      DisallowGarbageCollection no_gc;
950      Object value = single_character_string_cache()->get(code);
951      if (value != *undefined_value()) {
952        return handle(String::cast(value), isolate());
953      }
954    }
955    uint8_t buffer[] = {static_cast<uint8_t>(code)};
956    Handle<String> result =
957        InternalizeString(base::Vector<const uint8_t>(buffer, 1));
958    single_character_string_cache()->set(code, *result);
959    return result;
960  }
961  uint16_t buffer[] = {code};
962  return InternalizeString(base::Vector<const uint16_t>(buffer, 1));
963}
964
965Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
966  DCHECK_GE(lead, 0xD800);
967  DCHECK_LE(lead, 0xDBFF);
968  DCHECK_GE(trail, 0xDC00);
969  DCHECK_LE(trail, 0xDFFF);
970
971  Handle<SeqTwoByteString> str =
972      isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
973  DisallowGarbageCollection no_gc;
974  base::uc16* dest = str->GetChars(no_gc);
975  dest[0] = lead;
976  dest[1] = trail;
977  return str;
978}
979
980Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
981                                           int end) {
982#if VERIFY_HEAP
983  if (FLAG_verify_heap) str->StringVerify(isolate());
984#endif
985  DCHECK(begin > 0 || end < str->length());
986
987  str = String::Flatten(isolate(), str);
988
989  int length = end - begin;
990  if (length <= 0) return empty_string();
991  if (length == 1) {
992    return LookupSingleCharacterStringFromCode(str->Get(begin));
993  }
994  if (length == 2) {
995    // Optimization for 2-byte strings often used as keys in a decompression
996    // dictionary.  Check whether we already have the string in the string
997    // table to prevent creation of many unnecessary strings.
998    uint16_t c1 = str->Get(begin);
999    uint16_t c2 = str->Get(begin + 1);
1000    return MakeOrFindTwoCharacterString(c1, c2);
1001  }
1002
1003  if (!FLAG_string_slices || length < SlicedString::kMinLength) {
1004    if (str->IsOneByteRepresentation()) {
1005      Handle<SeqOneByteString> result =
1006          NewRawOneByteString(length).ToHandleChecked();
1007      DisallowGarbageCollection no_gc;
1008      uint8_t* dest = result->GetChars(no_gc);
1009      String::WriteToFlat(*str, dest, begin, length);
1010      return result;
1011    } else {
1012      Handle<SeqTwoByteString> result =
1013          NewRawTwoByteString(length).ToHandleChecked();
1014      DisallowGarbageCollection no_gc;
1015      base::uc16* dest = result->GetChars(no_gc);
1016      String::WriteToFlat(*str, dest, begin, length);
1017      return result;
1018    }
1019  }
1020
1021  int offset = begin;
1022
1023  if (str->IsSlicedString()) {
1024    Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
1025    str = Handle<String>(slice->parent(), isolate());
1026    offset += slice->offset();
1027  }
1028  if (str->IsThinString()) {
1029    Handle<ThinString> thin = Handle<ThinString>::cast(str);
1030    str = handle(thin->actual(), isolate());
1031  }
1032
1033  DCHECK(str->IsSeqString() || str->IsExternalString());
1034  Handle<Map> map = str->IsOneByteRepresentation()
1035                        ? sliced_one_byte_string_map()
1036                        : sliced_string_map();
1037  SlicedString slice = SlicedString::cast(New(map, AllocationType::kYoung));
1038  DisallowGarbageCollection no_gc;
1039  slice.set_raw_hash_field(String::kEmptyHashField);
1040  slice.set_length(length);
1041  slice.set_parent(*str);
1042  slice.set_offset(offset);
1043  return handle(slice, isolate());
1044}
1045
1046MaybeHandle<String> Factory::NewExternalStringFromOneByte(
1047    const ExternalOneByteString::Resource* resource) {
1048  size_t length = resource->length();
1049  if (length > static_cast<size_t>(String::kMaxLength)) {
1050    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
1051  }
1052  if (length == 0) return empty_string();
1053
1054  Handle<Map> map = resource->IsCacheable()
1055                        ? external_one_byte_string_map()
1056                        : uncached_external_one_byte_string_map();
1057  ExternalOneByteString external_string =
1058      ExternalOneByteString::cast(New(map, AllocationType::kOld));
1059  DisallowGarbageCollection no_gc;
1060  external_string.AllocateExternalPointerEntries(isolate());
1061  external_string.set_length(static_cast<int>(length));
1062  external_string.set_raw_hash_field(String::kEmptyHashField);
1063  external_string.SetResource(isolate(), resource);
1064
1065  isolate()->heap()->RegisterExternalString(external_string);
1066
1067  return Handle<String>(external_string, isolate());
1068}
1069
1070MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
1071    const ExternalTwoByteString::Resource* resource) {
1072  size_t length = resource->length();
1073  if (length > static_cast<size_t>(String::kMaxLength)) {
1074    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
1075  }
1076  if (length == 0) return empty_string();
1077
1078  Handle<Map> map = resource->IsCacheable() ? external_string_map()
1079                                            : uncached_external_string_map();
1080  ExternalTwoByteString string =
1081      ExternalTwoByteString::cast(New(map, AllocationType::kOld));
1082  DisallowGarbageCollection no_gc;
1083  string.AllocateExternalPointerEntries(isolate());
1084  string.set_length(static_cast<int>(length));
1085  string.set_raw_hash_field(String::kEmptyHashField);
1086  string.SetResource(isolate(), resource);
1087
1088  isolate()->heap()->RegisterExternalString(string);
1089
1090  return Handle<ExternalTwoByteString>(string, isolate());
1091}
1092
1093Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
1094  Handle<Map> map(isolate()->native_context()->initial_string_iterator_map(),
1095                  isolate());
1096  Handle<String> flat_string = String::Flatten(isolate(), string);
1097  Handle<JSStringIterator> iterator =
1098      Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
1099
1100  DisallowGarbageCollection no_gc;
1101  JSStringIterator raw = *iterator;
1102  raw.set_string(*flat_string);
1103  raw.set_index(0);
1104  return iterator;
1105}
1106
1107Symbol Factory::NewSymbolInternal(AllocationType allocation) {
1108  DCHECK(allocation != AllocationType::kYoung);
1109  // Statically ensure that it is safe to allocate symbols in paged spaces.
1110  STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize);
1111
1112  Symbol symbol = Symbol::cast(AllocateRawWithImmortalMap(
1113      Symbol::kSize, allocation, read_only_roots().symbol_map()));
1114  DisallowGarbageCollection no_gc;
1115  // Generate a random hash value.
1116  int hash = isolate()->GenerateIdentityHash(Name::HashBits::kMax);
1117  symbol.set_raw_hash_field(
1118      Name::CreateHashFieldValue(hash, Name::HashFieldType::kHash));
1119  symbol.set_description(read_only_roots().undefined_value(),
1120                         SKIP_WRITE_BARRIER);
1121  symbol.set_flags(0);
1122  DCHECK(!symbol.is_private());
1123  return symbol;
1124}
1125
1126Handle<Symbol> Factory::NewSymbol(AllocationType allocation) {
1127  return handle(NewSymbolInternal(allocation), isolate());
1128}
1129
1130Handle<Symbol> Factory::NewPrivateSymbol(AllocationType allocation) {
1131  DCHECK(allocation != AllocationType::kYoung);
1132  Symbol symbol = NewSymbolInternal(allocation);
1133  DisallowGarbageCollection no_gc;
1134  symbol.set_is_private(true);
1135  return handle(symbol, isolate());
1136}
1137
1138Handle<Symbol> Factory::NewPrivateNameSymbol(Handle<String> name) {
1139  Symbol symbol = NewSymbolInternal();
1140  DisallowGarbageCollection no_gc;
1141  symbol.set_is_private_name();
1142  symbol.set_description(*name);
1143  return handle(symbol, isolate());
1144}
1145
1146Context Factory::NewContextInternal(Handle<Map> map, int size,
1147                                    int variadic_part_length,
1148                                    AllocationType allocation) {
1149  DCHECK_LE(Context::kTodoHeaderSize, size);
1150  DCHECK(IsAligned(size, kTaggedSize));
1151  DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
1152  DCHECK_LE(Context::SizeFor(variadic_part_length), size);
1153
1154  HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
1155      size, allocation);
1156  result.set_map_after_allocation(*map);
1157  DisallowGarbageCollection no_gc;
1158  Context context = Context::cast(result);
1159  context.set_length(variadic_part_length);
1160  DCHECK_EQ(context.SizeFromMap(*map), size);
1161  if (size > Context::kTodoHeaderSize) {
1162    ObjectSlot start = context.RawField(Context::kTodoHeaderSize);
1163    ObjectSlot end = context.RawField(size);
1164    size_t slot_count = end - start;
1165    MemsetTagged(start, *undefined_value(), slot_count);
1166  }
1167  return context;
1168}
1169
1170Handle<NativeContext> Factory::NewNativeContext() {
1171  Handle<Map> map = NewMap(NATIVE_CONTEXT_TYPE, kVariableSizeSentinel);
1172  NativeContext context = NativeContext::cast(NewContextInternal(
1173      map, NativeContext::kSize, NativeContext::NATIVE_CONTEXT_SLOTS,
1174      AllocationType::kOld));
1175  DisallowGarbageCollection no_gc;
1176  context.set_native_context_map(*map);
1177  map->set_native_context(context);
1178  // The ExternalPointerTable is a C++ object.
1179  context.AllocateExternalPointerEntries(isolate());
1180  context.set_scope_info(*native_scope_info());
1181  context.set_previous(Context());
1182  context.set_extension(*undefined_value());
1183  context.set_errors_thrown(Smi::zero());
1184  context.set_math_random_index(Smi::zero());
1185  context.set_serialized_objects(*empty_fixed_array());
1186  context.set_microtask_queue(isolate(), nullptr);
1187  context.set_osr_code_cache(*OSROptimizedCodeCache::Empty(isolate()));
1188  context.set_retained_maps(*empty_weak_array_list());
1189  return handle(context, isolate());
1190}
1191
1192Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
1193                                          Handle<ScopeInfo> scope_info) {
1194  DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
1195  int variadic_part_length = scope_info->ContextLength();
1196  Context context =
1197      NewContextInternal(handle(outer->script_context_map(), isolate()),
1198                         Context::SizeFor(variadic_part_length),
1199                         variadic_part_length, AllocationType::kOld);
1200  DisallowGarbageCollection no_gc;
1201  context.set_scope_info(*scope_info);
1202  context.set_previous(*outer);
1203  DCHECK(context.IsScriptContext());
1204  return handle(context, isolate());
1205}
1206
1207Handle<ScriptContextTable> Factory::NewScriptContextTable() {
1208  Handle<ScriptContextTable> context_table = Handle<ScriptContextTable>::cast(
1209      NewFixedArrayWithMap(read_only_roots().script_context_table_map_handle(),
1210                           ScriptContextTable::kMinLength));
1211  Handle<NameToIndexHashTable> names = NameToIndexHashTable::New(isolate(), 16);
1212  context_table->set_used(0, kReleaseStore);
1213  context_table->set_names_to_context_index(*names);
1214  return context_table;
1215}
1216
1217Handle<Context> Factory::NewModuleContext(Handle<SourceTextModule> module,
1218                                          Handle<NativeContext> outer,
1219                                          Handle<ScopeInfo> scope_info) {
1220  DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
1221  int variadic_part_length = scope_info->ContextLength();
1222  Context context = NewContextInternal(
1223      isolate()->module_context_map(), Context::SizeFor(variadic_part_length),
1224      variadic_part_length, AllocationType::kOld);
1225  DisallowGarbageCollection no_gc;
1226  context.set_scope_info(*scope_info);
1227  context.set_previous(*outer);
1228  context.set_extension(*module);
1229  DCHECK(context.IsModuleContext());
1230  return handle(context, isolate());
1231}
1232
1233Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
1234                                            Handle<ScopeInfo> scope_info) {
1235  Handle<Map> map;
1236  switch (scope_info->scope_type()) {
1237    case EVAL_SCOPE:
1238      map = isolate()->eval_context_map();
1239      break;
1240    case FUNCTION_SCOPE:
1241      map = isolate()->function_context_map();
1242      break;
1243    default:
1244      UNREACHABLE();
1245  }
1246  int variadic_part_length = scope_info->ContextLength();
1247  Context context =
1248      NewContextInternal(map, Context::SizeFor(variadic_part_length),
1249                         variadic_part_length, AllocationType::kYoung);
1250  DisallowGarbageCollection no_gc;
1251  context.set_scope_info(*scope_info);
1252  context.set_previous(*outer);
1253  return handle(context, isolate());
1254}
1255
1256Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
1257                                         Handle<ScopeInfo> scope_info,
1258                                         Handle<Object> thrown_object) {
1259  DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
1260  STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
1261  // TODO(ishell): Take the details from CatchContext class.
1262  int variadic_part_length = Context::MIN_CONTEXT_SLOTS + 1;
1263  Context context = NewContextInternal(
1264      isolate()->catch_context_map(), Context::SizeFor(variadic_part_length),
1265      variadic_part_length, AllocationType::kYoung);
1266  DisallowGarbageCollection no_gc;
1267  DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1268  context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1269  context.set_previous(*previous, SKIP_WRITE_BARRIER);
1270  context.set(Context::THROWN_OBJECT_INDEX, *thrown_object, SKIP_WRITE_BARRIER);
1271  return handle(context, isolate());
1272}
1273
1274Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
1275                                                 Handle<ScopeInfo> scope_info,
1276                                                 Handle<JSReceiver> extension,
1277                                                 Handle<Context> wrapped) {
1278  DCHECK(scope_info->IsDebugEvaluateScope());
1279  Handle<HeapObject> ext = extension.is_null()
1280                               ? Handle<HeapObject>::cast(undefined_value())
1281                               : Handle<HeapObject>::cast(extension);
1282  // TODO(ishell): Take the details from DebugEvaluateContextContext class.
1283  int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS + 1;
1284  Context context =
1285      NewContextInternal(isolate()->debug_evaluate_context_map(),
1286                         Context::SizeFor(variadic_part_length),
1287                         variadic_part_length, AllocationType::kYoung);
1288  DisallowGarbageCollection no_gc;
1289  DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1290  context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1291  context.set_previous(*previous, SKIP_WRITE_BARRIER);
1292  context.set_extension(*ext, SKIP_WRITE_BARRIER);
1293  if (!wrapped.is_null()) {
1294    context.set(Context::WRAPPED_CONTEXT_INDEX, *wrapped, SKIP_WRITE_BARRIER);
1295  }
1296  return handle(context, isolate());
1297}
1298
1299Handle<Context> Factory::NewWithContext(Handle<Context> previous,
1300                                        Handle<ScopeInfo> scope_info,
1301                                        Handle<JSReceiver> extension) {
1302  DCHECK_EQ(scope_info->scope_type(), WITH_SCOPE);
1303  // TODO(ishell): Take the details from WithContext class.
1304  int variadic_part_length = Context::MIN_CONTEXT_EXTENDED_SLOTS;
1305  Context context = NewContextInternal(
1306      isolate()->with_context_map(), Context::SizeFor(variadic_part_length),
1307      variadic_part_length, AllocationType::kYoung);
1308  DisallowGarbageCollection no_gc;
1309  DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1310  context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1311  context.set_previous(*previous, SKIP_WRITE_BARRIER);
1312  context.set_extension(*extension, SKIP_WRITE_BARRIER);
1313  return handle(context, isolate());
1314}
1315
1316Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
1317                                         Handle<ScopeInfo> scope_info) {
1318  DCHECK_IMPLIES(scope_info->scope_type() != BLOCK_SCOPE,
1319                 scope_info->scope_type() == CLASS_SCOPE);
1320  int variadic_part_length = scope_info->ContextLength();
1321  Context context = NewContextInternal(
1322      isolate()->block_context_map(), Context::SizeFor(variadic_part_length),
1323      variadic_part_length, AllocationType::kYoung);
1324  DisallowGarbageCollection no_gc;
1325  DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1326  context.set_scope_info(*scope_info, SKIP_WRITE_BARRIER);
1327  context.set_previous(*previous, SKIP_WRITE_BARRIER);
1328  return handle(context, isolate());
1329}
1330
1331Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
1332                                           int variadic_part_length) {
1333  DCHECK_LE(Context::MIN_CONTEXT_SLOTS, variadic_part_length);
1334  Context context = NewContextInternal(
1335      isolate()->function_context_map(), Context::SizeFor(variadic_part_length),
1336      variadic_part_length, AllocationType::kYoung);
1337  DisallowGarbageCollection no_gc;
1338  DCHECK_IMPLIES(!FLAG_single_generation, Heap::InYoungGeneration(context));
1339  context.set_scope_info(read_only_roots().empty_scope_info(),
1340                         SKIP_WRITE_BARRIER);
1341  context.set_previous(*native_context, SKIP_WRITE_BARRIER);
1342  return handle(context, isolate());
1343}
1344
1345Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
1346    int aliased_context_slot) {
1347  auto entry = NewStructInternal<AliasedArgumentsEntry>(
1348      ALIASED_ARGUMENTS_ENTRY_TYPE, AllocationType::kYoung);
1349  entry.set_aliased_context_slot(aliased_context_slot);
1350  return handle(entry, isolate());
1351}
1352
1353Handle<AccessorInfo> Factory::NewAccessorInfo() {
1354  auto info =
1355      NewStructInternal<AccessorInfo>(ACCESSOR_INFO_TYPE, AllocationType::kOld);
1356  DisallowGarbageCollection no_gc;
1357  info.set_name(*empty_string(), SKIP_WRITE_BARRIER);
1358  info.set_flags(0);  // Must clear the flags, it was initialized as undefined.
1359  info.set_is_sloppy(true);
1360  info.set_initial_property_attributes(NONE);
1361
1362  // Clear some other fields that should not be undefined.
1363  info.set_getter(Smi::zero(), SKIP_WRITE_BARRIER);
1364  info.set_setter(Smi::zero(), SKIP_WRITE_BARRIER);
1365  info.set_js_getter(Smi::zero(), SKIP_WRITE_BARRIER);
1366  return handle(info, isolate());
1367}
1368
1369Handle<ErrorStackData> Factory::NewErrorStackData(
1370    Handle<Object> call_site_infos_or_formatted_stack,
1371    Handle<Object> limit_or_stack_frame_infos) {
1372  ErrorStackData error_stack_data = NewStructInternal<ErrorStackData>(
1373      ERROR_STACK_DATA_TYPE, AllocationType::kYoung);
1374  DisallowGarbageCollection no_gc;
1375  error_stack_data.set_call_site_infos_or_formatted_stack(
1376      *call_site_infos_or_formatted_stack, SKIP_WRITE_BARRIER);
1377  error_stack_data.set_limit_or_stack_frame_infos(*limit_or_stack_frame_infos,
1378                                                  SKIP_WRITE_BARRIER);
1379  return handle(error_stack_data, isolate());
1380}
1381
1382void Factory::AddToScriptList(Handle<Script> script) {
1383  Handle<WeakArrayList> scripts = script_list();
1384  scripts = WeakArrayList::Append(isolate(), scripts,
1385                                  MaybeObjectHandle::Weak(script));
1386  isolate()->heap()->set_script_list(*scripts);
1387}
1388
1389Handle<Script> Factory::CloneScript(Handle<Script> script) {
1390  Heap* heap = isolate()->heap();
1391  int script_id = isolate()->GetNextScriptId();
1392#ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
1393  Handle<ArrayList> list = ArrayList::New(isolate(), 0);
1394#endif
1395  Handle<Script> new_script_handle =
1396      Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld));
1397  {
1398    DisallowGarbageCollection no_gc;
1399    Script new_script = *new_script_handle;
1400    const Script old_script = *script;
1401    new_script.set_source(old_script.source());
1402    new_script.set_name(old_script.name());
1403    new_script.set_id(script_id);
1404    new_script.set_line_offset(old_script.line_offset());
1405    new_script.set_column_offset(old_script.column_offset());
1406    new_script.set_context_data(old_script.context_data());
1407    new_script.set_type(old_script.type());
1408    new_script.set_line_ends(*undefined_value(), SKIP_WRITE_BARRIER);
1409    new_script.set_eval_from_shared_or_wrapped_arguments_or_sfi_table(
1410        script->eval_from_shared_or_wrapped_arguments_or_sfi_table());
1411    new_script.set_shared_function_infos(*empty_weak_fixed_array(),
1412                                         SKIP_WRITE_BARRIER);
1413    new_script.set_eval_from_position(old_script.eval_from_position());
1414    new_script.set_flags(old_script.flags());
1415    new_script.set_host_defined_options(old_script.host_defined_options());
1416#ifdef V8_SCRIPTORMODULE_LEGACY_LIFETIME
1417    new_script.set_script_or_modules(*list);
1418#endif
1419  }
1420
1421  Handle<WeakArrayList> scripts = script_list();
1422  scripts = WeakArrayList::AddToEnd(isolate(), scripts,
1423                                    MaybeObjectHandle::Weak(new_script_handle));
1424  heap->set_script_list(*scripts);
1425  LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
1426  return new_script_handle;
1427}
1428
1429Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
1430                                              Handle<Context> context) {
1431  DCHECK(callable->IsCallable());
1432  auto microtask = NewStructInternal<CallableTask>(CALLABLE_TASK_TYPE,
1433                                                   AllocationType::kYoung);
1434  DisallowGarbageCollection no_gc;
1435  microtask.set_callable(*callable, SKIP_WRITE_BARRIER);
1436  microtask.set_context(*context, SKIP_WRITE_BARRIER);
1437  return handle(microtask, isolate());
1438}
1439
1440Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
1441                                              Handle<Foreign> data) {
1442  auto microtask = NewStructInternal<CallbackTask>(CALLBACK_TASK_TYPE,
1443                                                   AllocationType::kYoung);
1444  DisallowGarbageCollection no_gc;
1445  microtask.set_callback(*callback, SKIP_WRITE_BARRIER);
1446  microtask.set_data(*data, SKIP_WRITE_BARRIER);
1447  return handle(microtask, isolate());
1448}
1449
1450Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
1451    Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> thenable,
1452    Handle<JSReceiver> then, Handle<Context> context) {
1453  DCHECK(then->IsCallable());
1454  auto microtask = NewStructInternal<PromiseResolveThenableJobTask>(
1455      PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE, AllocationType::kYoung);
1456  DisallowGarbageCollection no_gc;
1457  microtask.set_promise_to_resolve(*promise_to_resolve, SKIP_WRITE_BARRIER);
1458  microtask.set_thenable(*thenable, SKIP_WRITE_BARRIER);
1459  microtask.set_then(*then, SKIP_WRITE_BARRIER);
1460  microtask.set_context(*context, SKIP_WRITE_BARRIER);
1461  return handle(microtask, isolate());
1462}
1463
1464Handle<Foreign> Factory::NewForeign(Address addr) {
1465  // Statically ensure that it is safe to allocate foreigns in paged spaces.
1466  STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize);
1467  Map map = *foreign_map();
1468  Foreign foreign = Foreign::cast(AllocateRawWithImmortalMap(
1469      map.instance_size(), AllocationType::kYoung, map));
1470  DisallowGarbageCollection no_gc;
1471  foreign.AllocateExternalPointerEntries(isolate());
1472  foreign.set_foreign_address(isolate(), addr);
1473  return handle(foreign, isolate());
1474}
1475
1476#if V8_ENABLE_WEBASSEMBLY
1477Handle<WasmTypeInfo> Factory::NewWasmTypeInfo(
1478    Address type_address, Handle<Map> opt_parent, int instance_size_bytes,
1479    Handle<WasmInstanceObject> instance) {
1480  // We pretenure WasmTypeInfo objects for two reasons:
1481  // (1) They are referenced by Maps, which are assumed to be long-lived,
1482  //     so pretenuring the WTI is a bit more efficient.
1483  // (2) The object visitors need to read the WasmTypeInfo to find tagged
1484  //     fields in Wasm structs; in the middle of a GC cycle that's only
1485  //     safe to do if the WTI is in old space.
1486  // The supertypes list is constant after initialization, so we pretenure
1487  // that too. The subtypes list, however, is expected to grow (and hence be
1488  // replaced), so we don't pretenure it.
1489  Handle<FixedArray> supertypes;
1490  if (opt_parent.is_null()) {
1491    supertypes = NewFixedArray(wasm::kMinimumSupertypeArraySize);
1492    for (int i = 0; i < supertypes->length(); i++) {
1493      supertypes->set(i, *undefined_value());
1494    }
1495  } else {
1496    Handle<FixedArray> parent_supertypes =
1497        handle(opt_parent->wasm_type_info().supertypes(), isolate());
1498    int last_defined_index = parent_supertypes->length() - 1;
1499    while (last_defined_index >= 0 &&
1500           parent_supertypes->get(last_defined_index).IsUndefined()) {
1501      last_defined_index--;
1502    }
1503    if (last_defined_index == parent_supertypes->length() - 1) {
1504      supertypes = CopyArrayAndGrow(parent_supertypes, 1, AllocationType::kOld);
1505    } else {
1506      supertypes = CopyFixedArray(parent_supertypes);
1507    }
1508    supertypes->set(last_defined_index + 1, *opt_parent);
1509  }
1510  Map map = *wasm_type_info_map();
1511  WasmTypeInfo result = WasmTypeInfo::cast(AllocateRawWithImmortalMap(
1512      map.instance_size(), AllocationType::kOld, map));
1513  DisallowGarbageCollection no_gc;
1514  result.AllocateExternalPointerEntries(isolate());
1515  result.set_foreign_address(isolate(), type_address);
1516  result.set_supertypes(*supertypes);
1517  result.set_subtypes(ReadOnlyRoots(isolate()).empty_array_list());
1518  result.set_instance_size(instance_size_bytes);
1519  result.set_instance(*instance);
1520  return handle(result, isolate());
1521}
1522
1523Handle<WasmApiFunctionRef> Factory::NewWasmApiFunctionRef(
1524    Handle<JSReceiver> callable, Handle<HeapObject> suspender) {
1525  Map map = *wasm_api_function_ref_map();
1526  auto result = WasmApiFunctionRef::cast(AllocateRawWithImmortalMap(
1527      map.instance_size(), AllocationType::kOld, map));
1528  DisallowGarbageCollection no_gc;
1529  result.set_isolate_root(isolate()->isolate_root());
1530  result.set_native_context(*isolate()->native_context());
1531  if (!callable.is_null()) {
1532    result.set_callable(*callable);
1533  } else {
1534    result.set_callable(*undefined_value());
1535  }
1536  if (!suspender.is_null()) {
1537    result.set_suspender(*suspender);
1538  } else {
1539    result.set_suspender(*undefined_value());
1540  }
1541  return handle(result, isolate());
1542}
1543
1544Handle<WasmInternalFunction> Factory::NewWasmInternalFunction(
1545    Address opt_call_target, Handle<HeapObject> ref, Handle<Map> rtt) {
1546  HeapObject raw = AllocateRaw(rtt->instance_size(), AllocationType::kOld);
1547  raw.set_map_after_allocation(*rtt);
1548  WasmInternalFunction result = WasmInternalFunction::cast(raw);
1549  DisallowGarbageCollection no_gc;
1550  result.AllocateExternalPointerEntries(isolate());
1551  result.set_foreign_address(isolate(), opt_call_target);
1552  result.set_ref(*ref);
1553  // Default values, will be overwritten by the caller.
1554  result.set_code(*BUILTIN_CODE(isolate(), Abort));
1555  result.set_external(*undefined_value());
1556  return handle(result, isolate());
1557}
1558
1559Handle<WasmJSFunctionData> Factory::NewWasmJSFunctionData(
1560    Address opt_call_target, Handle<JSReceiver> callable, int return_count,
1561    int parameter_count, Handle<PodArray<wasm::ValueType>> serialized_sig,
1562    Handle<CodeT> wrapper_code, Handle<Map> rtt, Handle<HeapObject> suspender) {
1563  Handle<WasmApiFunctionRef> ref = NewWasmApiFunctionRef(callable, suspender);
1564  Handle<WasmInternalFunction> internal =
1565      NewWasmInternalFunction(opt_call_target, ref, rtt);
1566  Map map = *wasm_js_function_data_map();
1567  WasmJSFunctionData result =
1568      WasmJSFunctionData::cast(AllocateRawWithImmortalMap(
1569          map.instance_size(), AllocationType::kOld, map));
1570  DisallowGarbageCollection no_gc;
1571  result.set_internal(*internal);
1572  result.set_wrapper_code(*wrapper_code);
1573  result.set_serialized_return_count(return_count);
1574  result.set_serialized_parameter_count(parameter_count);
1575  result.set_serialized_signature(*serialized_sig);
1576  return handle(result, isolate());
1577}
1578
1579Handle<WasmOnFulfilledData> Factory::NewWasmOnFulfilledData(
1580    Handle<WasmSuspenderObject> suspender) {
1581  Map map = *wasm_onfulfilled_data_map();
1582  WasmOnFulfilledData result =
1583      WasmOnFulfilledData::cast(AllocateRawWithImmortalMap(
1584          map.instance_size(), AllocationType::kOld, map));
1585  DisallowGarbageCollection no_gc;
1586  result.set_suspender(*suspender);
1587  return handle(result, isolate());
1588}
1589
1590Handle<WasmExportedFunctionData> Factory::NewWasmExportedFunctionData(
1591    Handle<CodeT> export_wrapper, Handle<WasmInstanceObject> instance,
1592    Address call_target, Handle<Object> ref, int func_index,
1593    Address sig_address, int wrapper_budget, Handle<Map> rtt) {
1594  Handle<Foreign> sig_foreign = NewForeign(sig_address);
1595  Handle<WasmInternalFunction> internal =
1596      NewWasmInternalFunction(call_target, Handle<HeapObject>::cast(ref), rtt);
1597  Map map = *wasm_exported_function_data_map();
1598  WasmExportedFunctionData result =
1599      WasmExportedFunctionData::cast(AllocateRawWithImmortalMap(
1600          map.instance_size(), AllocationType::kOld, map));
1601  DisallowGarbageCollection no_gc;
1602  DCHECK(ref->IsWasmInstanceObject() || ref->IsWasmApiFunctionRef());
1603  result.set_internal(*internal);
1604  result.set_wrapper_code(*export_wrapper);
1605  result.set_instance(*instance);
1606  result.set_function_index(func_index);
1607  result.set_signature(*sig_foreign);
1608  result.set_wrapper_budget(wrapper_budget);
1609  // We can't skip the write barrier when V8_EXTERNAL_CODE_SPACE is enabled
1610  // because in this case the CodeT (CodeDataContainer) objects are not
1611  // immovable.
1612  result.set_c_wrapper_code(
1613      *BUILTIN_CODE(isolate(), Illegal),
1614      V8_EXTERNAL_CODE_SPACE_BOOL ? UPDATE_WRITE_BARRIER : SKIP_WRITE_BARRIER);
1615  result.set_packed_args_size(0);
1616  result.set_suspender(*undefined_value());
1617  return handle(result, isolate());
1618}
1619
1620Handle<WasmCapiFunctionData> Factory::NewWasmCapiFunctionData(
1621    Address call_target, Handle<Foreign> embedder_data,
1622    Handle<CodeT> wrapper_code, Handle<Map> rtt,
1623    Handle<PodArray<wasm::ValueType>> serialized_sig) {
1624  Handle<WasmApiFunctionRef> ref =
1625      NewWasmApiFunctionRef(Handle<JSReceiver>(), Handle<HeapObject>());
1626  Handle<WasmInternalFunction> internal =
1627      NewWasmInternalFunction(call_target, ref, rtt);
1628  Map map = *wasm_capi_function_data_map();
1629  WasmCapiFunctionData result =
1630      WasmCapiFunctionData::cast(AllocateRawWithImmortalMap(
1631          map.instance_size(), AllocationType::kOld, map));
1632  DisallowGarbageCollection no_gc;
1633  result.set_internal(*internal);
1634  result.set_wrapper_code(*wrapper_code);
1635  result.set_embedder_data(*embedder_data);
1636  result.set_serialized_signature(*serialized_sig);
1637  return handle(result, isolate());
1638}
1639
1640Handle<WasmArray> Factory::NewWasmArrayFromElements(
1641    const wasm::ArrayType* type, const std::vector<wasm::WasmValue>& elements,
1642    Handle<Map> map) {
1643  uint32_t length = static_cast<uint32_t>(elements.size());
1644  HeapObject raw =
1645      AllocateRaw(WasmArray::SizeFor(*map, length), AllocationType::kYoung);
1646  DisallowGarbageCollection no_gc;
1647  raw.set_map_after_allocation(*map);
1648  WasmArray result = WasmArray::cast(raw);
1649  result.set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
1650  result.set_length(length);
1651  if (type->element_type().is_numeric()) {
1652    for (uint32_t i = 0; i < length; i++) {
1653      Address address = result.ElementAddress(i);
1654      elements[i]
1655          .Packed(type->element_type())
1656          .CopyTo(reinterpret_cast<byte*>(address));
1657    }
1658  } else {
1659    for (uint32_t i = 0; i < length; i++) {
1660      int offset = result.element_offset(i);
1661      TaggedField<Object>::store(result, offset, *elements[i].to_ref());
1662    }
1663  }
1664  return handle(result, isolate());
1665}
1666
1667Handle<WasmArray> Factory::NewWasmArrayFromMemory(uint32_t length,
1668                                                  Handle<Map> map,
1669                                                  Address source) {
1670  wasm::ValueType element_type = reinterpret_cast<wasm::ArrayType*>(
1671                                     map->wasm_type_info().foreign_address())
1672                                     ->element_type();
1673  DCHECK(element_type.is_numeric());
1674  HeapObject raw =
1675      AllocateRaw(WasmArray::SizeFor(*map, length), AllocationType::kYoung);
1676  DisallowGarbageCollection no_gc;
1677  raw.set_map_after_allocation(*map);
1678  WasmArray result = WasmArray::cast(raw);
1679  result.set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
1680  result.set_length(length);
1681  MemCopy(reinterpret_cast<void*>(result.ElementAddress(0)),
1682          reinterpret_cast<void*>(source),
1683          length * element_type.value_kind_size());
1684
1685  return handle(result, isolate());
1686}
1687
1688Handle<WasmStruct> Factory::NewWasmStruct(const wasm::StructType* type,
1689                                          wasm::WasmValue* args,
1690                                          Handle<Map> map) {
1691  DCHECK_EQ(WasmStruct::Size(type), map->wasm_type_info().instance_size());
1692  HeapObject raw = AllocateRaw(WasmStruct::Size(type), AllocationType::kYoung);
1693  raw.set_map_after_allocation(*map);
1694  WasmStruct result = WasmStruct::cast(raw);
1695  result.set_raw_properties_or_hash(*empty_fixed_array(), kRelaxedStore);
1696  for (uint32_t i = 0; i < type->field_count(); i++) {
1697    int offset = type->field_offset(i);
1698    if (type->field(i).is_numeric()) {
1699      Address address = result.RawFieldAddress(offset);
1700      args[i].Packed(type->field(i)).CopyTo(reinterpret_cast<byte*>(address));
1701    } else {
1702      offset += WasmStruct::kHeaderSize;
1703      TaggedField<Object>::store(result, offset, *args[i].to_ref());
1704    }
1705  }
1706  return handle(result, isolate());
1707}
1708
1709Handle<SharedFunctionInfo>
1710Factory::NewSharedFunctionInfoForWasmExportedFunction(
1711    Handle<String> name, Handle<WasmExportedFunctionData> data) {
1712  return NewSharedFunctionInfo(name, data, Builtin::kNoBuiltinId);
1713}
1714
1715Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmJSFunction(
1716    Handle<String> name, Handle<WasmJSFunctionData> data) {
1717  return NewSharedFunctionInfo(name, data, Builtin::kNoBuiltinId);
1718}
1719
1720Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmOnFulfilled(
1721    Handle<WasmOnFulfilledData> data) {
1722  return NewSharedFunctionInfo({}, data, Builtin::kNoBuiltinId);
1723}
1724
1725Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWasmCapiFunction(
1726    Handle<WasmCapiFunctionData> data) {
1727  return NewSharedFunctionInfo(MaybeHandle<String>(), data,
1728                               Builtin::kNoBuiltinId,
1729                               FunctionKind::kConciseMethod);
1730}
1731#endif  // V8_ENABLE_WEBASSEMBLY
1732
1733Handle<Cell> Factory::NewCell(Handle<Object> value) {
1734  STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize);
1735  Cell result = Cell::cast(AllocateRawWithImmortalMap(
1736      Cell::kSize, AllocationType::kOld, *cell_map()));
1737  DisallowGarbageCollection no_gc;
1738  result.set_value(*value);
1739  return handle(result, isolate());
1740}
1741
1742Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
1743  FeedbackCell result = FeedbackCell::cast(AllocateRawWithImmortalMap(
1744      FeedbackCell::kAlignedSize, AllocationType::kOld,
1745      *no_closures_cell_map()));
1746  DisallowGarbageCollection no_gc;
1747  result.set_value(*value);
1748  result.SetInitialInterruptBudget();
1749  result.clear_padding();
1750  return handle(result, isolate());
1751}
1752
1753Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
1754  FeedbackCell result = FeedbackCell::cast(AllocateRawWithImmortalMap(
1755      FeedbackCell::kAlignedSize, AllocationType::kOld,
1756      *one_closure_cell_map()));
1757  DisallowGarbageCollection no_gc;
1758  result.set_value(*value);
1759  result.SetInitialInterruptBudget();
1760  result.clear_padding();
1761  return handle(result, isolate());
1762}
1763
1764Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
1765  FeedbackCell result = FeedbackCell::cast(AllocateRawWithImmortalMap(
1766      FeedbackCell::kAlignedSize, AllocationType::kOld,
1767      *many_closures_cell_map()));
1768  DisallowGarbageCollection no_gc;
1769  result.set_value(*value);
1770  result.SetInitialInterruptBudget();
1771  result.clear_padding();
1772  return handle(result, isolate());
1773}
1774
1775Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
1776                                              PropertyDetails details,
1777                                              Handle<Object> value,
1778                                              AllocationType allocation) {
1779  DCHECK(name->IsUniqueName());
1780  STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
1781  PropertyCell cell = PropertyCell::cast(AllocateRawWithImmortalMap(
1782      PropertyCell::kSize, allocation, *global_property_cell_map()));
1783  DisallowGarbageCollection no_gc;
1784  cell.set_dependent_code(
1785      DependentCode::empty_dependent_code(ReadOnlyRoots(isolate())),
1786      SKIP_WRITE_BARRIER);
1787  WriteBarrierMode mode = allocation == AllocationType::kYoung
1788                              ? SKIP_WRITE_BARRIER
1789                              : UPDATE_WRITE_BARRIER;
1790  cell.set_name(*name, mode);
1791  cell.set_value(*value, mode);
1792  cell.set_property_details_raw(details.AsSmi(), SKIP_WRITE_BARRIER);
1793  return handle(cell, isolate());
1794}
1795
1796Handle<PropertyCell> Factory::NewProtector() {
1797  return NewPropertyCell(
1798      empty_string(), PropertyDetails::Empty(PropertyCellType::kConstantType),
1799      handle(Smi::FromInt(Protectors::kProtectorValid), isolate()));
1800}
1801
1802Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
1803                                                    int slack) {
1804  int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
1805  Handle<TransitionArray> array = Handle<TransitionArray>::cast(
1806      NewWeakFixedArrayWithMap(read_only_roots().transition_array_map(),
1807                               capacity, AllocationType::kOld));
1808  // Transition arrays are AllocationType::kOld. When black allocation is on we
1809  // have to add the transition array to the list of
1810  // encountered_transition_arrays.
1811  Heap* heap = isolate()->heap();
1812  if (heap->incremental_marking()->black_allocation()) {
1813    heap->mark_compact_collector()->AddTransitionArray(*array);
1814  }
1815  array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
1816                             MaybeObject::FromObject(Smi::zero()));
1817  array->WeakFixedArray::Set(
1818      TransitionArray::kTransitionLengthIndex,
1819      MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
1820  return array;
1821}
1822
1823Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
1824  Handle<Map> map = with_weak_next ? allocation_site_map()
1825                                   : allocation_site_without_weaknext_map();
1826  Handle<AllocationSite> site(
1827      AllocationSite::cast(New(map, AllocationType::kOld)), isolate());
1828  site->Initialize();
1829
1830  if (with_weak_next) {
1831    // Link the site
1832    site->set_weak_next(isolate()->heap()->allocation_sites_list());
1833    isolate()->heap()->set_allocation_sites_list(*site);
1834  }
1835  return site;
1836}
1837
1838Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
1839                            ElementsKind elements_kind, int inobject_properties,
1840                            AllocationType allocation_type) {
1841  STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
1842  DCHECK_IMPLIES(InstanceTypeChecker::IsJSObject(type) &&
1843                     !Map::CanHaveFastTransitionableElementsKind(type),
1844                 IsDictionaryElementsKind(elements_kind) ||
1845                     IsTerminalElementsKind(elements_kind));
1846  DCHECK(allocation_type == AllocationType::kMap ||
1847         allocation_type == AllocationType::kSharedMap);
1848  HeapObject result = allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
1849      Map::kSize, allocation_type);
1850  DisallowGarbageCollection no_gc;
1851  Heap* roots = allocation_type == AllocationType::kMap
1852                    ? isolate()->heap()
1853                    : isolate()->shared_isolate()->heap();
1854  result.set_map_after_allocation(ReadOnlyRoots(roots).meta_map(),
1855                                  SKIP_WRITE_BARRIER);
1856  return handle(InitializeMap(Map::cast(result), type, instance_size,
1857                              elements_kind, inobject_properties, roots),
1858                isolate());
1859}
1860
1861Map Factory::InitializeMap(Map map, InstanceType type, int instance_size,
1862                           ElementsKind elements_kind, int inobject_properties,
1863                           Heap* roots) {
1864  DisallowGarbageCollection no_gc;
1865  map.set_bit_field(0);
1866  map.set_bit_field2(Map::Bits2::NewTargetIsBaseBit::encode(true));
1867  int bit_field3 =
1868      Map::Bits3::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
1869      Map::Bits3::OwnsDescriptorsBit::encode(true) |
1870      Map::Bits3::ConstructionCounterBits::encode(Map::kNoSlackTracking) |
1871      Map::Bits3::IsExtensibleBit::encode(true);
1872  map.set_bit_field3(bit_field3);
1873  map.set_instance_type(type);
1874  ReadOnlyRoots ro_roots(roots);
1875  HeapObject raw_null_value = ro_roots.null_value();
1876  map.set_prototype(raw_null_value, SKIP_WRITE_BARRIER);
1877  map.set_constructor_or_back_pointer(raw_null_value, SKIP_WRITE_BARRIER);
1878  map.set_instance_size(instance_size);
1879  if (map.IsJSObjectMap()) {
1880    DCHECK(!ReadOnlyHeap::Contains(map));
1881    map.SetInObjectPropertiesStartInWords(instance_size / kTaggedSize -
1882                                          inobject_properties);
1883    DCHECK_EQ(map.GetInObjectProperties(), inobject_properties);
1884    map.set_prototype_validity_cell(roots->invalid_prototype_validity_cell());
1885  } else {
1886    DCHECK_EQ(inobject_properties, 0);
1887    map.set_inobject_properties_start_or_constructor_function_index(0);
1888    map.set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid),
1889                                    SKIP_WRITE_BARRIER);
1890  }
1891  map.set_dependent_code(DependentCode::empty_dependent_code(ro_roots),
1892                         SKIP_WRITE_BARRIER);
1893  map.set_raw_transitions(MaybeObject::FromSmi(Smi::zero()),
1894                          SKIP_WRITE_BARRIER);
1895  map.SetInObjectUnusedPropertyFields(inobject_properties);
1896  map.SetInstanceDescriptors(isolate(), ro_roots.empty_descriptor_array(), 0);
1897  // Must be called only after |instance_type| and |instance_size| are set.
1898  map.set_visitor_id(Map::GetVisitorId(map));
1899  DCHECK(!map.is_in_retained_map_list());
1900  map.clear_padding();
1901  map.set_elements_kind(elements_kind);
1902  isolate()->counters()->maps_created()->Increment();
1903  if (FLAG_log_maps) LOG(isolate(), MapCreate(map));
1904  return map;
1905}
1906
1907Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
1908  return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
1909}
1910
1911Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
1912    Handle<JSObject> source, Handle<AllocationSite> site) {
1913  Handle<Map> map(source->map(), isolate());
1914
1915  // We can only clone regexps, normal objects, api objects, errors or arrays.
1916  // Copying anything else will break invariants.
1917  InstanceType instance_type = map->instance_type();
1918  bool is_clonable_js_type =
1919      instance_type == JS_REG_EXP_TYPE || instance_type == JS_OBJECT_TYPE ||
1920      instance_type == JS_ERROR_TYPE || instance_type == JS_ARRAY_TYPE ||
1921      instance_type == JS_SPECIAL_API_OBJECT_TYPE ||
1922      InstanceTypeChecker::IsJSApiObject(instance_type);
1923  bool is_clonable_wasm_type = false;
1924#if V8_ENABLE_WEBASSEMBLY
1925  is_clonable_wasm_type = instance_type == WASM_GLOBAL_OBJECT_TYPE ||
1926                          instance_type == WASM_INSTANCE_OBJECT_TYPE ||
1927                          instance_type == WASM_MEMORY_OBJECT_TYPE ||
1928                          instance_type == WASM_MODULE_OBJECT_TYPE ||
1929                          instance_type == WASM_TABLE_OBJECT_TYPE;
1930#endif  // V8_ENABLE_WEBASSEMBLY
1931  CHECK(is_clonable_js_type || is_clonable_wasm_type);
1932
1933  DCHECK(site.is_null() || AllocationSite::CanTrack(instance_type));
1934
1935  int object_size = map->instance_size();
1936  int adjusted_object_size = object_size;
1937  if (!site.is_null()) {
1938    DCHECK(V8_ALLOCATION_SITE_TRACKING_BOOL);
1939    adjusted_object_size += AllocationMemento::kSize;
1940  }
1941  HeapObject raw_clone =
1942      allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
1943          adjusted_object_size, AllocationType::kYoung);
1944
1945  DCHECK(Heap::InYoungGeneration(raw_clone) || FLAG_single_generation);
1946
1947  Heap::CopyBlock(raw_clone.address(), source->address(), object_size);
1948  Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
1949
1950  if (FLAG_enable_unconditional_write_barriers) {
1951    // By default, we shouldn't need to update the write barrier here, as the
1952    // clone will be allocated in new space.
1953    const ObjectSlot start(raw_clone.address());
1954    const ObjectSlot end(raw_clone.address() + object_size);
1955    isolate()->heap()->WriteBarrierForRange(raw_clone, start, end);
1956  }
1957  if (!site.is_null()) {
1958    AllocationMemento alloc_memento = AllocationMemento::unchecked_cast(
1959        Object(raw_clone.ptr() + object_size));
1960    InitializeAllocationMemento(alloc_memento, *site);
1961  }
1962
1963  SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
1964  FixedArrayBase elements = source->elements();
1965  // Update elements if necessary.
1966  if (elements.length() > 0) {
1967    FixedArrayBase elem;
1968    if (elements.map() == *fixed_cow_array_map()) {
1969      elem = elements;
1970    } else if (source->HasDoubleElements()) {
1971      elem = *CopyFixedDoubleArray(
1972          handle(FixedDoubleArray::cast(elements), isolate()));
1973    } else {
1974      elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate()));
1975    }
1976    clone->set_elements(elem);
1977  }
1978
1979  // Update properties if necessary.
1980  if (source->HasFastProperties()) {
1981    PropertyArray properties = source->property_array();
1982    if (properties.length() > 0) {
1983      // TODO(gsathya): Do not copy hash code.
1984      Handle<PropertyArray> prop = CopyArrayWithMap(
1985          handle(properties, isolate()), handle(properties.map(), isolate()));
1986      clone->set_raw_properties_or_hash(*prop, kRelaxedStore);
1987    }
1988  } else {
1989    Handle<Object> copied_properties;
1990    if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
1991      copied_properties = SwissNameDictionary::ShallowCopy(
1992          isolate(), handle(source->property_dictionary_swiss(), isolate()));
1993    } else {
1994      copied_properties =
1995          CopyFixedArray(handle(source->property_dictionary(), isolate()));
1996    }
1997    clone->set_raw_properties_or_hash(*copied_properties, kRelaxedStore);
1998  }
1999  return clone;
2000}
2001
2002namespace {
2003template <typename T>
2004void initialize_length(T array, int length) {
2005  array.set_length(length);
2006}
2007
2008template <>
2009void initialize_length<PropertyArray>(PropertyArray array, int length) {
2010  array.initialize_length(length);
2011}
2012
2013inline void InitEmbedderFields(i::JSObject obj, i::Object initial_value) {
2014  for (int i = 0; i < obj.GetEmbedderFieldCount(); i++) {
2015    EmbedderDataSlot(obj, i).Initialize(initial_value);
2016  }
2017}
2018
2019}  // namespace
2020
2021template <typename T>
2022Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) {
2023  int len = src->length();
2024  HeapObject new_object = AllocateRawFixedArray(len, AllocationType::kYoung);
2025  DisallowGarbageCollection no_gc;
2026  new_object.set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
2027  T result = T::cast(new_object);
2028  initialize_length(result, len);
2029  // Copy the content.
2030  WriteBarrierMode mode = result.GetWriteBarrierMode(no_gc);
2031  result.CopyElements(isolate(), 0, *src, 0, len, mode);
2032  return handle(result, isolate());
2033}
2034
2035template <typename T>
2036Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
2037                                    AllocationType allocation) {
2038  DCHECK_LT(0, grow_by);
2039  DCHECK_LE(grow_by, kMaxInt - src->length());
2040  int old_len = src->length();
2041  int new_len = old_len + grow_by;
2042  HeapObject new_object = AllocateRawFixedArray(new_len, allocation);
2043  DisallowGarbageCollection no_gc;
2044  new_object.set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
2045  T result = T::cast(new_object);
2046  initialize_length(result, new_len);
2047  // Copy the content.
2048  WriteBarrierMode mode = result.GetWriteBarrierMode(no_gc);
2049  result.CopyElements(isolate(), 0, *src, 0, old_len, mode);
2050  MemsetTagged(ObjectSlot(result.data_start() + old_len),
2051               read_only_roots().undefined_value(), grow_by);
2052  return handle(result, isolate());
2053}
2054
2055Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
2056                                                  Handle<Map> map) {
2057  return CopyArrayWithMap(array, map);
2058}
2059
2060Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
2061                                                  int grow_by) {
2062  return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
2063}
2064
2065Handle<WeakArrayList> Factory::NewUninitializedWeakArrayList(
2066    int capacity, AllocationType allocation) {
2067  DCHECK_LE(0, capacity);
2068  if (capacity == 0) return empty_weak_array_list();
2069
2070  HeapObject heap_object = AllocateRawWeakArrayList(capacity, allocation);
2071  DisallowGarbageCollection no_gc;
2072  heap_object.set_map_after_allocation(*weak_array_list_map(),
2073                                       SKIP_WRITE_BARRIER);
2074  WeakArrayList result = WeakArrayList::cast(heap_object);
2075  result.set_length(0);
2076  result.set_capacity(capacity);
2077  return handle(result, isolate());
2078}
2079
2080Handle<WeakArrayList> Factory::NewWeakArrayList(int capacity,
2081                                                AllocationType allocation) {
2082  Handle<WeakArrayList> result =
2083      NewUninitializedWeakArrayList(capacity, allocation);
2084  MemsetTagged(ObjectSlot(result->data_start()),
2085               read_only_roots().undefined_value(), capacity);
2086  return result;
2087}
2088
2089Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
2090    Handle<WeakFixedArray> src, int grow_by) {
2091  DCHECK(!src->IsTransitionArray());  // Compacted by GC, this code doesn't work
2092  return CopyArrayAndGrow(src, grow_by, AllocationType::kOld);
2093}
2094
2095Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
2096    Handle<WeakArrayList> src, int grow_by, AllocationType allocation) {
2097  int old_capacity = src->capacity();
2098  int new_capacity = old_capacity + grow_by;
2099  DCHECK_GE(new_capacity, old_capacity);
2100  Handle<WeakArrayList> result =
2101      NewUninitializedWeakArrayList(new_capacity, allocation);
2102  DisallowGarbageCollection no_gc;
2103  WeakArrayList raw = *result;
2104  int old_len = src->length();
2105  raw.set_length(old_len);
2106  // Copy the content.
2107  WriteBarrierMode mode = raw.GetWriteBarrierMode(no_gc);
2108  raw.CopyElements(isolate(), 0, *src, 0, old_len, mode);
2109  MemsetTagged(ObjectSlot(raw.data_start() + old_len),
2110               read_only_roots().undefined_value(), new_capacity - old_len);
2111  return result;
2112}
2113
2114Handle<WeakArrayList> Factory::CompactWeakArrayList(Handle<WeakArrayList> src,
2115                                                    int new_capacity,
2116                                                    AllocationType allocation) {
2117  Handle<WeakArrayList> result =
2118      NewUninitializedWeakArrayList(new_capacity, allocation);
2119
2120  // Copy the content.
2121  DisallowGarbageCollection no_gc;
2122  WeakArrayList raw_src = *src;
2123  WeakArrayList raw_result = *result;
2124  WriteBarrierMode mode = raw_result.GetWriteBarrierMode(no_gc);
2125  int copy_to = 0, length = raw_src.length();
2126  for (int i = 0; i < length; i++) {
2127    MaybeObject element = raw_src.Get(i);
2128    if (element->IsCleared()) continue;
2129    raw_result.Set(copy_to++, element, mode);
2130  }
2131  raw_result.set_length(copy_to);
2132
2133  MemsetTagged(ObjectSlot(raw_result.data_start() + copy_to),
2134               read_only_roots().undefined_value(), new_capacity - copy_to);
2135  return result;
2136}
2137
2138Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
2139    Handle<PropertyArray> array, int grow_by) {
2140  return CopyArrayAndGrow(array, grow_by, AllocationType::kYoung);
2141}
2142
2143Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
2144                                               int new_len,
2145                                               AllocationType allocation) {
2146  DCHECK_LE(0, new_len);
2147  DCHECK_LE(new_len, array->length());
2148  if (new_len == 0) return empty_fixed_array();
2149  HeapObject heap_object = AllocateRawFixedArray(new_len, allocation);
2150  DisallowGarbageCollection no_gc;
2151  heap_object.set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
2152  FixedArray result = FixedArray::cast(heap_object);
2153  result.set_length(new_len);
2154  // Copy the content.
2155  WriteBarrierMode mode = result.GetWriteBarrierMode(no_gc);
2156  result.CopyElements(isolate(), 0, *array, 0, new_len, mode);
2157  return handle(result, isolate());
2158}
2159
2160Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
2161  if (array->length() == 0) return array;
2162  return CopyArrayWithMap(array, handle(array->map(), isolate()));
2163}
2164
2165Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
2166    Handle<FixedDoubleArray> array) {
2167  int len = array->length();
2168  if (len == 0) return array;
2169  Handle<FixedDoubleArray> result =
2170      Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len));
2171  Heap::CopyBlock(
2172      result->address() + FixedDoubleArray::kLengthOffset,
2173      array->address() + FixedDoubleArray::kLengthOffset,
2174      FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
2175  return result;
2176}
2177
2178Handle<HeapNumber> Factory::NewHeapNumberForCodeAssembler(double value) {
2179  return CanAllocateInReadOnlySpace()
2180             ? NewHeapNumber<AllocationType::kReadOnly>(value)
2181             : NewHeapNumber<AllocationType::kOld>(value);
2182}
2183
2184Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
2185                                   MessageTemplate template_index,
2186                                   Handle<Object> arg0, Handle<Object> arg1,
2187                                   Handle<Object> arg2) {
2188  HandleScope scope(isolate());
2189
2190  if (arg0.is_null()) arg0 = undefined_value();
2191  if (arg1.is_null()) arg1 = undefined_value();
2192  if (arg2.is_null()) arg2 = undefined_value();
2193
2194  return scope.CloseAndEscape(ErrorUtils::MakeGenericError(
2195      isolate(), constructor, template_index, arg0, arg1, arg2, SKIP_NONE));
2196}
2197
2198Handle<JSObject> Factory::NewError(Handle<JSFunction> constructor,
2199                                   Handle<String> message) {
2200  // Construct a new error object. If an exception is thrown, use the exception
2201  // as the result.
2202
2203  Handle<Object> no_caller;
2204  return ErrorUtils::Construct(isolate(), constructor, constructor, message,
2205                               undefined_value(), SKIP_NONE, no_caller,
2206                               ErrorUtils::StackTraceCollection::kEnabled)
2207      .ToHandleChecked();
2208}
2209
2210Handle<Object> Factory::NewInvalidStringLengthError() {
2211  if (FLAG_correctness_fuzzer_suppressions) {
2212    FATAL("Aborting on invalid string length");
2213  }
2214  // Invalidate the "string length" protector.
2215  if (Protectors::IsStringLengthOverflowLookupChainIntact(isolate())) {
2216    Protectors::InvalidateStringLengthOverflowLookupChain(isolate());
2217  }
2218  return NewRangeError(MessageTemplate::kInvalidStringLength);
2219}
2220
2221#define DEFINE_ERROR(NAME, name)                                              \
2222  Handle<JSObject> Factory::New##NAME(                                        \
2223      MessageTemplate template_index, Handle<Object> arg0,                    \
2224      Handle<Object> arg1, Handle<Object> arg2) {                             \
2225    return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
2226                    arg2);                                                    \
2227  }
2228DEFINE_ERROR(Error, error)
2229DEFINE_ERROR(EvalError, eval_error)
2230DEFINE_ERROR(RangeError, range_error)
2231DEFINE_ERROR(ReferenceError, reference_error)
2232DEFINE_ERROR(SyntaxError, syntax_error)
2233DEFINE_ERROR(TypeError, type_error)
2234DEFINE_ERROR(WasmCompileError, wasm_compile_error)
2235DEFINE_ERROR(WasmLinkError, wasm_link_error)
2236DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
2237DEFINE_ERROR(WasmExceptionError, wasm_exception_error)
2238#undef DEFINE_ERROR
2239
2240Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
2241  // Make sure to use globals from the function's context, since the function
2242  // can be from a different context.
2243  Handle<NativeContext> native_context(function->native_context(), isolate());
2244  Handle<Map> new_map;
2245  if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared().kind()))) {
2246    new_map = handle(native_context->async_generator_object_prototype_map(),
2247                     isolate());
2248  } else if (IsResumableFunction(function->shared().kind())) {
2249    // Generator and async function prototypes can share maps since they
2250    // don't have "constructor" properties.
2251    new_map =
2252        handle(native_context->generator_object_prototype_map(), isolate());
2253  } else {
2254    // Each function prototype gets a fresh map to avoid unwanted sharing of
2255    // maps between prototypes of different constructors.
2256    Handle<JSFunction> object_function(native_context->object_function(),
2257                                       isolate());
2258    DCHECK(object_function->has_initial_map());
2259    new_map = handle(object_function->initial_map(), isolate());
2260  }
2261
2262  DCHECK(!new_map->is_prototype_map());
2263  Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
2264
2265  if (!IsResumableFunction(function->shared().kind())) {
2266    JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
2267                          DONT_ENUM);
2268  }
2269
2270  return prototype;
2271}
2272
2273Handle<JSObject> Factory::NewExternal(void* value) {
2274  auto external =
2275      Handle<JSExternalObject>::cast(NewJSObjectFromMap(external_map()));
2276  external->AllocateExternalPointerEntries(isolate());
2277  external->set_value(isolate(), value);
2278  return external;
2279}
2280
2281Handle<DeoptimizationLiteralArray> Factory::NewDeoptimizationLiteralArray(
2282    int length) {
2283  return Handle<DeoptimizationLiteralArray>::cast(
2284      NewWeakFixedArray(length, AllocationType::kOld));
2285}
2286
2287Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code,
2288                                              Address off_heap_entry) {
2289  CHECK_NOT_NULL(isolate()->embedded_blob_code());
2290  CHECK_NE(0, isolate()->embedded_blob_code_size());
2291  CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
2292
2293  bool generate_jump_to_instruction_stream =
2294      Builtins::CodeObjectIsExecutable(code->builtin_id());
2295  Handle<Code> result = Builtins::GenerateOffHeapTrampolineFor(
2296      isolate(), off_heap_entry,
2297      code->code_data_container(kAcquireLoad).kind_specific_flags(kRelaxedLoad),
2298      generate_jump_to_instruction_stream);
2299
2300  // Trampolines may not contain any metadata since all metadata offsets,
2301  // stored on the Code object, refer to the off-heap metadata area.
2302  CHECK_EQ(result->raw_metadata_size(), 0);
2303
2304  // The CodeDataContainer should not be modified beyond this point since it's
2305  // now possibly canonicalized.
2306
2307  // The trampoline code object must inherit specific flags from the original
2308  // builtin (e.g. the safepoint-table offset). We set them manually here.
2309  {
2310    DisallowGarbageCollection no_gc;
2311    CodePageMemoryModificationScope code_allocation(*result);
2312    Code raw_code = *code;
2313    Code raw_result = *result;
2314
2315    const bool set_is_off_heap_trampoline = true;
2316    raw_result.initialize_flags(raw_code.kind(), raw_code.is_turbofanned(),
2317                                raw_code.stack_slots(),
2318                                set_is_off_heap_trampoline);
2319    raw_result.set_builtin_id(raw_code.builtin_id());
2320    raw_result.set_handler_table_offset(raw_code.handler_table_offset());
2321    raw_result.set_constant_pool_offset(raw_code.constant_pool_offset());
2322    raw_result.set_code_comments_offset(raw_code.code_comments_offset());
2323    raw_result.set_unwinding_info_offset(raw_code.unwinding_info_offset());
2324
2325    // Replace the newly generated trampoline's RelocInfo ByteArray with the
2326    // canonical one stored in the roots to avoid duplicating it for every
2327    // single builtin.
2328    ByteArray canonical_reloc_info =
2329        generate_jump_to_instruction_stream
2330            ? read_only_roots().off_heap_trampoline_relocation_info()
2331            : read_only_roots().empty_byte_array();
2332#ifdef DEBUG
2333    // Verify that the contents are the same.
2334    ByteArray reloc_info = raw_result.relocation_info();
2335    DCHECK_EQ(reloc_info.length(), canonical_reloc_info.length());
2336    for (int i = 0; i < reloc_info.length(); ++i) {
2337      DCHECK_EQ(reloc_info.get(i), canonical_reloc_info.get(i));
2338    }
2339#endif
2340    raw_result.set_relocation_info(canonical_reloc_info);
2341    if (V8_EXTERNAL_CODE_SPACE_BOOL) {
2342      CodeDataContainer code_data_container =
2343          raw_result.code_data_container(kAcquireLoad);
2344      // Updating flags (in particular is_off_heap_trampoline one) might change
2345      // the value of the instruction start, so update it here.
2346      code_data_container.UpdateCodeEntryPoint(isolate(), raw_result);
2347      // Also update flag values cached on the code data container.
2348      code_data_container.initialize_flags(raw_code.kind(),
2349                                           raw_code.builtin_id());
2350    }
2351  }
2352
2353  return result;
2354}
2355
2356Handle<Code> Factory::CopyCode(Handle<Code> code) {
2357  Handle<CodeDataContainer> data_container = NewCodeDataContainer(
2358      code->code_data_container(kAcquireLoad).kind_specific_flags(kRelaxedLoad),
2359      AllocationType::kOld);
2360
2361  Heap* heap = isolate()->heap();
2362  Handle<Code> new_code;
2363  {
2364    int obj_size = code->Size();
2365    CodePageCollectionMemoryModificationScope code_allocation(heap);
2366    HeapObject result =
2367        allocator()->AllocateRawWith<HeapAllocator::kRetryOrFail>(
2368            obj_size, AllocationType::kCode, AllocationOrigin::kRuntime);
2369
2370    // Copy code object.
2371    Address old_addr = code->address();
2372    Address new_addr = result.address();
2373    Heap::CopyBlock(new_addr, old_addr, obj_size);
2374    new_code = handle(Code::cast(result), isolate());
2375
2376    // Set the {CodeDataContainer}, it cannot be shared.
2377    new_code->set_code_data_container(*data_container, kReleaseStore);
2378
2379    new_code->Relocate(new_addr - old_addr);
2380    // We have to iterate over the object and process its pointers when black
2381    // allocation is on.
2382    heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code);
2383    // Record all references to embedded objects in the new code object.
2384#ifndef V8_DISABLE_WRITE_BARRIERS
2385    WriteBarrierForCode(*new_code);
2386#endif
2387  }
2388  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
2389    data_container->initialize_flags(code->kind(), code->builtin_id());
2390    data_container->SetCodeAndEntryPoint(isolate(), *new_code);
2391  }
2392
2393#ifdef VERIFY_HEAP
2394  if (FLAG_verify_heap) new_code->ObjectVerify(isolate());
2395#endif
2396  DCHECK(IsAligned(new_code->address(), kCodeAlignment));
2397  DCHECK_IMPLIES(
2398      !V8_ENABLE_THIRD_PARTY_HEAP_BOOL && !heap->code_region().is_empty(),
2399      heap->code_region().contains(new_code->address()));
2400  return new_code;
2401}
2402
2403Handle<BytecodeArray> Factory::CopyBytecodeArray(Handle<BytecodeArray> source) {
2404  int size = BytecodeArray::SizeFor(source->length());
2405  BytecodeArray copy = BytecodeArray::cast(AllocateRawWithImmortalMap(
2406      size, AllocationType::kOld, *bytecode_array_map()));
2407  DisallowGarbageCollection no_gc;
2408  BytecodeArray raw_source = *source;
2409  copy.set_length(raw_source.length());
2410  copy.set_frame_size(raw_source.frame_size());
2411  copy.set_parameter_count(raw_source.parameter_count());
2412  copy.set_incoming_new_target_or_generator_register(
2413      raw_source.incoming_new_target_or_generator_register());
2414  copy.set_constant_pool(raw_source.constant_pool());
2415  copy.set_handler_table(raw_source.handler_table());
2416  copy.set_source_position_table(raw_source.source_position_table(kAcquireLoad),
2417                                 kReleaseStore);
2418  copy.set_osr_urgency(raw_source.osr_urgency());
2419  copy.set_bytecode_age(raw_source.bytecode_age());
2420  raw_source.CopyBytecodesTo(copy);
2421  return handle(copy, isolate());
2422}
2423
2424Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
2425                                      AllocationType allocation) {
2426  JSFunction::EnsureHasInitialMap(constructor);
2427  Handle<Map> map(constructor->initial_map(), isolate());
2428  return NewJSObjectFromMap(map, allocation);
2429}
2430
2431Handle<JSObject> Factory::NewSlowJSObjectWithNullProto() {
2432  Handle<JSObject> result =
2433      NewSlowJSObjectFromMap(isolate()->slow_object_with_null_prototype_map());
2434  return result;
2435}
2436
2437Handle<JSObject> Factory::NewJSObjectWithNullProto() {
2438  Handle<Map> map(isolate()->object_function()->initial_map(), isolate());
2439  Handle<Map> map_with_null_proto =
2440      Map::TransitionToPrototype(isolate(), map, null_value());
2441  return NewJSObjectFromMap(map_with_null_proto);
2442}
2443
2444Handle<JSGlobalObject> Factory::NewJSGlobalObject(
2445    Handle<JSFunction> constructor) {
2446  DCHECK(constructor->has_initial_map());
2447  Handle<Map> map(constructor->initial_map(), isolate());
2448  DCHECK(map->is_dictionary_map());
2449
2450  // Make sure no field properties are described in the initial map.
2451  // This guarantees us that normalizing the properties does not
2452  // require us to change property values to PropertyCells.
2453  DCHECK_EQ(map->NextFreePropertyIndex(), 0);
2454
2455  // Make sure we don't have a ton of pre-allocated slots in the
2456  // global objects. They will be unused once we normalize the object.
2457  DCHECK_EQ(map->UnusedPropertyFields(), 0);
2458  DCHECK_EQ(map->GetInObjectProperties(), 0);
2459
2460  // Initial size of the backing store to avoid resize of the storage during
2461  // bootstrapping. The size differs between the JS global object ad the
2462  // builtins object.
2463  int initial_size = 64;
2464
2465  // Allocate a dictionary object for backing storage.
2466  int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
2467  Handle<GlobalDictionary> dictionary =
2468      GlobalDictionary::New(isolate(), at_least_space_for);
2469
2470  // The global object might be created from an object template with accessors.
2471  // Fill these accessors into the dictionary.
2472  Handle<DescriptorArray> descs(map->instance_descriptors(isolate()),
2473                                isolate());
2474  for (InternalIndex i : map->IterateOwnDescriptors()) {
2475    PropertyDetails details = descs->GetDetails(i);
2476    // Only accessors are expected.
2477    DCHECK_EQ(PropertyKind::kAccessor, details.kind());
2478    PropertyDetails d(PropertyKind::kAccessor, details.attributes(),
2479                      PropertyCellType::kMutable);
2480    Handle<Name> name(descs->GetKey(i), isolate());
2481    Handle<Object> value(descs->GetStrongValue(i), isolate());
2482    Handle<PropertyCell> cell = NewPropertyCell(name, d, value);
2483    // |dictionary| already contains enough space for all properties.
2484    USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
2485  }
2486
2487  // Allocate the global object and initialize it with the backing store.
2488  Handle<JSGlobalObject> global(
2489      JSGlobalObject::cast(New(map, AllocationType::kOld)), isolate());
2490  InitializeJSObjectFromMap(*global, *dictionary, *map);
2491
2492  // Create a new map for the global object.
2493  Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
2494  Map raw_map = *new_map;
2495  raw_map.set_may_have_interesting_symbols(true);
2496  raw_map.set_is_dictionary_map(true);
2497  LOG(isolate(), MapDetails(raw_map));
2498
2499  // Set up the global object as a normalized object.
2500  global->set_global_dictionary(*dictionary, kReleaseStore);
2501  global->set_map(raw_map, kReleaseStore);
2502
2503  // Make sure result is a global object with properties in dictionary.
2504  DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
2505  return global;
2506}
2507
2508void Factory::InitializeJSObjectFromMap(JSObject obj, Object properties,
2509                                        Map map) {
2510  DisallowGarbageCollection no_gc;
2511  obj.set_raw_properties_or_hash(properties, kRelaxedStore);
2512  obj.initialize_elements();
2513  // TODO(1240798): Initialize the object's body using valid initial values
2514  // according to the object's initial map.  For example, if the map's
2515  // instance type is JS_ARRAY_TYPE, the length field should be initialized
2516  // to a number (e.g. Smi::zero()) and the elements initialized to a
2517  // fixed array (e.g. Heap::empty_fixed_array()).  Currently, the object
2518  // verification code has to cope with (temporarily) invalid objects.  See
2519  // for example, JSArray::JSArrayVerify).
2520  InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
2521}
2522
2523void Factory::InitializeJSObjectBody(JSObject obj, Map map, int start_offset) {
2524  DisallowGarbageCollection no_gc;
2525  if (start_offset == map.instance_size()) return;
2526  DCHECK_LT(start_offset, map.instance_size());
2527
2528  // We cannot always fill with one_pointer_filler_map because objects
2529  // created from API functions expect their embedder fields to be initialized
2530  // with undefined_value.
2531  // Pre-allocated fields need to be initialized with undefined_value as well
2532  // so that object accesses before the constructor completes (e.g. in the
2533  // debugger) will not cause a crash.
2534
2535  // In case of Array subclassing the |map| could already be transitioned
2536  // to different elements kind from the initial map on which we track slack.
2537  bool in_progress = map.IsInobjectSlackTrackingInProgress();
2538  obj.InitializeBody(map, start_offset, in_progress,
2539                     ReadOnlyRoots(isolate()).one_pointer_filler_map_word(),
2540                     *undefined_value());
2541  if (in_progress) {
2542    map.FindRootMap(isolate()).InobjectSlackTrackingStep(isolate());
2543  }
2544}
2545
2546Handle<JSObject> Factory::NewJSObjectFromMap(
2547    Handle<Map> map, AllocationType allocation,
2548    Handle<AllocationSite> allocation_site) {
2549  // JSFunctions should be allocated using AllocateFunction to be
2550  // properly initialized.
2551  DCHECK(!InstanceTypeChecker::IsJSFunction((map->instance_type())));
2552
2553  // Both types of global objects should be allocated using
2554  // AllocateGlobalObject to be properly initialized.
2555  DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
2556
2557  JSObject js_obj = JSObject::cast(
2558      AllocateRawWithAllocationSite(map, allocation, allocation_site));
2559
2560  InitializeJSObjectFromMap(js_obj, *empty_fixed_array(), *map);
2561
2562  DCHECK(js_obj.HasFastElements() ||
2563         js_obj.HasTypedArrayOrRabGsabTypedArrayElements() ||
2564         js_obj.HasFastStringWrapperElements() ||
2565         js_obj.HasFastArgumentsElements() || js_obj.HasDictionaryElements());
2566  return handle(js_obj, isolate());
2567}
2568
2569Handle<JSObject> Factory::NewSlowJSObjectFromMap(
2570    Handle<Map> map, int capacity, AllocationType allocation,
2571    Handle<AllocationSite> allocation_site) {
2572  DCHECK(map->is_dictionary_map());
2573  Handle<HeapObject> object_properties;
2574  if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) {
2575    object_properties = NewSwissNameDictionary(capacity, allocation);
2576  } else {
2577    object_properties = NameDictionary::New(isolate(), capacity);
2578  }
2579  Handle<JSObject> js_object =
2580      NewJSObjectFromMap(map, allocation, allocation_site);
2581  js_object->set_raw_properties_or_hash(*object_properties, kRelaxedStore);
2582  return js_object;
2583}
2584
2585Handle<JSObject> Factory::NewSlowJSObjectWithPropertiesAndElements(
2586    Handle<HeapObject> prototype, Handle<HeapObject> properties,
2587    Handle<FixedArrayBase> elements) {
2588  DCHECK_IMPLIES(V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL,
2589                 properties->IsSwissNameDictionary());
2590  DCHECK_IMPLIES(!V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL,
2591                 properties->IsNameDictionary());
2592
2593  Handle<Map> object_map = isolate()->slow_object_with_object_prototype_map();
2594  if (object_map->prototype() != *prototype) {
2595    object_map = Map::TransitionToPrototype(isolate(), object_map, prototype);
2596  }
2597  DCHECK(object_map->is_dictionary_map());
2598  Handle<JSObject> object =
2599      NewJSObjectFromMap(object_map, AllocationType::kYoung);
2600  object->set_raw_properties_or_hash(*properties);
2601  if (*elements != read_only_roots().empty_fixed_array()) {
2602    DCHECK(elements->IsNumberDictionary());
2603    object_map =
2604        JSObject::GetElementsTransitionMap(object, DICTIONARY_ELEMENTS);
2605    JSObject::MigrateToMap(isolate(), object, object_map);
2606    object->set_elements(*elements);
2607  }
2608  return object;
2609}
2610
2611Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
2612                                    int capacity,
2613                                    ArrayStorageAllocationMode mode,
2614                                    AllocationType allocation) {
2615  DCHECK(capacity >= length);
2616  if (capacity == 0) {
2617    return NewJSArrayWithElements(empty_fixed_array(), elements_kind, length,
2618                                  allocation);
2619  }
2620
2621  HandleScope inner_scope(isolate());
2622  Handle<FixedArrayBase> elms =
2623      NewJSArrayStorage(elements_kind, capacity, mode);
2624  return inner_scope.CloseAndEscape(NewJSArrayWithUnverifiedElements(
2625      elms, elements_kind, length, allocation));
2626}
2627
2628Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
2629                                                ElementsKind elements_kind,
2630                                                int length,
2631                                                AllocationType allocation) {
2632  Handle<JSArray> array = NewJSArrayWithUnverifiedElements(
2633      elements, elements_kind, length, allocation);
2634  JSObject::ValidateElements(*array);
2635  return array;
2636}
2637
2638Handle<JSArray> Factory::NewJSArrayWithUnverifiedElements(
2639    Handle<FixedArrayBase> elements, ElementsKind elements_kind, int length,
2640    AllocationType allocation) {
2641  DCHECK(length <= elements->length());
2642  NativeContext native_context = isolate()->raw_native_context();
2643  Map map = native_context.GetInitialJSArrayMap(elements_kind);
2644  if (map.is_null()) {
2645    JSFunction array_function = native_context.array_function();
2646    map = array_function.initial_map();
2647  }
2648  Handle<JSArray> array = Handle<JSArray>::cast(
2649      NewJSObjectFromMap(handle(map, isolate()), allocation));
2650  DisallowGarbageCollection no_gc;
2651  JSArray raw = *array;
2652  raw.set_elements(*elements);
2653  raw.set_length(Smi::FromInt(length));
2654  return array;
2655}
2656
2657void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity,
2658                                ArrayStorageAllocationMode mode) {
2659  DCHECK(capacity >= length);
2660
2661  if (capacity == 0) {
2662    JSArray raw = *array;
2663    DisallowGarbageCollection no_gc;
2664    raw.set_length(Smi::zero());
2665    raw.set_elements(*empty_fixed_array());
2666    return;
2667  }
2668
2669  HandleScope inner_scope(isolate());
2670  Handle<FixedArrayBase> elms =
2671      NewJSArrayStorage(array->GetElementsKind(), capacity, mode);
2672  DisallowGarbageCollection no_gc;
2673  JSArray raw = *array;
2674  raw.set_elements(*elms);
2675  raw.set_length(Smi::FromInt(length));
2676}
2677
2678Handle<FixedArrayBase> Factory::NewJSArrayStorage(
2679    ElementsKind elements_kind, int capacity, ArrayStorageAllocationMode mode) {
2680  DCHECK_GT(capacity, 0);
2681  Handle<FixedArrayBase> elms;
2682  if (IsDoubleElementsKind(elements_kind)) {
2683    if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
2684      elms = NewFixedDoubleArray(capacity);
2685    } else {
2686      DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
2687      elms = NewFixedDoubleArrayWithHoles(capacity);
2688    }
2689  } else {
2690    DCHECK(IsSmiOrObjectElementsKind(elements_kind));
2691    if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
2692      elms = NewFixedArray(capacity);
2693    } else {
2694      DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
2695      elms = NewFixedArrayWithHoles(capacity);
2696    }
2697  }
2698  return elms;
2699}
2700
2701Handle<JSWeakMap> Factory::NewJSWeakMap() {
2702  NativeContext native_context = isolate()->raw_native_context();
2703  Handle<Map> map(native_context.js_weak_map_fun().initial_map(), isolate());
2704  Handle<JSWeakMap> weakmap(JSWeakMap::cast(*NewJSObjectFromMap(map)),
2705                            isolate());
2706  {
2707    // Do not leak handles for the hash table, it would make entries strong.
2708    HandleScope scope(isolate());
2709    JSWeakCollection::Initialize(weakmap, isolate());
2710  }
2711  return weakmap;
2712}
2713
2714Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
2715  Handle<Map> map = isolate()->js_module_namespace_map();
2716  Handle<JSModuleNamespace> module_namespace(
2717      Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
2718  FieldIndex index = FieldIndex::ForDescriptor(
2719      *map, InternalIndex(JSModuleNamespace::kToStringTagFieldIndex));
2720  module_namespace->FastPropertyAtPut(index, read_only_roots().Module_string(),
2721                                      SKIP_WRITE_BARRIER);
2722  return module_namespace;
2723}
2724
2725Handle<JSWrappedFunction> Factory::NewJSWrappedFunction(
2726    Handle<NativeContext> creation_context, Handle<Object> target) {
2727  DCHECK(target->IsCallable());
2728  Handle<Map> map(
2729      Map::cast(creation_context->get(Context::WRAPPED_FUNCTION_MAP_INDEX)),
2730      isolate());
2731  // 2. Let wrapped be ! MakeBasicObject(internalSlotsList).
2732  // 3. Set wrapped.[[Prototype]] to
2733  // callerRealm.[[Intrinsics]].[[%Function.prototype%]].
2734  // 4. Set wrapped.[[Call]] as described in 2.1.
2735  Handle<JSWrappedFunction> wrapped = Handle<JSWrappedFunction>::cast(
2736      isolate()->factory()->NewJSObjectFromMap(map));
2737  // 5. Set wrapped.[[WrappedTargetFunction]] to Target.
2738  wrapped->set_wrapped_target_function(JSReceiver::cast(*target));
2739  // 6. Set wrapped.[[Realm]] to callerRealm.
2740  wrapped->set_context(*creation_context);
2741  // TODO(v8:11989): https://github.com/tc39/proposal-shadowrealm/pull/348
2742
2743  return wrapped;
2744}
2745
2746Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
2747    Handle<JSFunction> function) {
2748  DCHECK(IsResumableFunction(function->shared().kind()));
2749  JSFunction::EnsureHasInitialMap(function);
2750  Handle<Map> map(function->initial_map(), isolate());
2751
2752  DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
2753         map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
2754
2755  return Handle<JSGeneratorObject>::cast(NewJSObjectFromMap(map));
2756}
2757
2758Handle<SourceTextModule> Factory::NewSourceTextModule(
2759    Handle<SharedFunctionInfo> sfi) {
2760  Handle<SourceTextModuleInfo> module_info(
2761      sfi->scope_info().ModuleDescriptorInfo(), isolate());
2762  Handle<ObjectHashTable> exports =
2763      ObjectHashTable::New(isolate(), module_info->RegularExportCount());
2764  Handle<FixedArray> regular_exports =
2765      NewFixedArray(module_info->RegularExportCount());
2766  Handle<FixedArray> regular_imports =
2767      NewFixedArray(module_info->regular_imports().length());
2768  int requested_modules_length = module_info->module_requests().length();
2769  Handle<FixedArray> requested_modules =
2770      requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
2771                                   : empty_fixed_array();
2772
2773  ReadOnlyRoots roots(isolate());
2774  SourceTextModule module = SourceTextModule::cast(
2775      New(source_text_module_map(), AllocationType::kOld));
2776  DisallowGarbageCollection no_gc;
2777  module.set_code(*sfi);
2778  module.set_exports(*exports);
2779  module.set_regular_exports(*regular_exports);
2780  module.set_regular_imports(*regular_imports);
2781  module.set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
2782  module.set_module_namespace(roots.undefined_value(), SKIP_WRITE_BARRIER);
2783  module.set_requested_modules(*requested_modules);
2784  module.set_status(Module::kUnlinked);
2785  module.set_exception(roots.the_hole_value(), SKIP_WRITE_BARRIER);
2786  module.set_top_level_capability(roots.undefined_value(), SKIP_WRITE_BARRIER);
2787  module.set_import_meta(roots.the_hole_value(), kReleaseStore,
2788                         SKIP_WRITE_BARRIER);
2789  module.set_dfs_index(-1);
2790  module.set_dfs_ancestor_index(-1);
2791  module.set_flags(0);
2792  module.set_async(IsAsyncModule(sfi->kind()));
2793  module.set_async_evaluating_ordinal(SourceTextModule::kNotAsyncEvaluated);
2794  module.set_cycle_root(roots.the_hole_value(), SKIP_WRITE_BARRIER);
2795  module.set_async_parent_modules(roots.empty_array_list());
2796  module.set_pending_async_dependencies(0);
2797  return handle(module, isolate());
2798}
2799
2800Handle<SyntheticModule> Factory::NewSyntheticModule(
2801    Handle<String> module_name, Handle<FixedArray> export_names,
2802    v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) {
2803  ReadOnlyRoots roots(isolate());
2804
2805  Handle<ObjectHashTable> exports =
2806      ObjectHashTable::New(isolate(), static_cast<int>(export_names->length()));
2807  Handle<Foreign> evaluation_steps_foreign =
2808      NewForeign(reinterpret_cast<i::Address>(evaluation_steps));
2809
2810  SyntheticModule module =
2811      SyntheticModule::cast(New(synthetic_module_map(), AllocationType::kOld));
2812  DisallowGarbageCollection no_gc;
2813  module.set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
2814  module.set_module_namespace(roots.undefined_value(), SKIP_WRITE_BARRIER);
2815  module.set_status(Module::kUnlinked);
2816  module.set_exception(roots.the_hole_value(), SKIP_WRITE_BARRIER);
2817  module.set_top_level_capability(roots.undefined_value(), SKIP_WRITE_BARRIER);
2818  module.set_name(*module_name);
2819  module.set_export_names(*export_names);
2820  module.set_exports(*exports);
2821  module.set_evaluation_steps(*evaluation_steps_foreign);
2822  return handle(module, isolate());
2823}
2824
2825Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(
2826    std::shared_ptr<BackingStore> backing_store, AllocationType allocation) {
2827  Handle<Map> map(isolate()->native_context()->array_buffer_fun().initial_map(),
2828                  isolate());
2829  auto result =
2830      Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
2831  result->Setup(SharedFlag::kNotShared, ResizableFlag::kNotResizable,
2832                std::move(backing_store));
2833  return result;
2834}
2835
2836MaybeHandle<JSArrayBuffer> Factory::NewJSArrayBufferAndBackingStore(
2837    size_t byte_length, InitializedFlag initialized,
2838    AllocationType allocation) {
2839  std::unique_ptr<BackingStore> backing_store = nullptr;
2840
2841  if (byte_length > 0) {
2842    backing_store = BackingStore::Allocate(isolate(), byte_length,
2843                                           SharedFlag::kNotShared, initialized);
2844    if (!backing_store) return MaybeHandle<JSArrayBuffer>();
2845  }
2846  Handle<Map> map(isolate()->native_context()->array_buffer_fun().initial_map(),
2847                  isolate());
2848  auto array_buffer =
2849      Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, allocation));
2850  array_buffer->Setup(SharedFlag::kNotShared, ResizableFlag::kNotResizable,
2851                      std::move(backing_store));
2852  return array_buffer;
2853}
2854
2855Handle<JSArrayBuffer> Factory::NewJSSharedArrayBuffer(
2856    std::shared_ptr<BackingStore> backing_store) {
2857  DCHECK_IMPLIES(backing_store->is_resizable(), FLAG_harmony_rab_gsab);
2858  Handle<Map> map(
2859      isolate()->native_context()->shared_array_buffer_fun().initial_map(),
2860      isolate());
2861  auto result = Handle<JSArrayBuffer>::cast(
2862      NewJSObjectFromMap(map, AllocationType::kYoung));
2863  ResizableFlag resizable = backing_store->is_resizable()
2864                                ? ResizableFlag::kResizable
2865                                : ResizableFlag::kNotResizable;
2866  result->Setup(SharedFlag::kShared, resizable, std::move(backing_store));
2867  return result;
2868}
2869
2870Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
2871                                                      bool done) {
2872  Handle<Map> map(isolate()->native_context()->iterator_result_map(),
2873                  isolate());
2874  Handle<JSIteratorResult> js_iter_result = Handle<JSIteratorResult>::cast(
2875      NewJSObjectFromMap(map, AllocationType::kYoung));
2876  DisallowGarbageCollection no_gc;
2877  JSIteratorResult raw = *js_iter_result;
2878  raw.set_value(*value, SKIP_WRITE_BARRIER);
2879  raw.set_done(*ToBoolean(done), SKIP_WRITE_BARRIER);
2880  return js_iter_result;
2881}
2882
2883Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
2884    Handle<JSReceiver> sync_iterator, Handle<Object> next) {
2885  Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map(),
2886                  isolate());
2887  Handle<JSAsyncFromSyncIterator> iterator =
2888      Handle<JSAsyncFromSyncIterator>::cast(
2889          NewJSObjectFromMap(map, AllocationType::kYoung));
2890  DisallowGarbageCollection no_gc;
2891  JSAsyncFromSyncIterator raw = *iterator;
2892  raw.set_sync_iterator(*sync_iterator, SKIP_WRITE_BARRIER);
2893  raw.set_next(*next, SKIP_WRITE_BARRIER);
2894  return iterator;
2895}
2896
2897Handle<JSMap> Factory::NewJSMap() {
2898  Handle<Map> map(isolate()->native_context()->js_map_map(), isolate());
2899  Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
2900  JSMap::Initialize(js_map, isolate());
2901  return js_map;
2902}
2903
2904Handle<JSSet> Factory::NewJSSet() {
2905  Handle<Map> map(isolate()->native_context()->js_set_map(), isolate());
2906  Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
2907  JSSet::Initialize(js_set, isolate());
2908  return js_set;
2909}
2910
2911void Factory::TypeAndSizeForElementsKind(ElementsKind kind,
2912                                         ExternalArrayType* array_type,
2913                                         size_t* element_size) {
2914  switch (kind) {
2915#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
2916  case TYPE##_ELEMENTS:                           \
2917    *array_type = kExternal##Type##Array;         \
2918    *element_size = sizeof(ctype);                \
2919    break;
2920    TYPED_ARRAYS(TYPED_ARRAY_CASE)
2921    RAB_GSAB_TYPED_ARRAYS_WITH_TYPED_ARRAY_TYPE(TYPED_ARRAY_CASE)
2922#undef TYPED_ARRAY_CASE
2923
2924    default:
2925      UNREACHABLE();
2926  }
2927}
2928
2929namespace {
2930
2931void ForFixedTypedArray(ExternalArrayType array_type, size_t* element_size,
2932                        ElementsKind* element_kind) {
2933  switch (array_type) {
2934#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
2935  case kExternal##Type##Array:                    \
2936    *element_size = sizeof(ctype);                \
2937    *element_kind = TYPE##_ELEMENTS;              \
2938    return;
2939
2940    TYPED_ARRAYS(TYPED_ARRAY_CASE)
2941#undef TYPED_ARRAY_CASE
2942  }
2943  UNREACHABLE();
2944}
2945
2946}  // namespace
2947
2948Handle<JSArrayBufferView> Factory::NewJSArrayBufferView(
2949    Handle<Map> map, Handle<FixedArrayBase> elements,
2950    Handle<JSArrayBuffer> buffer, size_t byte_offset, size_t byte_length) {
2951  CHECK_LE(byte_length, buffer->byte_length());
2952  CHECK_LE(byte_offset, buffer->byte_length());
2953  CHECK_LE(byte_offset + byte_length, buffer->byte_length());
2954  Handle<JSArrayBufferView> array_buffer_view = Handle<JSArrayBufferView>::cast(
2955      NewJSObjectFromMap(map, AllocationType::kYoung));
2956  DisallowGarbageCollection no_gc;
2957  JSArrayBufferView raw = *array_buffer_view;
2958  raw.set_elements(*elements, SKIP_WRITE_BARRIER);
2959  raw.set_buffer(*buffer, SKIP_WRITE_BARRIER);
2960  raw.set_byte_offset(byte_offset);
2961  raw.set_byte_length(byte_length);
2962  raw.set_bit_field(0);
2963  // TODO(v8) remove once embedder data slots are always zero-initialized.
2964  InitEmbedderFields(raw, Smi::zero());
2965  DCHECK_EQ(raw.GetEmbedderFieldCount(),
2966            v8::ArrayBufferView::kEmbedderFieldCount);
2967  return array_buffer_view;
2968}
2969
2970Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
2971                                              Handle<JSArrayBuffer> buffer,
2972                                              size_t byte_offset,
2973                                              size_t length) {
2974  size_t element_size;
2975  ElementsKind elements_kind;
2976  ForFixedTypedArray(type, &element_size, &elements_kind);
2977  size_t byte_length = length * element_size;
2978
2979  CHECK_LE(length, JSTypedArray::kMaxLength);
2980  CHECK_EQ(length, byte_length / element_size);
2981  CHECK_EQ(0, byte_offset % ElementsKindToByteSize(elements_kind));
2982
2983  Handle<Map> map;
2984  switch (elements_kind) {
2985#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype)                              \
2986  case TYPE##_ELEMENTS:                                                       \
2987    map =                                                                     \
2988        handle(isolate()->native_context()->type##_array_fun().initial_map(), \
2989               isolate());                                                    \
2990    break;
2991
2992    TYPED_ARRAYS(TYPED_ARRAY_FUN)
2993#undef TYPED_ARRAY_FUN
2994
2995    default:
2996      UNREACHABLE();
2997  }
2998  Handle<JSTypedArray> typed_array =
2999      Handle<JSTypedArray>::cast(NewJSArrayBufferView(
3000          map, empty_byte_array(), buffer, byte_offset, byte_length));
3001  JSTypedArray raw = *typed_array;
3002  DisallowGarbageCollection no_gc;
3003  raw.set_length(length);
3004  raw.SetOffHeapDataPtr(isolate(), buffer->backing_store(), byte_offset);
3005  raw.set_is_length_tracking(false);
3006  raw.set_is_backed_by_rab(!buffer->is_shared() && buffer->is_resizable());
3007  return typed_array;
3008}
3009
3010Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
3011                                          size_t byte_offset,
3012                                          size_t byte_length) {
3013  Handle<Map> map(isolate()->native_context()->data_view_fun().initial_map(),
3014                  isolate());
3015  Handle<JSDataView> obj = Handle<JSDataView>::cast(NewJSArrayBufferView(
3016      map, empty_fixed_array(), buffer, byte_offset, byte_length));
3017  obj->set_data_pointer(
3018      isolate(), static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
3019  // TODO(v8:11111): Support creating length tracking DataViews via the API.
3020  obj->set_is_length_tracking(false);
3021  obj->set_is_backed_by_rab(!buffer->is_shared() && buffer->is_resizable());
3022  return obj;
3023}
3024
3025MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
3026    Handle<JSReceiver> target_function, Handle<Object> bound_this,
3027    base::Vector<Handle<Object>> bound_args) {
3028  DCHECK(target_function->IsCallable());
3029  STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
3030  if (bound_args.length() >= Code::kMaxArguments) {
3031    THROW_NEW_ERROR(isolate(),
3032                    NewRangeError(MessageTemplate::kTooManyArguments),
3033                    JSBoundFunction);
3034  }
3035
3036  // Determine the prototype of the {target_function}.
3037  Handle<HeapObject> prototype;
3038  ASSIGN_RETURN_ON_EXCEPTION(
3039      isolate(), prototype,
3040      JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
3041
3042  SaveAndSwitchContext save(
3043      isolate(), *target_function->GetCreationContext().ToHandleChecked());
3044
3045  // Create the [[BoundArguments]] for the result.
3046  Handle<FixedArray> bound_arguments;
3047  if (bound_args.length() == 0) {
3048    bound_arguments = empty_fixed_array();
3049  } else {
3050    bound_arguments = NewFixedArray(bound_args.length());
3051    for (int i = 0; i < bound_args.length(); ++i) {
3052      bound_arguments->set(i, *bound_args[i]);
3053    }
3054  }
3055
3056  // Setup the map for the JSBoundFunction instance.
3057  Handle<Map> map = target_function->IsConstructor()
3058                        ? isolate()->bound_function_with_constructor_map()
3059                        : isolate()->bound_function_without_constructor_map();
3060  if (map->prototype() != *prototype) {
3061    map = Map::TransitionToPrototype(isolate(), map, prototype);
3062  }
3063  DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
3064
3065  // Setup the JSBoundFunction instance.
3066  Handle<JSBoundFunction> result = Handle<JSBoundFunction>::cast(
3067      NewJSObjectFromMap(map, AllocationType::kYoung));
3068  DisallowGarbageCollection no_gc;
3069  JSBoundFunction raw = *result;
3070  raw.set_bound_target_function(*target_function, SKIP_WRITE_BARRIER);
3071  raw.set_bound_this(*bound_this, SKIP_WRITE_BARRIER);
3072  raw.set_bound_arguments(*bound_arguments, SKIP_WRITE_BARRIER);
3073  return result;
3074}
3075
3076// ES6 section 9.5.15 ProxyCreate (target, handler)
3077Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
3078                                    Handle<JSReceiver> handler) {
3079  // Allocate the proxy object.
3080  Handle<Map> map;
3081  if (target->IsCallable()) {
3082    if (target->IsConstructor()) {
3083      map = Handle<Map>(isolate()->proxy_constructor_map());
3084    } else {
3085      map = Handle<Map>(isolate()->proxy_callable_map());
3086    }
3087  } else {
3088    map = Handle<Map>(isolate()->proxy_map());
3089  }
3090  DCHECK(map->prototype().IsNull(isolate()));
3091  JSProxy result = JSProxy::cast(New(map, AllocationType::kYoung));
3092  DisallowGarbageCollection no_gc;
3093  result.initialize_properties(isolate());
3094  result.set_target(*target, SKIP_WRITE_BARRIER);
3095  result.set_handler(*handler, SKIP_WRITE_BARRIER);
3096  return handle(result, isolate());
3097}
3098
3099Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
3100  // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
3101  // via ReinitializeJSGlobalProxy later.
3102  Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
3103  // Maintain invariant expected from any JSGlobalProxy.
3104  {
3105    DisallowGarbageCollection no_gc;
3106    Map raw = *map;
3107    raw.set_is_access_check_needed(true);
3108    raw.set_may_have_interesting_symbols(true);
3109    LOG(isolate(), MapDetails(raw));
3110  }
3111  Handle<JSGlobalProxy> proxy = Handle<JSGlobalProxy>::cast(
3112      NewJSObjectFromMap(map, AllocationType::kOld));
3113  // Create identity hash early in case there is any JS collection containing
3114  // a global proxy key and needs to be rehashed after deserialization.
3115  proxy->GetOrCreateIdentityHash(isolate());
3116  return proxy;
3117}
3118
3119void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
3120                                        Handle<JSFunction> constructor) {
3121  DCHECK(constructor->has_initial_map());
3122  Handle<Map> map(constructor->initial_map(), isolate());
3123  Handle<Map> old_map(object->map(), isolate());
3124
3125  // The proxy's hash should be retained across reinitialization.
3126  Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
3127                                        isolate());
3128
3129  if (old_map->is_prototype_map()) {
3130    map = Map::Copy(isolate(), map, "CopyAsPrototypeForJSGlobalProxy");
3131    map->set_is_prototype_map(true);
3132  }
3133  JSObject::NotifyMapChange(old_map, map, isolate());
3134  old_map->NotifyLeafMapLayoutChange(isolate());
3135
3136  // Check that the already allocated object has the same size and type as
3137  // objects allocated using the constructor.
3138  DCHECK(map->instance_size() == old_map->instance_size());
3139  DCHECK(map->instance_type() == old_map->instance_type());
3140
3141  // In order to keep heap in consistent state there must be no allocations
3142  // before object re-initialization is finished.
3143  DisallowGarbageCollection no_gc;
3144
3145  // Reset the map for the object.
3146  JSGlobalProxy raw = *object;
3147  raw.set_map(*map, kReleaseStore);
3148
3149  // Reinitialize the object from the constructor map.
3150  InitializeJSObjectFromMap(raw, *raw_properties_or_hash, *map);
3151}
3152
3153Handle<JSMessageObject> Factory::NewJSMessageObject(
3154    MessageTemplate message, Handle<Object> argument, int start_position,
3155    int end_position, Handle<SharedFunctionInfo> shared_info,
3156    int bytecode_offset, Handle<Script> script, Handle<Object> stack_frames) {
3157  Handle<Map> map = message_object_map();
3158  JSMessageObject message_obj =
3159      JSMessageObject::cast(New(map, AllocationType::kYoung));
3160  DisallowGarbageCollection no_gc;
3161  message_obj.set_raw_properties_or_hash(*empty_fixed_array(),
3162                                         SKIP_WRITE_BARRIER);
3163  message_obj.initialize_elements();
3164  message_obj.set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
3165  message_obj.set_type(message);
3166  message_obj.set_argument(*argument, SKIP_WRITE_BARRIER);
3167  message_obj.set_start_position(start_position);
3168  message_obj.set_end_position(end_position);
3169  message_obj.set_script(*script, SKIP_WRITE_BARRIER);
3170  if (start_position >= 0) {
3171    // If there's a start_position, then there's no need to store the
3172    // SharedFunctionInfo as it will never be necessary to regenerate the
3173    // position.
3174    message_obj.set_shared_info(*undefined_value(), SKIP_WRITE_BARRIER);
3175    message_obj.set_bytecode_offset(Smi::FromInt(0));
3176  } else {
3177    message_obj.set_bytecode_offset(Smi::FromInt(bytecode_offset));
3178    if (shared_info.is_null()) {
3179      message_obj.set_shared_info(*undefined_value(), SKIP_WRITE_BARRIER);
3180      DCHECK_EQ(bytecode_offset, -1);
3181    } else {
3182      message_obj.set_shared_info(*shared_info, SKIP_WRITE_BARRIER);
3183      DCHECK_GE(bytecode_offset, kFunctionEntryBytecodeOffset);
3184    }
3185  }
3186
3187  message_obj.set_stack_frames(*stack_frames, SKIP_WRITE_BARRIER);
3188  message_obj.set_error_level(v8::Isolate::kMessageError);
3189  return handle(message_obj, isolate());
3190}
3191
3192Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForApiFunction(
3193    MaybeHandle<String> maybe_name,
3194    Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind) {
3195  Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
3196      maybe_name, function_template_info, Builtin::kNoBuiltinId, kind);
3197  return shared;
3198}
3199
3200Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForBuiltin(
3201    MaybeHandle<String> maybe_name, Builtin builtin, FunctionKind kind) {
3202  Handle<SharedFunctionInfo> shared =
3203      NewSharedFunctionInfo(maybe_name, MaybeHandle<Code>(), builtin, kind);
3204  return shared;
3205}
3206
3207Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForWebSnapshot() {
3208  return NewSharedFunctionInfo(empty_string(), MaybeHandle<Code>(),
3209                               Builtin::kNoBuiltinId,
3210                               FunctionKind::kNormalFunction);
3211}
3212
3213namespace {
3214V8_INLINE int NumberToStringCacheHash(Handle<FixedArray> cache, Smi number) {
3215  int mask = (cache->length() >> 1) - 1;
3216  return number.value() & mask;
3217}
3218
3219V8_INLINE int NumberToStringCacheHash(Handle<FixedArray> cache, double number) {
3220  int mask = (cache->length() >> 1) - 1;
3221  int64_t bits = bit_cast<int64_t>(number);
3222  return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
3223}
3224
3225V8_INLINE Handle<String> CharToString(Factory* factory, const char* string,
3226                                      NumberCacheMode mode) {
3227  // We tenure the allocated string since it is referenced from the
3228  // number-string cache which lives in the old space.
3229  AllocationType type = mode == NumberCacheMode::kIgnore
3230                            ? AllocationType::kYoung
3231                            : AllocationType::kOld;
3232  return factory->NewStringFromAsciiChecked(string, type);
3233}
3234
3235}  // namespace
3236
3237void Factory::NumberToStringCacheSet(Handle<Object> number, int hash,
3238                                     Handle<String> js_string) {
3239  if (!number_string_cache()->get(hash * 2).IsUndefined(isolate()) &&
3240      !FLAG_optimize_for_size) {
3241    int full_size = isolate()->heap()->MaxNumberToStringCacheSize();
3242    if (number_string_cache()->length() != full_size) {
3243      Handle<FixedArray> new_cache =
3244          NewFixedArray(full_size, AllocationType::kOld);
3245      isolate()->heap()->set_number_string_cache(*new_cache);
3246      return;
3247    }
3248  }
3249  DisallowGarbageCollection no_gc;
3250  FixedArray cache = *number_string_cache();
3251  cache.set(hash * 2, *number);
3252  cache.set(hash * 2 + 1, *js_string);
3253}
3254
3255Handle<Object> Factory::NumberToStringCacheGet(Object number, int hash) {
3256  DisallowGarbageCollection no_gc;
3257  FixedArray cache = *number_string_cache();
3258  Object key = cache.get(hash * 2);
3259  if (key == number || (key.IsHeapNumber() && number.IsHeapNumber() &&
3260                        key.Number() == number.Number())) {
3261    return Handle<String>(String::cast(cache.get(hash * 2 + 1)), isolate());
3262  }
3263  return undefined_value();
3264}
3265
3266Handle<String> Factory::NumberToString(Handle<Object> number,
3267                                       NumberCacheMode mode) {
3268  SLOW_DCHECK(number->IsNumber());
3269  if (number->IsSmi()) return SmiToString(Smi::cast(*number), mode);
3270
3271  double double_value = Handle<HeapNumber>::cast(number)->value();
3272  // Try to canonicalize doubles.
3273  int smi_value;
3274  if (DoubleToSmiInteger(double_value, &smi_value)) {
3275    return SmiToString(Smi::FromInt(smi_value), mode);
3276  }
3277  return HeapNumberToString(Handle<HeapNumber>::cast(number), double_value,
3278                            mode);
3279}
3280
3281// Must be large enough to fit any double, int, or size_t.
3282static const int kNumberToStringBufferSize = 32;
3283
3284Handle<String> Factory::HeapNumberToString(Handle<HeapNumber> number,
3285                                           double value, NumberCacheMode mode) {
3286  int hash = 0;
3287  if (mode != NumberCacheMode::kIgnore) {
3288    hash = NumberToStringCacheHash(number_string_cache(), value);
3289  }
3290  if (mode == NumberCacheMode::kBoth) {
3291    Handle<Object> cached = NumberToStringCacheGet(*number, hash);
3292    if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
3293  }
3294
3295  Handle<String> result;
3296  if (value == 0) {
3297    result = zero_string();
3298  } else if (std::isnan(value)) {
3299    result = NaN_string();
3300  } else {
3301    char arr[kNumberToStringBufferSize];
3302    base::Vector<char> buffer(arr, arraysize(arr));
3303    const char* string = DoubleToCString(value, buffer);
3304    result = CharToString(this, string, mode);
3305  }
3306  if (mode != NumberCacheMode::kIgnore) {
3307    NumberToStringCacheSet(number, hash, result);
3308  }
3309  return result;
3310}
3311
3312inline Handle<String> Factory::SmiToString(Smi number, NumberCacheMode mode) {
3313  int hash = NumberToStringCacheHash(number_string_cache(), number);
3314  if (mode == NumberCacheMode::kBoth) {
3315    Handle<Object> cached = NumberToStringCacheGet(number, hash);
3316    if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
3317  }
3318
3319  Handle<String> result;
3320  if (number == Smi::zero()) {
3321    result = zero_string();
3322  } else {
3323    char arr[kNumberToStringBufferSize];
3324    base::Vector<char> buffer(arr, arraysize(arr));
3325    const char* string = IntToCString(number.value(), buffer);
3326    result = CharToString(this, string, mode);
3327  }
3328  if (mode != NumberCacheMode::kIgnore) {
3329    NumberToStringCacheSet(handle(number, isolate()), hash, result);
3330  }
3331
3332  // Compute the hash here (rather than letting the caller take care of it) so
3333  // that the "cache hit" case above doesn't have to bother with it.
3334  STATIC_ASSERT(Smi::kMaxValue <= std::numeric_limits<uint32_t>::max());
3335  {
3336    DisallowGarbageCollection no_gc;
3337    String raw = *result;
3338    if (raw.raw_hash_field() == String::kEmptyHashField &&
3339        number.value() >= 0) {
3340      uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(
3341          static_cast<uint32_t>(number.value()), raw.length());
3342      raw.set_raw_hash_field(raw_hash_field);
3343    }
3344  }
3345  return result;
3346}
3347
3348Handle<String> Factory::SizeToString(size_t value, bool check_cache) {
3349  Handle<String> result;
3350  NumberCacheMode cache_mode =
3351      check_cache ? NumberCacheMode::kBoth : NumberCacheMode::kIgnore;
3352  if (value <= Smi::kMaxValue) {
3353    int32_t int32v = static_cast<int32_t>(static_cast<uint32_t>(value));
3354    // SmiToString sets the hash when needed, we can return immediately.
3355    return SmiToString(Smi::FromInt(int32v), cache_mode);
3356  } else if (value <= kMaxSafeInteger) {
3357    // TODO(jkummerow): Refactor the cache to not require Objects as keys.
3358    double double_value = static_cast<double>(value);
3359    result = HeapNumberToString(NewHeapNumber(double_value), value, cache_mode);
3360  } else {
3361    char arr[kNumberToStringBufferSize];
3362    base::Vector<char> buffer(arr, arraysize(arr));
3363    // Build the string backwards from the least significant digit.
3364    int i = buffer.length();
3365    size_t value_copy = value;
3366    buffer[--i] = '\0';
3367    do {
3368      buffer[--i] = '0' + (value_copy % 10);
3369      value_copy /= 10;
3370    } while (value_copy > 0);
3371    char* string = buffer.begin() + i;
3372    // No way to cache this; we'd need an {Object} to use as key.
3373    result = NewStringFromAsciiChecked(string);
3374  }
3375  {
3376    DisallowGarbageCollection no_gc;
3377    String raw = *result;
3378    if (value <= JSArray::kMaxArrayIndex &&
3379        raw.raw_hash_field() == String::kEmptyHashField) {
3380      uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(
3381          static_cast<uint32_t>(value), raw.length());
3382      raw.set_raw_hash_field(raw_hash_field);
3383    }
3384  }
3385  return result;
3386}
3387
3388Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
3389  DCHECK(!shared->HasDebugInfo());
3390
3391  auto debug_info =
3392      NewStructInternal<DebugInfo>(DEBUG_INFO_TYPE, AllocationType::kOld);
3393  DisallowGarbageCollection no_gc;
3394  SharedFunctionInfo raw_shared = *shared;
3395  debug_info.set_flags(DebugInfo::kNone, kRelaxedStore);
3396  debug_info.set_shared(raw_shared);
3397  debug_info.set_debugger_hints(0);
3398  DCHECK_EQ(DebugInfo::kNoDebuggingId, debug_info.debugging_id());
3399  debug_info.set_script(raw_shared.script_or_debug_info(kAcquireLoad));
3400  HeapObject undefined = *undefined_value();
3401  debug_info.set_original_bytecode_array(undefined, kReleaseStore,
3402                                         SKIP_WRITE_BARRIER);
3403  debug_info.set_debug_bytecode_array(undefined, kReleaseStore,
3404                                      SKIP_WRITE_BARRIER);
3405  debug_info.set_break_points(*empty_fixed_array(), SKIP_WRITE_BARRIER);
3406
3407  // Link debug info to function.
3408  raw_shared.SetDebugInfo(debug_info);
3409
3410  return handle(debug_info, isolate());
3411}
3412
3413Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
3414  auto new_break_point_info = NewStructInternal<BreakPointInfo>(
3415      BREAK_POINT_INFO_TYPE, AllocationType::kOld);
3416  DisallowGarbageCollection no_gc;
3417  new_break_point_info.set_source_position(source_position);
3418  new_break_point_info.set_break_points(*undefined_value(), SKIP_WRITE_BARRIER);
3419  return handle(new_break_point_info, isolate());
3420}
3421
3422Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
3423  auto new_break_point =
3424      NewStructInternal<BreakPoint>(BREAK_POINT_TYPE, AllocationType::kOld);
3425  DisallowGarbageCollection no_gc;
3426  new_break_point.set_id(id);
3427  new_break_point.set_condition(*condition);
3428  return handle(new_break_point, isolate());
3429}
3430
3431Handle<CallSiteInfo> Factory::NewCallSiteInfo(
3432    Handle<Object> receiver_or_instance, Handle<Object> function,
3433    Handle<HeapObject> code_object, int code_offset_or_source_position,
3434    int flags, Handle<FixedArray> parameters) {
3435  auto info = NewStructInternal<CallSiteInfo>(CALL_SITE_INFO_TYPE,
3436                                              AllocationType::kYoung);
3437  DisallowGarbageCollection no_gc;
3438  info.set_receiver_or_instance(*receiver_or_instance, SKIP_WRITE_BARRIER);
3439  info.set_function(*function, SKIP_WRITE_BARRIER);
3440  info.set_code_object(*code_object, SKIP_WRITE_BARRIER);
3441  info.set_code_offset_or_source_position(code_offset_or_source_position);
3442  info.set_flags(flags);
3443  info.set_parameters(*parameters, SKIP_WRITE_BARRIER);
3444  return handle(info, isolate());
3445}
3446
3447Handle<StackFrameInfo> Factory::NewStackFrameInfo(
3448    Handle<HeapObject> shared_or_script, int bytecode_offset_or_source_position,
3449    Handle<String> function_name, bool is_constructor) {
3450  DCHECK_GE(bytecode_offset_or_source_position, 0);
3451  StackFrameInfo info = NewStructInternal<StackFrameInfo>(
3452      STACK_FRAME_INFO_TYPE, AllocationType::kYoung);
3453  DisallowGarbageCollection no_gc;
3454  info.set_flags(0);
3455  info.set_shared_or_script(*shared_or_script, SKIP_WRITE_BARRIER);
3456  info.set_bytecode_offset_or_source_position(
3457      bytecode_offset_or_source_position);
3458  info.set_function_name(*function_name, SKIP_WRITE_BARRIER);
3459  info.set_is_constructor(is_constructor);
3460  return handle(info, isolate());
3461}
3462
3463Handle<PromiseOnStack> Factory::NewPromiseOnStack(Handle<Object> prev,
3464                                                  Handle<JSObject> promise) {
3465  PromiseOnStack promise_on_stack = NewStructInternal<PromiseOnStack>(
3466      PROMISE_ON_STACK_TYPE, AllocationType::kYoung);
3467  DisallowGarbageCollection no_gc;
3468  promise_on_stack.set_prev(*prev, SKIP_WRITE_BARRIER);
3469  promise_on_stack.set_promise(*MaybeObjectHandle::Weak(promise));
3470  return handle(promise_on_stack, isolate());
3471}
3472
3473Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
3474                                             int length) {
3475  bool strict_mode_callee = is_strict(callee->shared().language_mode()) ||
3476                            !callee->shared().has_simple_parameters();
3477  Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
3478                                       : isolate()->sloppy_arguments_map();
3479  AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
3480                                     false);
3481  DCHECK(!isolate()->has_pending_exception());
3482  Handle<JSObject> result = NewJSObjectFromMap(map);
3483  Handle<Smi> value(Smi::FromInt(length), isolate());
3484  Object::SetProperty(isolate(), result, length_string(), value,
3485                      StoreOrigin::kMaybeKeyed,
3486                      Just(ShouldThrow::kThrowOnError))
3487      .Assert();
3488  if (!strict_mode_callee) {
3489    Object::SetProperty(isolate(), result, callee_string(), callee,
3490                        StoreOrigin::kMaybeKeyed,
3491                        Just(ShouldThrow::kThrowOnError))
3492        .Assert();
3493  }
3494  return result;
3495}
3496
3497Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<NativeContext> context,
3498                                               int number_of_properties) {
3499  // Use initial slow object proto map for too many properties.
3500  if (number_of_properties >= JSObject::kMapCacheSize) {
3501    return handle(context->slow_object_with_object_prototype_map(), isolate());
3502  }
3503
3504  Handle<WeakFixedArray> cache(WeakFixedArray::cast(context->map_cache()),
3505                               isolate());
3506
3507  // Check to see whether there is a matching element in the cache.
3508  MaybeObject result = cache->Get(number_of_properties);
3509  HeapObject heap_object;
3510  if (result->GetHeapObjectIfWeak(&heap_object)) {
3511    Map map = Map::cast(heap_object);
3512    DCHECK(!map.is_dictionary_map());
3513    return handle(map, isolate());
3514  }
3515
3516  // Create a new map and add it to the cache.
3517  Handle<Map> map = Map::Create(isolate(), number_of_properties);
3518  DCHECK(!map->is_dictionary_map());
3519  cache->Set(number_of_properties, HeapObjectReference::Weak(*map));
3520  return map;
3521}
3522
3523Handle<MegaDomHandler> Factory::NewMegaDomHandler(MaybeObjectHandle accessor,
3524                                                  MaybeObjectHandle context) {
3525  Handle<Map> map = read_only_roots().mega_dom_handler_map_handle();
3526  MegaDomHandler handler = MegaDomHandler::cast(New(map, AllocationType::kOld));
3527  DisallowGarbageCollection no_gc;
3528  handler.set_accessor(*accessor);
3529  handler.set_context(*context);
3530  return handle(handler, isolate());
3531}
3532
3533Handle<LoadHandler> Factory::NewLoadHandler(int data_count,
3534                                            AllocationType allocation) {
3535  Handle<Map> map;
3536  switch (data_count) {
3537    case 1:
3538      map = load_handler1_map();
3539      break;
3540    case 2:
3541      map = load_handler2_map();
3542      break;
3543    case 3:
3544      map = load_handler3_map();
3545      break;
3546    default:
3547      UNREACHABLE();
3548  }
3549  return handle(LoadHandler::cast(New(map, allocation)), isolate());
3550}
3551
3552Handle<StoreHandler> Factory::NewStoreHandler(int data_count) {
3553  Handle<Map> map;
3554  switch (data_count) {
3555    case 0:
3556      map = store_handler0_map();
3557      break;
3558    case 1:
3559      map = store_handler1_map();
3560      break;
3561    case 2:
3562      map = store_handler2_map();
3563      break;
3564    case 3:
3565      map = store_handler3_map();
3566      break;
3567    default:
3568      UNREACHABLE();
3569  }
3570  return handle(StoreHandler::cast(New(map, AllocationType::kOld)), isolate());
3571}
3572
3573void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, Handle<String> source,
3574                                JSRegExp::Flags flags, Handle<Object> data) {
3575  FixedArray store =
3576      *NewFixedArray(JSRegExp::kAtomDataSize, AllocationType::kYoung);
3577  DisallowGarbageCollection no_gc;
3578  store.set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::ATOM));
3579  store.set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
3580  store.set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3581  store.set(JSRegExp::kAtomPatternIndex, *data, SKIP_WRITE_BARRIER);
3582  regexp->set_data(store);
3583}
3584
3585void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
3586                                    Handle<String> source,
3587                                    JSRegExp::Flags flags, int capture_count,
3588                                    uint32_t backtrack_limit) {
3589  DCHECK(Smi::IsValid(backtrack_limit));
3590  FixedArray store =
3591      *NewFixedArray(JSRegExp::kIrregexpDataSize, AllocationType::kYoung);
3592  DisallowGarbageCollection no_gc;
3593  Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
3594  Smi ticks_until_tier_up = FLAG_regexp_tier_up
3595                                ? Smi::FromInt(FLAG_regexp_tier_up_ticks)
3596                                : uninitialized;
3597  store.set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::IRREGEXP));
3598  store.set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
3599  store.set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3600  store.set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
3601  store.set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
3602  store.set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
3603  store.set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
3604  store.set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::zero());
3605  store.set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
3606  store.set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
3607  store.set(JSRegExp::kIrregexpTicksUntilTierUpIndex, ticks_until_tier_up);
3608  store.set(JSRegExp::kIrregexpBacktrackLimit, Smi::FromInt(backtrack_limit));
3609  regexp->set_data(store);
3610}
3611
3612void Factory::SetRegExpExperimentalData(Handle<JSRegExp> regexp,
3613                                        Handle<String> source,
3614                                        JSRegExp::Flags flags,
3615                                        int capture_count) {
3616  FixedArray store =
3617      *NewFixedArray(JSRegExp::kExperimentalDataSize, AllocationType::kYoung);
3618  DisallowGarbageCollection no_gc;
3619  Smi uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
3620
3621  store.set(JSRegExp::kTagIndex, Smi::FromInt(JSRegExp::EXPERIMENTAL));
3622  store.set(JSRegExp::kSourceIndex, *source, SKIP_WRITE_BARRIER);
3623  store.set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
3624  store.set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
3625  store.set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
3626  store.set(JSRegExp::kIrregexpLatin1BytecodeIndex, uninitialized);
3627  store.set(JSRegExp::kIrregexpUC16BytecodeIndex, uninitialized);
3628  store.set(JSRegExp::kIrregexpMaxRegisterCountIndex, uninitialized);
3629  store.set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
3630  store.set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
3631  store.set(JSRegExp::kIrregexpTicksUntilTierUpIndex, uninitialized);
3632  store.set(JSRegExp::kIrregexpBacktrackLimit, uninitialized);
3633  regexp->set_data(store);
3634}
3635
3636Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
3637  // Initially, the last match info consists of all fixed fields plus space for
3638  // the match itself (i.e., 2 capture indices).
3639  static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
3640                                  RegExpMatchInfo::kInitialCaptureIndices;
3641
3642  Handle<FixedArray> elems =
3643      NewFixedArray(kInitialSize, AllocationType::kYoung);
3644  Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
3645  {
3646    DisallowGarbageCollection no_gc;
3647    RegExpMatchInfo raw = *result;
3648    raw.SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
3649    raw.SetLastSubject(*empty_string(), SKIP_WRITE_BARRIER);
3650    raw.SetLastInput(*undefined_value(), SKIP_WRITE_BARRIER);
3651    raw.SetCapture(0, 0);
3652    raw.SetCapture(1, 0);
3653  }
3654  return result;
3655}
3656
3657Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
3658  if (Name::Equals(isolate(), name, undefined_string())) {
3659    return undefined_value();
3660  }
3661  if (Name::Equals(isolate(), name, NaN_string())) return nan_value();
3662  if (Name::Equals(isolate(), name, Infinity_string())) return infinity_value();
3663  return Handle<Object>::null();
3664}
3665
3666Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
3667  switch (hint) {
3668    case ToPrimitiveHint::kDefault:
3669      return default_string();
3670    case ToPrimitiveHint::kNumber:
3671      return number_string();
3672    case ToPrimitiveHint::kString:
3673      return string_string();
3674  }
3675  UNREACHABLE();
3676}
3677
3678Handle<Map> Factory::CreateSloppyFunctionMap(
3679    FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
3680  bool has_prototype = IsFunctionModeWithPrototype(function_mode);
3681  int header_size = has_prototype ? JSFunction::kSizeWithPrototype
3682                                  : JSFunction::kSizeWithoutPrototype;
3683  int descriptors_count = has_prototype ? 5 : 4;
3684  int inobject_properties_count = 0;
3685  if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
3686
3687  Handle<Map> map = NewMap(
3688      JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
3689      TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
3690  {
3691    DisallowGarbageCollection no_gc;
3692    Map raw_map = *map;
3693    raw_map.set_has_prototype_slot(has_prototype);
3694    raw_map.set_is_constructor(has_prototype);
3695    raw_map.set_is_callable(true);
3696  }
3697  Handle<JSFunction> empty_function;
3698  if (maybe_empty_function.ToHandle(&empty_function)) {
3699    Map::SetPrototype(isolate(), map, empty_function);
3700  }
3701
3702  //
3703  // Setup descriptors array.
3704  //
3705  Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
3706
3707  PropertyAttributes ro_attribs =
3708      static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3709  PropertyAttributes rw_attribs =
3710      static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
3711  PropertyAttributes roc_attribs =
3712      static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3713
3714  int field_index = 0;
3715  STATIC_ASSERT(
3716      JSFunctionOrBoundFunctionOrWrappedFunction::kLengthDescriptorIndex == 0);
3717  {  // Add length accessor.
3718    Descriptor d = Descriptor::AccessorConstant(
3719        length_string(), function_length_accessor(), roc_attribs);
3720    map->AppendDescriptor(isolate(), &d);
3721  }
3722
3723  STATIC_ASSERT(
3724      JSFunctionOrBoundFunctionOrWrappedFunction::kNameDescriptorIndex == 1);
3725  if (IsFunctionModeWithName(function_mode)) {
3726    // Add name field.
3727    Handle<Name> name = isolate()->factory()->name_string();
3728    Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3729                                         roc_attribs, Representation::Tagged());
3730    map->AppendDescriptor(isolate(), &d);
3731
3732  } else {
3733    // Add name accessor.
3734    Descriptor d = Descriptor::AccessorConstant(
3735        name_string(), function_name_accessor(), roc_attribs);
3736    map->AppendDescriptor(isolate(), &d);
3737  }
3738  {  // Add arguments accessor.
3739    Descriptor d = Descriptor::AccessorConstant(
3740        arguments_string(), function_arguments_accessor(), ro_attribs);
3741    map->AppendDescriptor(isolate(), &d);
3742  }
3743  {  // Add caller accessor.
3744    Descriptor d = Descriptor::AccessorConstant(
3745        caller_string(), function_caller_accessor(), ro_attribs);
3746    map->AppendDescriptor(isolate(), &d);
3747  }
3748  if (IsFunctionModeWithPrototype(function_mode)) {
3749    // Add prototype accessor.
3750    PropertyAttributes attribs =
3751        IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
3752                                                           : ro_attribs;
3753    Descriptor d = Descriptor::AccessorConstant(
3754        prototype_string(), function_prototype_accessor(), attribs);
3755    map->AppendDescriptor(isolate(), &d);
3756  }
3757  DCHECK_EQ(inobject_properties_count, field_index);
3758  DCHECK_EQ(0,
3759            map->instance_descriptors(isolate()).number_of_slack_descriptors());
3760  LOG(isolate(), MapDetails(*map));
3761  return map;
3762}
3763
3764Handle<Map> Factory::CreateStrictFunctionMap(
3765    FunctionMode function_mode, Handle<JSFunction> empty_function) {
3766  bool has_prototype = IsFunctionModeWithPrototype(function_mode);
3767  int header_size = has_prototype ? JSFunction::kSizeWithPrototype
3768                                  : JSFunction::kSizeWithoutPrototype;
3769  int inobject_properties_count = 0;
3770  // length and prototype accessors or just length accessor.
3771  int descriptors_count = IsFunctionModeWithPrototype(function_mode) ? 2 : 1;
3772  if (IsFunctionModeWithName(function_mode)) {
3773    ++inobject_properties_count;  // name property.
3774  } else {
3775    ++descriptors_count;  // name accessor.
3776  }
3777  descriptors_count += inobject_properties_count;
3778
3779  Handle<Map> map = NewMap(
3780      JS_FUNCTION_TYPE, header_size + inobject_properties_count * kTaggedSize,
3781      TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
3782  {
3783    DisallowGarbageCollection no_gc;
3784    Map raw_map = *map;
3785    raw_map.set_has_prototype_slot(has_prototype);
3786    raw_map.set_is_constructor(has_prototype);
3787    raw_map.set_is_callable(true);
3788  }
3789  Map::SetPrototype(isolate(), map, empty_function);
3790
3791  //
3792  // Setup descriptors array.
3793  //
3794  Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
3795
3796  PropertyAttributes rw_attribs =
3797      static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
3798  PropertyAttributes ro_attribs =
3799      static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3800  PropertyAttributes roc_attribs =
3801      static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3802
3803  int field_index = 0;
3804  STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3805  {  // Add length accessor.
3806    Descriptor d = Descriptor::AccessorConstant(
3807        length_string(), function_length_accessor(), roc_attribs);
3808    map->AppendDescriptor(isolate(), &d);
3809  }
3810
3811  STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
3812  if (IsFunctionModeWithName(function_mode)) {
3813    // Add name field.
3814    Handle<Name> name = isolate()->factory()->name_string();
3815    Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
3816                                         roc_attribs, Representation::Tagged());
3817    map->AppendDescriptor(isolate(), &d);
3818
3819  } else {
3820    // Add name accessor.
3821    Descriptor d = Descriptor::AccessorConstant(
3822        name_string(), function_name_accessor(), roc_attribs);
3823    map->AppendDescriptor(isolate(), &d);
3824  }
3825
3826  if (IsFunctionModeWithPrototype(function_mode)) {
3827    // Add prototype accessor.
3828    PropertyAttributes attribs =
3829        IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
3830                                                           : ro_attribs;
3831    Descriptor d = Descriptor::AccessorConstant(
3832        prototype_string(), function_prototype_accessor(), attribs);
3833    map->AppendDescriptor(isolate(), &d);
3834  }
3835  DCHECK_EQ(inobject_properties_count, field_index);
3836  DCHECK_EQ(0,
3837            map->instance_descriptors(isolate()).number_of_slack_descriptors());
3838  LOG(isolate(), MapDetails(*map));
3839  return map;
3840}
3841
3842Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
3843  Handle<Map> map =
3844      NewMap(JS_CLASS_CONSTRUCTOR_TYPE, JSFunction::kSizeWithPrototype);
3845  {
3846    DisallowGarbageCollection no_gc;
3847    Map raw_map = *map;
3848    raw_map.set_has_prototype_slot(true);
3849    raw_map.set_is_constructor(true);
3850    raw_map.set_is_prototype_map(true);
3851    raw_map.set_is_callable(true);
3852  }
3853  Map::SetPrototype(isolate(), map, empty_function);
3854
3855  //
3856  // Setup descriptors array.
3857  //
3858  Map::EnsureDescriptorSlack(isolate(), map, 2);
3859
3860  PropertyAttributes ro_attribs =
3861      static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
3862  PropertyAttributes roc_attribs =
3863      static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
3864
3865  STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
3866  {  // Add length accessor.
3867    Descriptor d = Descriptor::AccessorConstant(
3868        length_string(), function_length_accessor(), roc_attribs);
3869    map->AppendDescriptor(isolate(), &d);
3870  }
3871
3872  {
3873    // Add prototype accessor.
3874    Descriptor d = Descriptor::AccessorConstant(
3875        prototype_string(), function_prototype_accessor(), ro_attribs);
3876    map->AppendDescriptor(isolate(), &d);
3877  }
3878  LOG(isolate(), MapDetails(*map));
3879  return map;
3880}
3881
3882Handle<JSPromise> Factory::NewJSPromiseWithoutHook() {
3883  Handle<JSPromise> promise =
3884      Handle<JSPromise>::cast(NewJSObject(isolate()->promise_function()));
3885  DisallowGarbageCollection no_gc;
3886  JSPromise raw = *promise;
3887  raw.set_reactions_or_result(Smi::zero(), SKIP_WRITE_BARRIER);
3888  raw.set_flags(0);
3889  // TODO(v8) remove once embedder data slots are always zero-initialized.
3890  InitEmbedderFields(*promise, Smi::zero());
3891  DCHECK_EQ(raw.GetEmbedderFieldCount(), v8::Promise::kEmbedderFieldCount);
3892  return promise;
3893}
3894
3895Handle<JSPromise> Factory::NewJSPromise() {
3896  Handle<JSPromise> promise = NewJSPromiseWithoutHook();
3897  isolate()->RunAllPromiseHooks(PromiseHookType::kInit, promise,
3898                                undefined_value());
3899  return promise;
3900}
3901
3902Handle<CallHandlerInfo> Factory::NewCallHandlerInfo(bool has_no_side_effect) {
3903  Handle<Map> map = has_no_side_effect
3904                        ? side_effect_free_call_handler_info_map()
3905                        : side_effect_call_handler_info_map();
3906  CallHandlerInfo info = CallHandlerInfo::cast(New(map, AllocationType::kOld));
3907  DisallowGarbageCollection no_gc;
3908  Object undefined_value = read_only_roots().undefined_value();
3909  info.set_callback(undefined_value, SKIP_WRITE_BARRIER);
3910  info.set_js_callback(undefined_value, SKIP_WRITE_BARRIER);
3911  info.set_data(undefined_value, SKIP_WRITE_BARRIER);
3912  return handle(info, isolate());
3913}
3914
3915bool Factory::CanAllocateInReadOnlySpace() {
3916  return allocator()->CanAllocateInReadOnlySpace();
3917}
3918
3919bool Factory::EmptyStringRootIsInitialized() {
3920  return isolate()->roots_table()[RootIndex::kempty_string] != kNullAddress;
3921}
3922
3923AllocationType Factory::AllocationTypeForInPlaceInternalizableString() {
3924  return isolate()
3925      ->heap()
3926      ->allocation_type_for_in_place_internalizable_strings();
3927}
3928
3929Handle<JSFunction> Factory::NewFunctionForTesting(Handle<String> name) {
3930  Handle<SharedFunctionInfo> info =
3931      NewSharedFunctionInfoForBuiltin(name, Builtin::kIllegal);
3932  info->set_language_mode(LanguageMode::kSloppy);
3933  return JSFunctionBuilder{isolate(), info, isolate()->native_context()}
3934      .Build();
3935}
3936
3937Factory::JSFunctionBuilder::JSFunctionBuilder(Isolate* isolate,
3938                                              Handle<SharedFunctionInfo> sfi,
3939                                              Handle<Context> context)
3940    : isolate_(isolate), sfi_(sfi), context_(context) {}
3941
3942Handle<JSFunction> Factory::JSFunctionBuilder::Build() {
3943  PrepareMap();
3944  PrepareFeedbackCell();
3945
3946  Handle<Code> code = handle(FromCodeT(sfi_->GetCode()), isolate_);
3947  Handle<JSFunction> result = BuildRaw(code);
3948
3949  if (code->kind() == CodeKind::BASELINE) {
3950    IsCompiledScope is_compiled_scope(sfi_->is_compiled_scope(isolate_));
3951    JSFunction::EnsureFeedbackVector(isolate_, result, &is_compiled_scope);
3952  }
3953
3954  Compiler::PostInstantiation(result);
3955  return result;
3956}
3957
3958Handle<JSFunction> Factory::JSFunctionBuilder::BuildRaw(Handle<Code> code) {
3959  Isolate* isolate = isolate_;
3960  Factory* factory = isolate_->factory();
3961
3962  Handle<Map> map = maybe_map_.ToHandleChecked();
3963  Handle<FeedbackCell> feedback_cell = maybe_feedback_cell_.ToHandleChecked();
3964
3965  DCHECK(InstanceTypeChecker::IsJSFunction(map->instance_type()));
3966
3967  // Allocation.
3968  JSFunction function = JSFunction::cast(factory->New(map, allocation_type_));
3969  DisallowGarbageCollection no_gc;
3970
3971  WriteBarrierMode mode = allocation_type_ == AllocationType::kYoung
3972                              ? SKIP_WRITE_BARRIER
3973                              : UPDATE_WRITE_BARRIER;
3974  // Header initialization.
3975  function.initialize_properties(isolate);
3976  function.initialize_elements();
3977  function.set_shared(*sfi_, mode);
3978  function.set_context(*context_, mode);
3979  function.set_raw_feedback_cell(*feedback_cell, mode);
3980  function.set_code(*code, kReleaseStore, mode);
3981  if (function.has_prototype_slot()) {
3982    function.set_prototype_or_initial_map(
3983        ReadOnlyRoots(isolate).the_hole_value(), kReleaseStore,
3984        SKIP_WRITE_BARRIER);
3985  }
3986
3987  // Potentially body initialization.
3988  factory->InitializeJSObjectBody(
3989      function, *map, JSFunction::GetHeaderSize(map->has_prototype_slot()));
3990
3991  return handle(function, isolate_);
3992}
3993
3994void Factory::JSFunctionBuilder::PrepareMap() {
3995  if (maybe_map_.is_null()) {
3996    // No specific map requested, use the default.
3997    maybe_map_ = handle(
3998        Map::cast(context_->native_context().get(sfi_->function_map_index())),
3999        isolate_);
4000  }
4001}
4002
4003void Factory::JSFunctionBuilder::PrepareFeedbackCell() {
4004  Handle<FeedbackCell> feedback_cell;
4005  if (maybe_feedback_cell_.ToHandle(&feedback_cell)) {
4006    // Track the newly-created closure.
4007    feedback_cell->IncrementClosureCount(isolate_);
4008  } else {
4009    // Fall back to the many_closures_cell.
4010    maybe_feedback_cell_ = isolate_->factory()->many_closures_cell();
4011  }
4012}
4013
4014}  // namespace internal
4015}  // namespace v8
4016