1// Copyright 2010 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#include "src/diagnostics/gdb-jit.h" 6 7#include <iterator> 8#include <map> 9#include <memory> 10#include <vector> 11 12#include "include/v8-callbacks.h" 13#include "src/api/api-inl.h" 14#include "src/base/address-region.h" 15#include "src/base/bits.h" 16#include "src/base/hashmap.h" 17#include "src/base/memory.h" 18#include "src/base/platform/platform.h" 19#include "src/base/platform/wrappers.h" 20#include "src/base/strings.h" 21#include "src/base/vector.h" 22#include "src/execution/frames-inl.h" 23#include "src/execution/frames.h" 24#include "src/handles/global-handles.h" 25#include "src/init/bootstrapper.h" 26#include "src/objects/objects.h" 27#include "src/utils/ostreams.h" 28#include "src/zone/zone-chunk-list.h" 29 30namespace v8 { 31namespace internal { 32namespace GDBJITInterface { 33 34#ifdef ENABLE_GDB_JIT_INTERFACE 35 36#ifdef __APPLE__ 37#define __MACH_O 38class MachO; 39class MachOSection; 40using DebugObject = MachO; 41using DebugSection = MachOSection; 42#else 43#define __ELF 44class ELF; 45class ELFSection; 46using DebugObject = ELF; 47using DebugSection = ELFSection; 48#endif 49 50class Writer { 51 public: 52 explicit Writer(DebugObject* debug_object) 53 : debug_object_(debug_object), 54 position_(0), 55 capacity_(1024), 56 buffer_(reinterpret_cast<byte*>(base::Malloc(capacity_))) {} 57 58 ~Writer() { base::Free(buffer_); } 59 60 uintptr_t position() const { return position_; } 61 62 template <typename T> 63 class Slot { 64 public: 65 Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) {} 66 67 T* operator->() { return w_->RawSlotAt<T>(offset_); } 68 69 void set(const T& value) { 70 base::WriteUnalignedValue(w_->AddressAt<T>(offset_), value); 71 } 72 73 Slot<T> at(int i) { return Slot<T>(w_, offset_ + sizeof(T) * i); } 74 75 private: 76 Writer* w_; 77 uintptr_t offset_; 78 }; 79 80 template <typename T> 81 void Write(const T& val) { 82 Ensure(position_ + sizeof(T)); 83 base::WriteUnalignedValue(AddressAt<T>(position_), val); 84 position_ += sizeof(T); 85 } 86 87 template <typename T> 88 Slot<T> SlotAt(uintptr_t offset) { 89 Ensure(offset + sizeof(T)); 90 return Slot<T>(this, offset); 91 } 92 93 template <typename T> 94 Slot<T> CreateSlotHere() { 95 return CreateSlotsHere<T>(1); 96 } 97 98 template <typename T> 99 Slot<T> CreateSlotsHere(uint32_t count) { 100 uintptr_t slot_position = position_; 101 position_ += sizeof(T) * count; 102 Ensure(position_); 103 return SlotAt<T>(slot_position); 104 } 105 106 void Ensure(uintptr_t pos) { 107 if (capacity_ < pos) { 108 while (capacity_ < pos) capacity_ *= 2; 109 buffer_ = reinterpret_cast<byte*>(base::Realloc(buffer_, capacity_)); 110 } 111 } 112 113 DebugObject* debug_object() { return debug_object_; } 114 115 byte* buffer() { return buffer_; } 116 117 void Align(uintptr_t align) { 118 uintptr_t delta = position_ % align; 119 if (delta == 0) return; 120 uintptr_t padding = align - delta; 121 Ensure(position_ += padding); 122 DCHECK_EQ(position_ % align, 0); 123 } 124 125 void WriteULEB128(uintptr_t value) { 126 do { 127 uint8_t byte = value & 0x7F; 128 value >>= 7; 129 if (value != 0) byte |= 0x80; 130 Write<uint8_t>(byte); 131 } while (value != 0); 132 } 133 134 void WriteSLEB128(intptr_t value) { 135 bool more = true; 136 while (more) { 137 int8_t byte = value & 0x7F; 138 bool byte_sign = byte & 0x40; 139 value >>= 7; 140 141 if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) { 142 more = false; 143 } else { 144 byte |= 0x80; 145 } 146 147 Write<int8_t>(byte); 148 } 149 } 150 151 void WriteString(const char* str) { 152 do { 153 Write<char>(*str); 154 } while (*str++); 155 } 156 157 private: 158 template <typename T> 159 friend class Slot; 160 161 template <typename T> 162 Address AddressAt(uintptr_t offset) { 163 DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); 164 return reinterpret_cast<Address>(&buffer_[offset]); 165 } 166 167 template <typename T> 168 T* RawSlotAt(uintptr_t offset) { 169 DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); 170 return reinterpret_cast<T*>(&buffer_[offset]); 171 } 172 173 DebugObject* debug_object_; 174 uintptr_t position_; 175 uintptr_t capacity_; 176 byte* buffer_; 177}; 178 179class ELFStringTable; 180 181template <typename THeader> 182class DebugSectionBase : public ZoneObject { 183 public: 184 virtual ~DebugSectionBase() = default; 185 186 virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) { 187 uintptr_t start = writer->position(); 188 if (WriteBodyInternal(writer)) { 189 uintptr_t end = writer->position(); 190 header->offset = static_cast<uint32_t>(start); 191#if defined(__MACH_O) 192 header->addr = 0; 193#endif 194 header->size = end - start; 195 } 196 } 197 198 virtual bool WriteBodyInternal(Writer* writer) { return false; } 199 200 using Header = THeader; 201}; 202 203struct MachOSectionHeader { 204 char sectname[16]; 205 char segname[16]; 206#if V8_TARGET_ARCH_IA32 207 uint32_t addr; 208 uint32_t size; 209#else 210 uint64_t addr; 211 uint64_t size; 212#endif 213 uint32_t offset; 214 uint32_t align; 215 uint32_t reloff; 216 uint32_t nreloc; 217 uint32_t flags; 218 uint32_t reserved1; 219 uint32_t reserved2; 220}; 221 222class MachOSection : public DebugSectionBase<MachOSectionHeader> { 223 public: 224 enum Type { 225 S_REGULAR = 0x0u, 226 S_ATTR_COALESCED = 0xBu, 227 S_ATTR_SOME_INSTRUCTIONS = 0x400u, 228 S_ATTR_DEBUG = 0x02000000u, 229 S_ATTR_PURE_INSTRUCTIONS = 0x80000000u 230 }; 231 232 MachOSection(const char* name, const char* segment, uint32_t align, 233 uint32_t flags) 234 : name_(name), segment_(segment), align_(align), flags_(flags) { 235 if (align_ != 0) { 236 DCHECK(base::bits::IsPowerOfTwo(align)); 237 align_ = base::bits::WhichPowerOfTwo(align_); 238 } 239 } 240 241 ~MachOSection() override = default; 242 243 virtual void PopulateHeader(Writer::Slot<Header> header) { 244 header->addr = 0; 245 header->size = 0; 246 header->offset = 0; 247 header->align = align_; 248 header->reloff = 0; 249 header->nreloc = 0; 250 header->flags = flags_; 251 header->reserved1 = 0; 252 header->reserved2 = 0; 253 memset(header->sectname, 0, sizeof(header->sectname)); 254 memset(header->segname, 0, sizeof(header->segname)); 255 DCHECK(strlen(name_) < sizeof(header->sectname)); 256 DCHECK(strlen(segment_) < sizeof(header->segname)); 257 strncpy(header->sectname, name_, sizeof(header->sectname)); 258 strncpy(header->segname, segment_, sizeof(header->segname)); 259 } 260 261 private: 262 const char* name_; 263 const char* segment_; 264 uint32_t align_; 265 uint32_t flags_; 266}; 267 268struct ELFSectionHeader { 269 uint32_t name; 270 uint32_t type; 271 uintptr_t flags; 272 uintptr_t address; 273 uintptr_t offset; 274 uintptr_t size; 275 uint32_t link; 276 uint32_t info; 277 uintptr_t alignment; 278 uintptr_t entry_size; 279}; 280 281#if defined(__ELF) 282class ELFSection : public DebugSectionBase<ELFSectionHeader> { 283 public: 284 enum Type { 285 TYPE_NULL = 0, 286 TYPE_PROGBITS = 1, 287 TYPE_SYMTAB = 2, 288 TYPE_STRTAB = 3, 289 TYPE_RELA = 4, 290 TYPE_HASH = 5, 291 TYPE_DYNAMIC = 6, 292 TYPE_NOTE = 7, 293 TYPE_NOBITS = 8, 294 TYPE_REL = 9, 295 TYPE_SHLIB = 10, 296 TYPE_DYNSYM = 11, 297 TYPE_LOPROC = 0x70000000, 298 TYPE_X86_64_UNWIND = 0x70000001, 299 TYPE_HIPROC = 0x7FFFFFFF, 300 TYPE_LOUSER = 0x80000000, 301 TYPE_HIUSER = 0xFFFFFFFF 302 }; 303 304 enum Flags { FLAG_WRITE = 1, FLAG_ALLOC = 2, FLAG_EXEC = 4 }; 305 306 enum SpecialIndexes { INDEX_ABSOLUTE = 0xFFF1 }; 307 308 ELFSection(const char* name, Type type, uintptr_t align) 309 : name_(name), type_(type), align_(align) {} 310 311 ~ELFSection() override = default; 312 313 void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab); 314 315 void WriteBody(Writer::Slot<Header> header, Writer* w) override { 316 uintptr_t start = w->position(); 317 if (WriteBodyInternal(w)) { 318 uintptr_t end = w->position(); 319 header->offset = start; 320 header->size = end - start; 321 } 322 } 323 324 bool WriteBodyInternal(Writer* w) override { return false; } 325 326 uint16_t index() const { return index_; } 327 void set_index(uint16_t index) { index_ = index; } 328 329 protected: 330 virtual void PopulateHeader(Writer::Slot<Header> header) { 331 header->flags = 0; 332 header->address = 0; 333 header->offset = 0; 334 header->size = 0; 335 header->link = 0; 336 header->info = 0; 337 header->entry_size = 0; 338 } 339 340 private: 341 const char* name_; 342 Type type_; 343 uintptr_t align_; 344 uint16_t index_; 345}; 346#endif // defined(__ELF) 347 348#if defined(__MACH_O) 349class MachOTextSection : public MachOSection { 350 public: 351 MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size) 352 : MachOSection("__text", "__TEXT", align, 353 MachOSection::S_REGULAR | 354 MachOSection::S_ATTR_SOME_INSTRUCTIONS | 355 MachOSection::S_ATTR_PURE_INSTRUCTIONS), 356 addr_(addr), 357 size_(size) {} 358 359 protected: 360 virtual void PopulateHeader(Writer::Slot<Header> header) { 361 MachOSection::PopulateHeader(header); 362 header->addr = addr_; 363 header->size = size_; 364 } 365 366 private: 367 uintptr_t addr_; 368 uintptr_t size_; 369}; 370#endif // defined(__MACH_O) 371 372#if defined(__ELF) 373class FullHeaderELFSection : public ELFSection { 374 public: 375 FullHeaderELFSection(const char* name, Type type, uintptr_t align, 376 uintptr_t addr, uintptr_t offset, uintptr_t size, 377 uintptr_t flags) 378 : ELFSection(name, type, align), 379 addr_(addr), 380 offset_(offset), 381 size_(size), 382 flags_(flags) {} 383 384 protected: 385 void PopulateHeader(Writer::Slot<Header> header) override { 386 ELFSection::PopulateHeader(header); 387 header->address = addr_; 388 header->offset = offset_; 389 header->size = size_; 390 header->flags = flags_; 391 } 392 393 private: 394 uintptr_t addr_; 395 uintptr_t offset_; 396 uintptr_t size_; 397 uintptr_t flags_; 398}; 399 400class ELFStringTable : public ELFSection { 401 public: 402 explicit ELFStringTable(const char* name) 403 : ELFSection(name, TYPE_STRTAB, 1), 404 writer_(nullptr), 405 offset_(0), 406 size_(0) {} 407 408 uintptr_t Add(const char* str) { 409 if (*str == '\0') return 0; 410 411 uintptr_t offset = size_; 412 WriteString(str); 413 return offset; 414 } 415 416 void AttachWriter(Writer* w) { 417 writer_ = w; 418 offset_ = writer_->position(); 419 420 // First entry in the string table should be an empty string. 421 WriteString(""); 422 } 423 424 void DetachWriter() { writer_ = nullptr; } 425 426 void WriteBody(Writer::Slot<Header> header, Writer* w) override { 427 DCHECK_NULL(writer_); 428 header->offset = offset_; 429 header->size = size_; 430 } 431 432 private: 433 void WriteString(const char* str) { 434 uintptr_t written = 0; 435 do { 436 writer_->Write(*str); 437 written++; 438 } while (*str++); 439 size_ += written; 440 } 441 442 Writer* writer_; 443 444 uintptr_t offset_; 445 uintptr_t size_; 446}; 447 448void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header, 449 ELFStringTable* strtab) { 450 header->name = static_cast<uint32_t>(strtab->Add(name_)); 451 header->type = type_; 452 header->alignment = align_; 453 PopulateHeader(header); 454} 455#endif // defined(__ELF) 456 457#if defined(__MACH_O) 458class MachO { 459 public: 460 explicit MachO(Zone* zone) : sections_(zone) {} 461 462 size_t AddSection(MachOSection* section) { 463 sections_.push_back(section); 464 return sections_.size() - 1; 465 } 466 467 void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) { 468 Writer::Slot<MachOHeader> header = WriteHeader(w); 469 uintptr_t load_command_start = w->position(); 470 Writer::Slot<MachOSegmentCommand> cmd = 471 WriteSegmentCommand(w, code_start, code_size); 472 WriteSections(w, cmd, header, load_command_start); 473 } 474 475 private: 476 struct MachOHeader { 477 uint32_t magic; 478 uint32_t cputype; 479 uint32_t cpusubtype; 480 uint32_t filetype; 481 uint32_t ncmds; 482 uint32_t sizeofcmds; 483 uint32_t flags; 484#if V8_TARGET_ARCH_X64 485 uint32_t reserved; 486#endif 487 }; 488 489 struct MachOSegmentCommand { 490 uint32_t cmd; 491 uint32_t cmdsize; 492 char segname[16]; 493#if V8_TARGET_ARCH_IA32 494 uint32_t vmaddr; 495 uint32_t vmsize; 496 uint32_t fileoff; 497 uint32_t filesize; 498#else 499 uint64_t vmaddr; 500 uint64_t vmsize; 501 uint64_t fileoff; 502 uint64_t filesize; 503#endif 504 uint32_t maxprot; 505 uint32_t initprot; 506 uint32_t nsects; 507 uint32_t flags; 508 }; 509 510 enum MachOLoadCommandCmd { 511 LC_SEGMENT_32 = 0x00000001u, 512 LC_SEGMENT_64 = 0x00000019u 513 }; 514 515 Writer::Slot<MachOHeader> WriteHeader(Writer* w) { 516 DCHECK_EQ(w->position(), 0); 517 Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>(); 518#if V8_TARGET_ARCH_IA32 519 header->magic = 0xFEEDFACEu; 520 header->cputype = 7; // i386 521 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 522#elif V8_TARGET_ARCH_X64 523 header->magic = 0xFEEDFACFu; 524 header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI 525 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 526 header->reserved = 0; 527#else 528#error Unsupported target architecture. 529#endif 530 header->filetype = 0x1; // MH_OBJECT 531 header->ncmds = 1; 532 header->sizeofcmds = 0; 533 header->flags = 0; 534 return header; 535 } 536 537 Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w, 538 uintptr_t code_start, 539 uintptr_t code_size) { 540 Writer::Slot<MachOSegmentCommand> cmd = 541 w->CreateSlotHere<MachOSegmentCommand>(); 542#if V8_TARGET_ARCH_IA32 543 cmd->cmd = LC_SEGMENT_32; 544#else 545 cmd->cmd = LC_SEGMENT_64; 546#endif 547 cmd->vmaddr = code_start; 548 cmd->vmsize = code_size; 549 cmd->fileoff = 0; 550 cmd->filesize = 0; 551 cmd->maxprot = 7; 552 cmd->initprot = 7; 553 cmd->flags = 0; 554 cmd->nsects = static_cast<uint32_t>(sections_.size()); 555 memset(cmd->segname, 0, 16); 556 cmd->cmdsize = sizeof(MachOSegmentCommand) + 557 sizeof(MachOSection::Header) * cmd->nsects; 558 return cmd; 559 } 560 561 void WriteSections(Writer* w, Writer::Slot<MachOSegmentCommand> cmd, 562 Writer::Slot<MachOHeader> header, 563 uintptr_t load_command_start) { 564 Writer::Slot<MachOSection::Header> headers = 565 w->CreateSlotsHere<MachOSection::Header>( 566 static_cast<uint32_t>(sections_.size())); 567 cmd->fileoff = w->position(); 568 header->sizeofcmds = 569 static_cast<uint32_t>(w->position() - load_command_start); 570 uint32_t index = 0; 571 for (MachOSection* section : sections_) { 572 section->PopulateHeader(headers.at(index)); 573 section->WriteBody(headers.at(index), w); 574 index++; 575 } 576 cmd->filesize = w->position() - (uintptr_t)cmd->fileoff; 577 } 578 579 ZoneChunkList<MachOSection*> sections_; 580}; 581#endif // defined(__MACH_O) 582 583#if defined(__ELF) 584class ELF { 585 public: 586 explicit ELF(Zone* zone) : sections_(zone) { 587 sections_.push_back(zone->New<ELFSection>("", ELFSection::TYPE_NULL, 0)); 588 sections_.push_back(zone->New<ELFStringTable>(".shstrtab")); 589 } 590 591 void Write(Writer* w) { 592 WriteHeader(w); 593 WriteSectionTable(w); 594 WriteSections(w); 595 } 596 597 ELFSection* SectionAt(uint32_t index) { return *sections_.Find(index); } 598 599 size_t AddSection(ELFSection* section) { 600 sections_.push_back(section); 601 section->set_index(sections_.size() - 1); 602 return sections_.size() - 1; 603 } 604 605 private: 606 struct ELFHeader { 607 uint8_t ident[16]; 608 uint16_t type; 609 uint16_t machine; 610 uint32_t version; 611 uintptr_t entry; 612 uintptr_t pht_offset; 613 uintptr_t sht_offset; 614 uint32_t flags; 615 uint16_t header_size; 616 uint16_t pht_entry_size; 617 uint16_t pht_entry_num; 618 uint16_t sht_entry_size; 619 uint16_t sht_entry_num; 620 uint16_t sht_strtab_index; 621 }; 622 623 void WriteHeader(Writer* w) { 624 DCHECK_EQ(w->position(), 0); 625 Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>(); 626#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM) 627 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 1, 1, 0, 628 0, 0, 0, 0, 0, 0, 0, 0}; 629#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT || \ 630 V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN 631 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 1, 1, 0, 632 0, 0, 0, 0, 0, 0, 0, 0}; 633#elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX 634 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 0, 635 0, 0, 0, 0, 0, 0, 0, 0}; 636#elif V8_TARGET_ARCH_S390X 637 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 3, 638 0, 0, 0, 0, 0, 0, 0, 0}; 639#elif V8_TARGET_ARCH_S390 640 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 2, 1, 3, 641 0, 0, 0, 0, 0, 0, 0, 0}; 642#else 643#error Unsupported target architecture. 644#endif 645 memcpy(header->ident, ident, 16); 646 header->type = 1; 647#if V8_TARGET_ARCH_IA32 648 header->machine = 3; 649#elif V8_TARGET_ARCH_X64 650 // Processor identification value for x64 is 62 as defined in 651 // System V ABI, AMD64 Supplement 652 // http://www.x86-64.org/documentation/abi.pdf 653 header->machine = 62; 654#elif V8_TARGET_ARCH_ARM 655 // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at 656 // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf 657 header->machine = 40; 658#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 659 // Set to EM_PPC64, defined as 21, in Power ABI, 660 // Join the next 4 lines, omitting the spaces and double-slashes. 661 // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/ 662 // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf? 663 // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t= 664 // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr 665 header->machine = 21; 666#elif V8_TARGET_ARCH_S390 667 // Processor identification value is 22 (EM_S390) as defined in the ABI: 668 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691 669 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599 670 header->machine = 22; 671#else 672#error Unsupported target architecture. 673#endif 674 header->version = 1; 675 header->entry = 0; 676 header->pht_offset = 0; 677 header->sht_offset = sizeof(ELFHeader); // Section table follows header. 678 header->flags = 0; 679 header->header_size = sizeof(ELFHeader); 680 header->pht_entry_size = 0; 681 header->pht_entry_num = 0; 682 header->sht_entry_size = sizeof(ELFSection::Header); 683 header->sht_entry_num = sections_.size(); 684 header->sht_strtab_index = 1; 685 } 686 687 void WriteSectionTable(Writer* w) { 688 // Section headers table immediately follows file header. 689 DCHECK(w->position() == sizeof(ELFHeader)); 690 691 Writer::Slot<ELFSection::Header> headers = 692 w->CreateSlotsHere<ELFSection::Header>( 693 static_cast<uint32_t>(sections_.size())); 694 695 // String table for section table is the first section. 696 ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1)); 697 strtab->AttachWriter(w); 698 uint32_t index = 0; 699 for (ELFSection* section : sections_) { 700 section->PopulateHeader(headers.at(index), strtab); 701 index++; 702 } 703 strtab->DetachWriter(); 704 } 705 706 int SectionHeaderPosition(uint32_t section_index) { 707 return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index; 708 } 709 710 void WriteSections(Writer* w) { 711 Writer::Slot<ELFSection::Header> headers = 712 w->SlotAt<ELFSection::Header>(sizeof(ELFHeader)); 713 714 uint32_t index = 0; 715 for (ELFSection* section : sections_) { 716 section->WriteBody(headers.at(index), w); 717 index++; 718 } 719 } 720 721 ZoneChunkList<ELFSection*> sections_; 722}; 723 724class ELFSymbol { 725 public: 726 enum Type { 727 TYPE_NOTYPE = 0, 728 TYPE_OBJECT = 1, 729 TYPE_FUNC = 2, 730 TYPE_SECTION = 3, 731 TYPE_FILE = 4, 732 TYPE_LOPROC = 13, 733 TYPE_HIPROC = 15 734 }; 735 736 enum Binding { 737 BIND_LOCAL = 0, 738 BIND_GLOBAL = 1, 739 BIND_WEAK = 2, 740 BIND_LOPROC = 13, 741 BIND_HIPROC = 15 742 }; 743 744 ELFSymbol(const char* name, uintptr_t value, uintptr_t size, Binding binding, 745 Type type, uint16_t section) 746 : name(name), 747 value(value), 748 size(size), 749 info((binding << 4) | type), 750 other(0), 751 section(section) {} 752 753 Binding binding() const { return static_cast<Binding>(info >> 4); } 754#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \ 755 (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT)) 756 struct SerializedLayout { 757 SerializedLayout(uint32_t name, uintptr_t value, uintptr_t size, 758 Binding binding, Type type, uint16_t section) 759 : name(name), 760 value(value), 761 size(size), 762 info((binding << 4) | type), 763 other(0), 764 section(section) {} 765 766 uint32_t name; 767 uintptr_t value; 768 uintptr_t size; 769 uint8_t info; 770 uint8_t other; 771 uint16_t section; 772 }; 773#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT || \ 774 V8_TARGET_ARCH_PPC64 && V8_OS_LINUX || V8_TARGET_ARCH_S390X 775 struct SerializedLayout { 776 SerializedLayout(uint32_t name, uintptr_t value, uintptr_t size, 777 Binding binding, Type type, uint16_t section) 778 : name(name), 779 info((binding << 4) | type), 780 other(0), 781 section(section), 782 value(value), 783 size(size) {} 784 785 uint32_t name; 786 uint8_t info; 787 uint8_t other; 788 uint16_t section; 789 uintptr_t value; 790 uintptr_t size; 791 }; 792#endif 793 794 void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) const { 795 // Convert symbol names from strings to indexes in the string table. 796 s->name = static_cast<uint32_t>(t->Add(name)); 797 s->value = value; 798 s->size = size; 799 s->info = info; 800 s->other = other; 801 s->section = section; 802 } 803 804 private: 805 const char* name; 806 uintptr_t value; 807 uintptr_t size; 808 uint8_t info; 809 uint8_t other; 810 uint16_t section; 811}; 812 813class ELFSymbolTable : public ELFSection { 814 public: 815 ELFSymbolTable(const char* name, Zone* zone) 816 : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)), 817 locals_(zone), 818 globals_(zone) {} 819 820 void WriteBody(Writer::Slot<Header> header, Writer* w) override { 821 w->Align(header->alignment); 822 size_t total_symbols = locals_.size() + globals_.size() + 1; 823 header->offset = w->position(); 824 825 Writer::Slot<ELFSymbol::SerializedLayout> symbols = 826 w->CreateSlotsHere<ELFSymbol::SerializedLayout>( 827 static_cast<uint32_t>(total_symbols)); 828 829 header->size = w->position() - header->offset; 830 831 // String table for this symbol table should follow it in the section table. 832 ELFStringTable* strtab = 833 static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1)); 834 strtab->AttachWriter(w); 835 symbols.at(0).set(ELFSymbol::SerializedLayout( 836 0, 0, 0, ELFSymbol::BIND_LOCAL, ELFSymbol::TYPE_NOTYPE, 0)); 837 WriteSymbolsList(&locals_, symbols.at(1), strtab); 838 WriteSymbolsList(&globals_, 839 symbols.at(static_cast<uint32_t>(locals_.size() + 1)), 840 strtab); 841 strtab->DetachWriter(); 842 } 843 844 void Add(const ELFSymbol& symbol) { 845 if (symbol.binding() == ELFSymbol::BIND_LOCAL) { 846 locals_.push_back(symbol); 847 } else { 848 globals_.push_back(symbol); 849 } 850 } 851 852 protected: 853 void PopulateHeader(Writer::Slot<Header> header) override { 854 ELFSection::PopulateHeader(header); 855 // We are assuming that string table will follow symbol table. 856 header->link = index() + 1; 857 header->info = static_cast<uint32_t>(locals_.size() + 1); 858 header->entry_size = sizeof(ELFSymbol::SerializedLayout); 859 } 860 861 private: 862 void WriteSymbolsList(const ZoneChunkList<ELFSymbol>* src, 863 Writer::Slot<ELFSymbol::SerializedLayout> dst, 864 ELFStringTable* strtab) { 865 int i = 0; 866 for (const ELFSymbol& symbol : *src) { 867 symbol.Write(dst.at(i++), strtab); 868 } 869 } 870 871 ZoneChunkList<ELFSymbol> locals_; 872 ZoneChunkList<ELFSymbol> globals_; 873}; 874#endif // defined(__ELF) 875 876class LineInfo : public Malloced { 877 public: 878 void SetPosition(intptr_t pc, int pos, bool is_statement) { 879 AddPCInfo(PCInfo(pc, pos, is_statement)); 880 } 881 882 struct PCInfo { 883 PCInfo(intptr_t pc, int pos, bool is_statement) 884 : pc_(pc), pos_(pos), is_statement_(is_statement) {} 885 886 intptr_t pc_; 887 int pos_; 888 bool is_statement_; 889 }; 890 891 std::vector<PCInfo>* pc_info() { return &pc_info_; } 892 893 private: 894 void AddPCInfo(const PCInfo& pc_info) { pc_info_.push_back(pc_info); } 895 896 std::vector<PCInfo> pc_info_; 897}; 898 899class CodeDescription { 900 public: 901#if V8_TARGET_ARCH_X64 902 enum StackState { 903 POST_RBP_PUSH, 904 POST_RBP_SET, 905 POST_RBP_POP, 906 STACK_STATE_MAX 907 }; 908#endif 909 910 CodeDescription(const char* name, base::AddressRegion region, 911 SharedFunctionInfo shared, LineInfo* lineinfo, 912 bool is_function) 913 : name_(name), 914 shared_info_(shared), 915 lineinfo_(lineinfo), 916 is_function_(is_function), 917 code_region_(region) {} 918 919 const char* name() const { return name_; } 920 921 LineInfo* lineinfo() const { return lineinfo_; } 922 923 bool is_function() const { return is_function_; } 924 925 bool has_scope_info() const { return !shared_info_.is_null(); } 926 927 ScopeInfo scope_info() const { 928 DCHECK(has_scope_info()); 929 return shared_info_.scope_info(); 930 } 931 932 uintptr_t CodeStart() const { return code_region_.begin(); } 933 934 uintptr_t CodeEnd() const { return code_region_.end(); } 935 936 uintptr_t CodeSize() const { return code_region_.size(); } 937 938 bool has_script() { 939 return !shared_info_.is_null() && shared_info_.script().IsScript(); 940 } 941 942 Script script() { return Script::cast(shared_info_.script()); } 943 944 bool IsLineInfoAvailable() { return lineinfo_ != nullptr; } 945 946 base::AddressRegion region() { return code_region_; } 947 948#if V8_TARGET_ARCH_X64 949 uintptr_t GetStackStateStartAddress(StackState state) const { 950 DCHECK(state < STACK_STATE_MAX); 951 return stack_state_start_addresses_[state]; 952 } 953 954 void SetStackStateStartAddress(StackState state, uintptr_t addr) { 955 DCHECK(state < STACK_STATE_MAX); 956 stack_state_start_addresses_[state] = addr; 957 } 958#endif 959 960 std::unique_ptr<char[]> GetFilename() { 961 if (!shared_info_.is_null() && script().name().IsString()) { 962 return String::cast(script().name()).ToCString(); 963 } else { 964 std::unique_ptr<char[]> result(new char[1]); 965 result[0] = 0; 966 return result; 967 } 968 } 969 970 int GetScriptLineNumber(int pos) { 971 if (!shared_info_.is_null()) { 972 return script().GetLineNumber(pos) + 1; 973 } else { 974 return 0; 975 } 976 } 977 978 private: 979 const char* name_; 980 SharedFunctionInfo shared_info_; 981 LineInfo* lineinfo_; 982 bool is_function_; 983 base::AddressRegion code_region_; 984#if V8_TARGET_ARCH_X64 985 uintptr_t stack_state_start_addresses_[STACK_STATE_MAX]; 986#endif 987}; 988 989#if defined(__ELF) 990static void CreateSymbolsTable(CodeDescription* desc, Zone* zone, ELF* elf, 991 size_t text_section_index) { 992 ELFSymbolTable* symtab = zone->New<ELFSymbolTable>(".symtab", zone); 993 ELFStringTable* strtab = zone->New<ELFStringTable>(".strtab"); 994 995 // Symbol table should be followed by the linked string table. 996 elf->AddSection(symtab); 997 elf->AddSection(strtab); 998 999 symtab->Add(ELFSymbol("V8 Code", 0, 0, ELFSymbol::BIND_LOCAL, 1000 ELFSymbol::TYPE_FILE, ELFSection::INDEX_ABSOLUTE)); 1001 1002 symtab->Add(ELFSymbol(desc->name(), 0, desc->CodeSize(), 1003 ELFSymbol::BIND_GLOBAL, ELFSymbol::TYPE_FUNC, 1004 text_section_index)); 1005} 1006#endif // defined(__ELF) 1007 1008class DebugInfoSection : public DebugSection { 1009 public: 1010 explicit DebugInfoSection(CodeDescription* desc) 1011#if defined(__ELF) 1012 : ELFSection(".debug_info", TYPE_PROGBITS, 1), 1013#else 1014 : MachOSection("__debug_info", "__DWARF", 1, 1015 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1016#endif 1017 desc_(desc) { 1018 } 1019 1020 // DWARF2 standard 1021 enum DWARF2LocationOp { 1022 DW_OP_reg0 = 0x50, 1023 DW_OP_reg1 = 0x51, 1024 DW_OP_reg2 = 0x52, 1025 DW_OP_reg3 = 0x53, 1026 DW_OP_reg4 = 0x54, 1027 DW_OP_reg5 = 0x55, 1028 DW_OP_reg6 = 0x56, 1029 DW_OP_reg7 = 0x57, 1030 DW_OP_reg8 = 0x58, 1031 DW_OP_reg9 = 0x59, 1032 DW_OP_reg10 = 0x5A, 1033 DW_OP_reg11 = 0x5B, 1034 DW_OP_reg12 = 0x5C, 1035 DW_OP_reg13 = 0x5D, 1036 DW_OP_reg14 = 0x5E, 1037 DW_OP_reg15 = 0x5F, 1038 DW_OP_reg16 = 0x60, 1039 DW_OP_reg17 = 0x61, 1040 DW_OP_reg18 = 0x62, 1041 DW_OP_reg19 = 0x63, 1042 DW_OP_reg20 = 0x64, 1043 DW_OP_reg21 = 0x65, 1044 DW_OP_reg22 = 0x66, 1045 DW_OP_reg23 = 0x67, 1046 DW_OP_reg24 = 0x68, 1047 DW_OP_reg25 = 0x69, 1048 DW_OP_reg26 = 0x6A, 1049 DW_OP_reg27 = 0x6B, 1050 DW_OP_reg28 = 0x6C, 1051 DW_OP_reg29 = 0x6D, 1052 DW_OP_reg30 = 0x6E, 1053 DW_OP_reg31 = 0x6F, 1054 DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset 1055 }; 1056 1057 enum DWARF2Encoding { DW_ATE_ADDRESS = 0x1, DW_ATE_SIGNED = 0x5 }; 1058 1059 bool WriteBodyInternal(Writer* w) override { 1060 uintptr_t cu_start = w->position(); 1061 Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>(); 1062 uintptr_t start = w->position(); 1063 w->Write<uint16_t>(2); // DWARF version. 1064 w->Write<uint32_t>(0); // Abbreviation table offset. 1065 w->Write<uint8_t>(sizeof(intptr_t)); 1066 1067 w->WriteULEB128(1); // Abbreviation code. 1068 w->WriteString(desc_->GetFilename().get()); 1069 w->Write<intptr_t>(desc_->CodeStart()); 1070 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1071 w->Write<uint32_t>(0); 1072 1073 uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start); 1074 w->WriteULEB128(3); 1075 w->Write<uint8_t>(kSystemPointerSize); 1076 w->WriteString("v8value"); 1077 1078 if (desc_->has_scope_info()) { 1079 ScopeInfo scope = desc_->scope_info(); 1080 w->WriteULEB128(2); 1081 w->WriteString(desc_->name()); 1082 w->Write<intptr_t>(desc_->CodeStart()); 1083 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1084 Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>(); 1085 uintptr_t fb_block_start = w->position(); 1086#if V8_TARGET_ARCH_IA32 1087 w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32 1088#elif V8_TARGET_ARCH_X64 1089 w->Write<uint8_t>(DW_OP_reg6); // and here on x64. 1090#elif V8_TARGET_ARCH_ARM 1091 UNIMPLEMENTED(); 1092#elif V8_TARGET_ARCH_MIPS 1093 UNIMPLEMENTED(); 1094#elif V8_TARGET_ARCH_MIPS64 1095 UNIMPLEMENTED(); 1096#elif V8_TARGET_ARCH_LOONG64 1097 UNIMPLEMENTED(); 1098#elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 1099 w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64. 1100#elif V8_TARGET_ARCH_S390 1101 w->Write<uint8_t>(DW_OP_reg11); // The frame pointer's here on S390. 1102#else 1103#error Unsupported target architecture. 1104#endif 1105 fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start)); 1106 1107 int params = scope.ParameterCount(); 1108 int context_slots = scope.ContextLocalCount(); 1109 // The real slot ID is internal_slots + context_slot_id. 1110 int internal_slots = scope.ContextHeaderLength(); 1111 int current_abbreviation = 4; 1112 1113 for (int param = 0; param < params; ++param) { 1114 w->WriteULEB128(current_abbreviation++); 1115 w->WriteString("param"); 1116 w->Write(std::to_string(param).c_str()); 1117 w->Write<uint32_t>(ty_offset); 1118 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1119 uintptr_t block_start = w->position(); 1120 w->Write<uint8_t>(DW_OP_fbreg); 1121 w->WriteSLEB128(StandardFrameConstants::kFixedFrameSizeAboveFp + 1122 kSystemPointerSize * (params - param - 1)); 1123 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1124 } 1125 1126 // See contexts.h for more information. 1127 DCHECK(internal_slots == 2 || internal_slots == 3); 1128 DCHECK_EQ(Context::SCOPE_INFO_INDEX, 0); 1129 DCHECK_EQ(Context::PREVIOUS_INDEX, 1); 1130 DCHECK_EQ(Context::EXTENSION_INDEX, 2); 1131 w->WriteULEB128(current_abbreviation++); 1132 w->WriteString(".scope_info"); 1133 w->WriteULEB128(current_abbreviation++); 1134 w->WriteString(".previous"); 1135 if (internal_slots == 3) { 1136 w->WriteULEB128(current_abbreviation++); 1137 w->WriteString(".extension"); 1138 } 1139 1140 for (int context_slot = 0; context_slot < context_slots; ++context_slot) { 1141 w->WriteULEB128(current_abbreviation++); 1142 w->WriteString("context_slot"); 1143 w->Write(std::to_string(context_slot + internal_slots).c_str()); 1144 } 1145 1146 { 1147 w->WriteULEB128(current_abbreviation++); 1148 w->WriteString("__function"); 1149 w->Write<uint32_t>(ty_offset); 1150 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1151 uintptr_t block_start = w->position(); 1152 w->Write<uint8_t>(DW_OP_fbreg); 1153 w->WriteSLEB128(StandardFrameConstants::kFunctionOffset); 1154 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1155 } 1156 1157 { 1158 w->WriteULEB128(current_abbreviation++); 1159 w->WriteString("__context"); 1160 w->Write<uint32_t>(ty_offset); 1161 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1162 uintptr_t block_start = w->position(); 1163 w->Write<uint8_t>(DW_OP_fbreg); 1164 w->WriteSLEB128(StandardFrameConstants::kContextOffset); 1165 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1166 } 1167 1168 w->WriteULEB128(0); // Terminate the sub program. 1169 } 1170 1171 w->WriteULEB128(0); // Terminate the compile unit. 1172 size.set(static_cast<uint32_t>(w->position() - start)); 1173 return true; 1174 } 1175 1176 private: 1177 CodeDescription* desc_; 1178}; 1179 1180class DebugAbbrevSection : public DebugSection { 1181 public: 1182 explicit DebugAbbrevSection(CodeDescription* desc) 1183#ifdef __ELF 1184 : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1), 1185#else 1186 : MachOSection("__debug_abbrev", "__DWARF", 1, 1187 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1188#endif 1189 desc_(desc) { 1190 } 1191 1192 // DWARF2 standard, figure 14. 1193 enum DWARF2Tags { 1194 DW_TAG_FORMAL_PARAMETER = 0x05, 1195 DW_TAG_POINTER_TYPE = 0xF, 1196 DW_TAG_COMPILE_UNIT = 0x11, 1197 DW_TAG_STRUCTURE_TYPE = 0x13, 1198 DW_TAG_BASE_TYPE = 0x24, 1199 DW_TAG_SUBPROGRAM = 0x2E, 1200 DW_TAG_VARIABLE = 0x34 1201 }; 1202 1203 // DWARF2 standard, figure 16. 1204 enum DWARF2ChildrenDetermination { DW_CHILDREN_NO = 0, DW_CHILDREN_YES = 1 }; 1205 1206 // DWARF standard, figure 17. 1207 enum DWARF2Attribute { 1208 DW_AT_LOCATION = 0x2, 1209 DW_AT_NAME = 0x3, 1210 DW_AT_BYTE_SIZE = 0xB, 1211 DW_AT_STMT_LIST = 0x10, 1212 DW_AT_LOW_PC = 0x11, 1213 DW_AT_HIGH_PC = 0x12, 1214 DW_AT_ENCODING = 0x3E, 1215 DW_AT_FRAME_BASE = 0x40, 1216 DW_AT_TYPE = 0x49 1217 }; 1218 1219 // DWARF2 standard, figure 19. 1220 enum DWARF2AttributeForm { 1221 DW_FORM_ADDR = 0x1, 1222 DW_FORM_BLOCK4 = 0x4, 1223 DW_FORM_STRING = 0x8, 1224 DW_FORM_DATA4 = 0x6, 1225 DW_FORM_BLOCK = 0x9, 1226 DW_FORM_DATA1 = 0xB, 1227 DW_FORM_FLAG = 0xC, 1228 DW_FORM_REF4 = 0x13 1229 }; 1230 1231 void WriteVariableAbbreviation(Writer* w, int abbreviation_code, 1232 bool has_value, bool is_parameter) { 1233 w->WriteULEB128(abbreviation_code); 1234 w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE); 1235 w->Write<uint8_t>(DW_CHILDREN_NO); 1236 w->WriteULEB128(DW_AT_NAME); 1237 w->WriteULEB128(DW_FORM_STRING); 1238 if (has_value) { 1239 w->WriteULEB128(DW_AT_TYPE); 1240 w->WriteULEB128(DW_FORM_REF4); 1241 w->WriteULEB128(DW_AT_LOCATION); 1242 w->WriteULEB128(DW_FORM_BLOCK4); 1243 } 1244 w->WriteULEB128(0); 1245 w->WriteULEB128(0); 1246 } 1247 1248 bool WriteBodyInternal(Writer* w) override { 1249 int current_abbreviation = 1; 1250 bool extra_info = desc_->has_scope_info(); 1251 DCHECK(desc_->IsLineInfoAvailable()); 1252 w->WriteULEB128(current_abbreviation++); 1253 w->WriteULEB128(DW_TAG_COMPILE_UNIT); 1254 w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO); 1255 w->WriteULEB128(DW_AT_NAME); 1256 w->WriteULEB128(DW_FORM_STRING); 1257 w->WriteULEB128(DW_AT_LOW_PC); 1258 w->WriteULEB128(DW_FORM_ADDR); 1259 w->WriteULEB128(DW_AT_HIGH_PC); 1260 w->WriteULEB128(DW_FORM_ADDR); 1261 w->WriteULEB128(DW_AT_STMT_LIST); 1262 w->WriteULEB128(DW_FORM_DATA4); 1263 w->WriteULEB128(0); 1264 w->WriteULEB128(0); 1265 1266 if (extra_info) { 1267 ScopeInfo scope = desc_->scope_info(); 1268 int params = scope.ParameterCount(); 1269 int context_slots = scope.ContextLocalCount(); 1270 // The real slot ID is internal_slots + context_slot_id. 1271 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1272 // Total children is params + context_slots + internal_slots + 2 1273 // (__function and __context). 1274 1275 // The extra duplication below seems to be necessary to keep 1276 // gdb from getting upset on OSX. 1277 w->WriteULEB128(current_abbreviation++); // Abbreviation code. 1278 w->WriteULEB128(DW_TAG_SUBPROGRAM); 1279 w->Write<uint8_t>(DW_CHILDREN_YES); 1280 w->WriteULEB128(DW_AT_NAME); 1281 w->WriteULEB128(DW_FORM_STRING); 1282 w->WriteULEB128(DW_AT_LOW_PC); 1283 w->WriteULEB128(DW_FORM_ADDR); 1284 w->WriteULEB128(DW_AT_HIGH_PC); 1285 w->WriteULEB128(DW_FORM_ADDR); 1286 w->WriteULEB128(DW_AT_FRAME_BASE); 1287 w->WriteULEB128(DW_FORM_BLOCK4); 1288 w->WriteULEB128(0); 1289 w->WriteULEB128(0); 1290 1291 w->WriteULEB128(current_abbreviation++); 1292 w->WriteULEB128(DW_TAG_STRUCTURE_TYPE); 1293 w->Write<uint8_t>(DW_CHILDREN_NO); 1294 w->WriteULEB128(DW_AT_BYTE_SIZE); 1295 w->WriteULEB128(DW_FORM_DATA1); 1296 w->WriteULEB128(DW_AT_NAME); 1297 w->WriteULEB128(DW_FORM_STRING); 1298 w->WriteULEB128(0); 1299 w->WriteULEB128(0); 1300 1301 for (int param = 0; param < params; ++param) { 1302 WriteVariableAbbreviation(w, current_abbreviation++, true, true); 1303 } 1304 1305 for (int internal_slot = 0; internal_slot < internal_slots; 1306 ++internal_slot) { 1307 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1308 } 1309 1310 for (int context_slot = 0; context_slot < context_slots; ++context_slot) { 1311 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1312 } 1313 1314 // The function. 1315 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1316 1317 // The context. 1318 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1319 1320 w->WriteULEB128(0); // Terminate the sibling list. 1321 } 1322 1323 w->WriteULEB128(0); // Terminate the table. 1324 return true; 1325 } 1326 1327 private: 1328 CodeDescription* desc_; 1329}; 1330 1331class DebugLineSection : public DebugSection { 1332 public: 1333 explicit DebugLineSection(CodeDescription* desc) 1334#ifdef __ELF 1335 : ELFSection(".debug_line", TYPE_PROGBITS, 1), 1336#else 1337 : MachOSection("__debug_line", "__DWARF", 1, 1338 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1339#endif 1340 desc_(desc) { 1341 } 1342 1343 // DWARF2 standard, figure 34. 1344 enum DWARF2Opcodes { 1345 DW_LNS_COPY = 1, 1346 DW_LNS_ADVANCE_PC = 2, 1347 DW_LNS_ADVANCE_LINE = 3, 1348 DW_LNS_SET_FILE = 4, 1349 DW_LNS_SET_COLUMN = 5, 1350 DW_LNS_NEGATE_STMT = 6 1351 }; 1352 1353 // DWARF2 standard, figure 35. 1354 enum DWARF2ExtendedOpcode { 1355 DW_LNE_END_SEQUENCE = 1, 1356 DW_LNE_SET_ADDRESS = 2, 1357 DW_LNE_DEFINE_FILE = 3 1358 }; 1359 1360 bool WriteBodyInternal(Writer* w) override { 1361 // Write prologue. 1362 Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>(); 1363 uintptr_t start = w->position(); 1364 1365 // Used for special opcodes 1366 const int8_t line_base = 1; 1367 const uint8_t line_range = 7; 1368 const int8_t max_line_incr = (line_base + line_range - 1); 1369 const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1; 1370 1371 w->Write<uint16_t>(2); // Field version. 1372 Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>(); 1373 uintptr_t prologue_start = w->position(); 1374 w->Write<uint8_t>(1); // Field minimum_instruction_length. 1375 w->Write<uint8_t>(1); // Field default_is_stmt. 1376 w->Write<int8_t>(line_base); // Field line_base. 1377 w->Write<uint8_t>(line_range); // Field line_range. 1378 w->Write<uint8_t>(opcode_base); // Field opcode_base. 1379 w->Write<uint8_t>(0); // DW_LNS_COPY operands count. 1380 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count. 1381 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count. 1382 w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count. 1383 w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count. 1384 w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count. 1385 w->Write<uint8_t>(0); // Empty include_directories sequence. 1386 w->WriteString(desc_->GetFilename().get()); // File name. 1387 w->WriteULEB128(0); // Current directory. 1388 w->WriteULEB128(0); // Unknown modification time. 1389 w->WriteULEB128(0); // Unknown file size. 1390 w->Write<uint8_t>(0); 1391 prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start)); 1392 1393 WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t)); 1394 w->Write<intptr_t>(desc_->CodeStart()); 1395 w->Write<uint8_t>(DW_LNS_COPY); 1396 1397 intptr_t pc = 0; 1398 intptr_t line = 1; 1399 bool is_statement = true; 1400 1401 std::vector<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info(); 1402 std::sort(pc_info->begin(), pc_info->end(), &ComparePCInfo); 1403 1404 for (size_t i = 0; i < pc_info->size(); i++) { 1405 LineInfo::PCInfo* info = &pc_info->at(i); 1406 DCHECK(info->pc_ >= pc); 1407 1408 // Reduce bloating in the debug line table by removing duplicate line 1409 // entries (per DWARF2 standard). 1410 intptr_t new_line = desc_->GetScriptLineNumber(info->pos_); 1411 if (new_line == line) { 1412 continue; 1413 } 1414 1415 // Mark statement boundaries. For a better debugging experience, mark 1416 // the last pc address in the function as a statement (e.g. "}"), so that 1417 // a user can see the result of the last line executed in the function, 1418 // should control reach the end. 1419 if ((i + 1) == pc_info->size()) { 1420 if (!is_statement) { 1421 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1422 } 1423 } else if (is_statement != info->is_statement_) { 1424 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1425 is_statement = !is_statement; 1426 } 1427 1428 // Generate special opcodes, if possible. This results in more compact 1429 // debug line tables. See the DWARF 2.0 standard to learn more about 1430 // special opcodes. 1431 uintptr_t pc_diff = info->pc_ - pc; 1432 intptr_t line_diff = new_line - line; 1433 1434 // Compute special opcode (see DWARF 2.0 standard) 1435 intptr_t special_opcode = 1436 (line_diff - line_base) + (line_range * pc_diff) + opcode_base; 1437 1438 // If special_opcode is less than or equal to 255, it can be used as a 1439 // special opcode. If line_diff is larger than the max line increment 1440 // allowed for a special opcode, or if line_diff is less than the minimum 1441 // line that can be added to the line register (i.e. line_base), then 1442 // special_opcode can't be used. 1443 if ((special_opcode >= opcode_base) && (special_opcode <= 255) && 1444 (line_diff <= max_line_incr) && (line_diff >= line_base)) { 1445 w->Write<uint8_t>(special_opcode); 1446 } else { 1447 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1448 w->WriteSLEB128(pc_diff); 1449 w->Write<uint8_t>(DW_LNS_ADVANCE_LINE); 1450 w->WriteSLEB128(line_diff); 1451 w->Write<uint8_t>(DW_LNS_COPY); 1452 } 1453 1454 // Increment the pc and line operands. 1455 pc += pc_diff; 1456 line += line_diff; 1457 } 1458 // Advance the pc to the end of the routine, since the end sequence opcode 1459 // requires this. 1460 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1461 w->WriteSLEB128(desc_->CodeSize() - pc); 1462 WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0); 1463 total_length.set(static_cast<uint32_t>(w->position() - start)); 1464 return true; 1465 } 1466 1467 private: 1468 void WriteExtendedOpcode(Writer* w, DWARF2ExtendedOpcode op, 1469 size_t operands_size) { 1470 w->Write<uint8_t>(0); 1471 w->WriteULEB128(operands_size + 1); 1472 w->Write<uint8_t>(op); 1473 } 1474 1475 static bool ComparePCInfo(const LineInfo::PCInfo& a, 1476 const LineInfo::PCInfo& b) { 1477 if (a.pc_ == b.pc_) { 1478 if (a.is_statement_ != b.is_statement_) { 1479 return !b.is_statement_; 1480 } 1481 return false; 1482 } 1483 return a.pc_ < b.pc_; 1484 } 1485 1486 CodeDescription* desc_; 1487}; 1488 1489#if V8_TARGET_ARCH_X64 1490 1491class UnwindInfoSection : public DebugSection { 1492 public: 1493 explicit UnwindInfoSection(CodeDescription* desc); 1494 bool WriteBodyInternal(Writer* w) override; 1495 1496 int WriteCIE(Writer* w); 1497 void WriteFDE(Writer* w, int); 1498 1499 void WriteFDEStateOnEntry(Writer* w); 1500 void WriteFDEStateAfterRBPPush(Writer* w); 1501 void WriteFDEStateAfterRBPSet(Writer* w); 1502 void WriteFDEStateAfterRBPPop(Writer* w); 1503 1504 void WriteLength(Writer* w, Writer::Slot<uint32_t>* length_slot, 1505 int initial_position); 1506 1507 private: 1508 CodeDescription* desc_; 1509 1510 // DWARF3 Specification, Table 7.23 1511 enum CFIInstructions { 1512 DW_CFA_ADVANCE_LOC = 0x40, 1513 DW_CFA_OFFSET = 0x80, 1514 DW_CFA_RESTORE = 0xC0, 1515 DW_CFA_NOP = 0x00, 1516 DW_CFA_SET_LOC = 0x01, 1517 DW_CFA_ADVANCE_LOC1 = 0x02, 1518 DW_CFA_ADVANCE_LOC2 = 0x03, 1519 DW_CFA_ADVANCE_LOC4 = 0x04, 1520 DW_CFA_OFFSET_EXTENDED = 0x05, 1521 DW_CFA_RESTORE_EXTENDED = 0x06, 1522 DW_CFA_UNDEFINED = 0x07, 1523 DW_CFA_SAME_VALUE = 0x08, 1524 DW_CFA_REGISTER = 0x09, 1525 DW_CFA_REMEMBER_STATE = 0x0A, 1526 DW_CFA_RESTORE_STATE = 0x0B, 1527 DW_CFA_DEF_CFA = 0x0C, 1528 DW_CFA_DEF_CFA_REGISTER = 0x0D, 1529 DW_CFA_DEF_CFA_OFFSET = 0x0E, 1530 1531 DW_CFA_DEF_CFA_EXPRESSION = 0x0F, 1532 DW_CFA_EXPRESSION = 0x10, 1533 DW_CFA_OFFSET_EXTENDED_SF = 0x11, 1534 DW_CFA_DEF_CFA_SF = 0x12, 1535 DW_CFA_DEF_CFA_OFFSET_SF = 0x13, 1536 DW_CFA_VAL_OFFSET = 0x14, 1537 DW_CFA_VAL_OFFSET_SF = 0x15, 1538 DW_CFA_VAL_EXPRESSION = 0x16 1539 }; 1540 1541 // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36 1542 enum RegisterMapping { 1543 // Only the relevant ones have been added to reduce clutter. 1544 AMD64_RBP = 6, 1545 AMD64_RSP = 7, 1546 AMD64_RA = 16 1547 }; 1548 1549 enum CFIConstants { 1550 CIE_ID = 0, 1551 CIE_VERSION = 1, 1552 CODE_ALIGN_FACTOR = 1, 1553 DATA_ALIGN_FACTOR = 1, 1554 RETURN_ADDRESS_REGISTER = AMD64_RA 1555 }; 1556}; 1557 1558void UnwindInfoSection::WriteLength(Writer* w, 1559 Writer::Slot<uint32_t>* length_slot, 1560 int initial_position) { 1561 uint32_t align = (w->position() - initial_position) % kSystemPointerSize; 1562 1563 if (align != 0) { 1564 for (uint32_t i = 0; i < (kSystemPointerSize - align); i++) { 1565 w->Write<uint8_t>(DW_CFA_NOP); 1566 } 1567 } 1568 1569 DCHECK_EQ((w->position() - initial_position) % kSystemPointerSize, 0); 1570 length_slot->set(static_cast<uint32_t>(w->position() - initial_position)); 1571} 1572 1573UnwindInfoSection::UnwindInfoSection(CodeDescription* desc) 1574#ifdef __ELF 1575 : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), 1576#else 1577 : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t), 1578 MachOSection::S_REGULAR), 1579#endif 1580 desc_(desc) { 1581} 1582 1583int UnwindInfoSection::WriteCIE(Writer* w) { 1584 Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>(); 1585 uint32_t cie_position = static_cast<uint32_t>(w->position()); 1586 1587 // Write out the CIE header. Currently no 'common instructions' are 1588 // emitted onto the CIE; every FDE has its own set of instructions. 1589 1590 w->Write<uint32_t>(CIE_ID); 1591 w->Write<uint8_t>(CIE_VERSION); 1592 w->Write<uint8_t>(0); // Null augmentation string. 1593 w->WriteSLEB128(CODE_ALIGN_FACTOR); 1594 w->WriteSLEB128(DATA_ALIGN_FACTOR); 1595 w->Write<uint8_t>(RETURN_ADDRESS_REGISTER); 1596 1597 WriteLength(w, &cie_length_slot, cie_position); 1598 1599 return cie_position; 1600} 1601 1602void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) { 1603 // The only FDE for this function. The CFA is the current RBP. 1604 Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>(); 1605 int fde_position = static_cast<uint32_t>(w->position()); 1606 w->Write<int32_t>(fde_position - cie_position + 4); 1607 1608 w->Write<uintptr_t>(desc_->CodeStart()); 1609 w->Write<uintptr_t>(desc_->CodeSize()); 1610 1611 WriteFDEStateOnEntry(w); 1612 WriteFDEStateAfterRBPPush(w); 1613 WriteFDEStateAfterRBPSet(w); 1614 WriteFDEStateAfterRBPPop(w); 1615 1616 WriteLength(w, &fde_length_slot, fde_position); 1617} 1618 1619void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) { 1620 // The first state, just after the control has been transferred to the the 1621 // function. 1622 1623 // RBP for this function will be the value of RSP after pushing the RBP 1624 // for the previous function. The previous RBP has not been pushed yet. 1625 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1626 w->WriteULEB128(AMD64_RSP); 1627 w->WriteSLEB128(-kSystemPointerSize); 1628 1629 // The RA is stored at location CFA + kCallerPCOffset. This is an invariant, 1630 // and hence omitted from the next states. 1631 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1632 w->WriteULEB128(AMD64_RA); 1633 w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset); 1634 1635 // The RBP of the previous function is still in RBP. 1636 w->Write<uint8_t>(DW_CFA_SAME_VALUE); 1637 w->WriteULEB128(AMD64_RBP); 1638 1639 // Last location described by this entry. 1640 w->Write<uint8_t>(DW_CFA_SET_LOC); 1641 w->Write<uint64_t>( 1642 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH)); 1643} 1644 1645void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) { 1646 // The second state, just after RBP has been pushed. 1647 1648 // RBP / CFA for this function is now the current RSP, so just set the 1649 // offset from the previous rule (from -8) to 0. 1650 w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET); 1651 w->WriteULEB128(0); 1652 1653 // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant 1654 // in this and the next state, and hence omitted in the next state. 1655 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1656 w->WriteULEB128(AMD64_RBP); 1657 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1658 1659 // Last location described by this entry. 1660 w->Write<uint8_t>(DW_CFA_SET_LOC); 1661 w->Write<uint64_t>( 1662 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET)); 1663} 1664 1665void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) { 1666 // The third state, after the RBP has been set. 1667 1668 // The CFA can now directly be set to RBP. 1669 w->Write<uint8_t>(DW_CFA_DEF_CFA); 1670 w->WriteULEB128(AMD64_RBP); 1671 w->WriteULEB128(0); 1672 1673 // Last location described by this entry. 1674 w->Write<uint8_t>(DW_CFA_SET_LOC); 1675 w->Write<uint64_t>( 1676 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP)); 1677} 1678 1679void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) { 1680 // The fourth (final) state. The RBP has been popped (just before issuing a 1681 // return). 1682 1683 // The CFA can is now calculated in the same way as in the first state. 1684 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1685 w->WriteULEB128(AMD64_RSP); 1686 w->WriteSLEB128(-kSystemPointerSize); 1687 1688 // The RBP 1689 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1690 w->WriteULEB128(AMD64_RBP); 1691 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1692 1693 // Last location described by this entry. 1694 w->Write<uint8_t>(DW_CFA_SET_LOC); 1695 w->Write<uint64_t>(desc_->CodeEnd()); 1696} 1697 1698bool UnwindInfoSection::WriteBodyInternal(Writer* w) { 1699 uint32_t cie_position = WriteCIE(w); 1700 WriteFDE(w, cie_position); 1701 return true; 1702} 1703 1704#endif // V8_TARGET_ARCH_X64 1705 1706static void CreateDWARFSections(CodeDescription* desc, Zone* zone, 1707 DebugObject* obj) { 1708 if (desc->IsLineInfoAvailable()) { 1709 obj->AddSection(zone->New<DebugInfoSection>(desc)); 1710 obj->AddSection(zone->New<DebugAbbrevSection>(desc)); 1711 obj->AddSection(zone->New<DebugLineSection>(desc)); 1712 } 1713#if V8_TARGET_ARCH_X64 1714 obj->AddSection(zone->New<UnwindInfoSection>(desc)); 1715#endif 1716} 1717 1718// ------------------------------------------------------------------- 1719// Binary GDB JIT Interface as described in 1720// http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html 1721extern "C" { 1722enum JITAction { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN }; 1723 1724struct JITCodeEntry { 1725 JITCodeEntry* next_; 1726 JITCodeEntry* prev_; 1727 Address symfile_addr_; 1728 uint64_t symfile_size_; 1729}; 1730 1731struct JITDescriptor { 1732 uint32_t version_; 1733 uint32_t action_flag_; 1734 JITCodeEntry* relevant_entry_; 1735 JITCodeEntry* first_entry_; 1736}; 1737 1738// GDB will place breakpoint into this function. 1739// To prevent GCC from inlining or removing it we place noinline attribute 1740// and inline assembler statement inside. 1741void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } 1742 1743// GDB will inspect contents of this descriptor. 1744// Static initialization is necessary to prevent GDB from seeing 1745// uninitialized descriptor. 1746JITDescriptor __jit_debug_descriptor = {1, 0, nullptr, nullptr}; 1747 1748#ifdef OBJECT_PRINT 1749void __gdb_print_v8_object(Object object) { 1750 StdoutStream os; 1751 object.Print(os); 1752 os << std::flush; 1753} 1754#endif 1755} 1756 1757static JITCodeEntry* CreateCodeEntry(Address symfile_addr, 1758 uintptr_t symfile_size) { 1759 JITCodeEntry* entry = static_cast<JITCodeEntry*>( 1760 base::Malloc(sizeof(JITCodeEntry) + symfile_size)); 1761 1762 entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1); 1763 entry->symfile_size_ = symfile_size; 1764 MemCopy(reinterpret_cast<void*>(entry->symfile_addr_), 1765 reinterpret_cast<void*>(symfile_addr), symfile_size); 1766 1767 entry->prev_ = entry->next_ = nullptr; 1768 1769 return entry; 1770} 1771 1772static void DestroyCodeEntry(JITCodeEntry* entry) { base::Free(entry); } 1773 1774static void RegisterCodeEntry(JITCodeEntry* entry) { 1775 entry->next_ = __jit_debug_descriptor.first_entry_; 1776 if (entry->next_ != nullptr) entry->next_->prev_ = entry; 1777 __jit_debug_descriptor.first_entry_ = __jit_debug_descriptor.relevant_entry_ = 1778 entry; 1779 1780 __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; 1781 __jit_debug_register_code(); 1782} 1783 1784static void UnregisterCodeEntry(JITCodeEntry* entry) { 1785 if (entry->prev_ != nullptr) { 1786 entry->prev_->next_ = entry->next_; 1787 } else { 1788 __jit_debug_descriptor.first_entry_ = entry->next_; 1789 } 1790 1791 if (entry->next_ != nullptr) { 1792 entry->next_->prev_ = entry->prev_; 1793 } 1794 1795 __jit_debug_descriptor.relevant_entry_ = entry; 1796 __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; 1797 __jit_debug_register_code(); 1798} 1799 1800static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) { 1801#ifdef __MACH_O 1802 Zone zone(isolate->allocator(), ZONE_NAME); 1803 MachO mach_o(&zone); 1804 Writer w(&mach_o); 1805 1806 const uint32_t code_alignment = static_cast<uint32_t>(kCodeAlignment); 1807 static_assert(code_alignment == kCodeAlignment, 1808 "Unsupported code alignment value"); 1809 mach_o.AddSection(zone.New<MachOTextSection>( 1810 code_alignment, desc->CodeStart(), desc->CodeSize())); 1811 1812 CreateDWARFSections(desc, &zone, &mach_o); 1813 1814 mach_o.Write(&w, desc->CodeStart(), desc->CodeSize()); 1815#else 1816 Zone zone(isolate->allocator(), ZONE_NAME); 1817 ELF elf(&zone); 1818 Writer w(&elf); 1819 1820 size_t text_section_index = elf.AddSection(zone.New<FullHeaderELFSection>( 1821 ".text", ELFSection::TYPE_NOBITS, kCodeAlignment, desc->CodeStart(), 0, 1822 desc->CodeSize(), ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC)); 1823 1824 CreateSymbolsTable(desc, &zone, &elf, text_section_index); 1825 1826 CreateDWARFSections(desc, &zone, &elf); 1827 1828 elf.Write(&w); 1829#endif 1830 1831 return CreateCodeEntry(reinterpret_cast<Address>(w.buffer()), w.position()); 1832} 1833 1834// Like base::AddressRegion::StartAddressLess but also compares |end| when 1835// |begin| is equal. 1836struct AddressRegionLess { 1837 bool operator()(const base::AddressRegion& a, 1838 const base::AddressRegion& b) const { 1839 if (a.begin() == b.begin()) return a.end() < b.end(); 1840 return a.begin() < b.begin(); 1841 } 1842}; 1843 1844using CodeMap = std::map<base::AddressRegion, JITCodeEntry*, AddressRegionLess>; 1845 1846static CodeMap* GetCodeMap() { 1847 // TODO(jgruber): Don't leak. 1848 static CodeMap* code_map = nullptr; 1849 if (code_map == nullptr) code_map = new CodeMap(); 1850 return code_map; 1851} 1852 1853static uint32_t HashCodeAddress(Address addr) { 1854 static const uintptr_t kGoldenRatio = 2654435761u; 1855 return static_cast<uint32_t>((addr >> kCodeAlignmentBits) * kGoldenRatio); 1856} 1857 1858static base::HashMap* GetLineMap() { 1859 static base::HashMap* line_map = nullptr; 1860 if (line_map == nullptr) { 1861 line_map = new base::HashMap(); 1862 } 1863 return line_map; 1864} 1865 1866static void PutLineInfo(Address addr, LineInfo* info) { 1867 base::HashMap* line_map = GetLineMap(); 1868 base::HashMap::Entry* e = line_map->LookupOrInsert( 1869 reinterpret_cast<void*>(addr), HashCodeAddress(addr)); 1870 if (e->value != nullptr) delete static_cast<LineInfo*>(e->value); 1871 e->value = info; 1872} 1873 1874static LineInfo* GetLineInfo(Address addr) { 1875 void* value = GetLineMap()->Remove(reinterpret_cast<void*>(addr), 1876 HashCodeAddress(addr)); 1877 return static_cast<LineInfo*>(value); 1878} 1879 1880static void AddUnwindInfo(CodeDescription* desc) { 1881#if V8_TARGET_ARCH_X64 1882 if (desc->is_function()) { 1883 // To avoid propagating unwinding information through 1884 // compilation pipeline we use an approximation. 1885 // For most use cases this should not affect usability. 1886 static const int kFramePointerPushOffset = 1; 1887 static const int kFramePointerSetOffset = 4; 1888 static const int kFramePointerPopOffset = -3; 1889 1890 uintptr_t frame_pointer_push_address = 1891 desc->CodeStart() + kFramePointerPushOffset; 1892 1893 uintptr_t frame_pointer_set_address = 1894 desc->CodeStart() + kFramePointerSetOffset; 1895 1896 uintptr_t frame_pointer_pop_address = 1897 desc->CodeEnd() + kFramePointerPopOffset; 1898 1899 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 1900 frame_pointer_push_address); 1901 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 1902 frame_pointer_set_address); 1903 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 1904 frame_pointer_pop_address); 1905 } else { 1906 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 1907 desc->CodeStart()); 1908 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 1909 desc->CodeStart()); 1910 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 1911 desc->CodeEnd()); 1912 } 1913#endif // V8_TARGET_ARCH_X64 1914} 1915 1916static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER; 1917 1918static base::Optional<std::pair<CodeMap::iterator, CodeMap::iterator>> 1919GetOverlappingRegions(CodeMap* map, const base::AddressRegion region) { 1920 DCHECK_LT(region.begin(), region.end()); 1921 1922 if (map->empty()) return {}; 1923 1924 // Find the first overlapping entry. 1925 1926 // If successful, points to the first element not less than `region`. The 1927 // returned iterator has the key in `first` and the value in `second`. 1928 auto it = map->lower_bound(region); 1929 auto start_it = it; 1930 1931 if (it == map->end()) { 1932 start_it = map->begin(); 1933 // Find the first overlapping entry. 1934 for (; start_it != map->end(); ++start_it) { 1935 if (start_it->first.end() > region.begin()) { 1936 break; 1937 } 1938 } 1939 } else if (it != map->begin()) { 1940 for (--it; it != map->begin(); --it) { 1941 if ((*it).first.end() <= region.begin()) break; 1942 start_it = it; 1943 } 1944 if (it == map->begin() && it->first.end() > region.begin()) { 1945 start_it = it; 1946 } 1947 } 1948 1949 if (start_it == map->end()) { 1950 return {}; 1951 } 1952 1953 // Find the first non-overlapping entry after `region`. 1954 1955 const auto end_it = map->lower_bound({region.end(), 0}); 1956 1957 // Return a range containing intersecting regions. 1958 1959 if (std::distance(start_it, end_it) < 1) 1960 return {}; // No overlapping entries. 1961 1962 return {{start_it, end_it}}; 1963} 1964 1965// Remove entries from the map that intersect the given address region, 1966// and deregister them from GDB. 1967static void RemoveJITCodeEntries(CodeMap* map, 1968 const base::AddressRegion region) { 1969 if (auto overlap = GetOverlappingRegions(map, region)) { 1970 auto start_it = overlap->first; 1971 auto end_it = overlap->second; 1972 for (auto it = start_it; it != end_it; it++) { 1973 JITCodeEntry* old_entry = (*it).second; 1974 UnregisterCodeEntry(old_entry); 1975 DestroyCodeEntry(old_entry); 1976 } 1977 1978 map->erase(start_it, end_it); 1979 } 1980} 1981 1982// Insert the entry into the map and register it with GDB. 1983static void AddJITCodeEntry(CodeMap* map, const base::AddressRegion region, 1984 JITCodeEntry* entry, bool dump_if_enabled, 1985 const char* name_hint) { 1986#if defined(DEBUG) && !V8_OS_WIN 1987 static int file_num = 0; 1988 if (FLAG_gdbjit_dump && dump_if_enabled) { 1989 static const int kMaxFileNameSize = 64; 1990 char file_name[64]; 1991 1992 SNPrintF(base::Vector<char>(file_name, kMaxFileNameSize), 1993 "/tmp/elfdump%s%d.o", (name_hint != nullptr) ? name_hint : "", 1994 file_num++); 1995 WriteBytes(file_name, reinterpret_cast<byte*>(entry->symfile_addr_), 1996 static_cast<int>(entry->symfile_size_)); 1997 } 1998#endif 1999 2000 auto result = map->emplace(region, entry); 2001 DCHECK(result.second); // Insertion happened. 2002 USE(result); 2003 2004 RegisterCodeEntry(entry); 2005} 2006 2007static void AddCode(const char* name, base::AddressRegion region, 2008 SharedFunctionInfo shared, LineInfo* lineinfo, 2009 Isolate* isolate, bool is_function) { 2010 DisallowGarbageCollection no_gc; 2011 CodeDescription code_desc(name, region, shared, lineinfo, is_function); 2012 2013 CodeMap* code_map = GetCodeMap(); 2014 RemoveJITCodeEntries(code_map, region); 2015 2016 if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) { 2017 delete lineinfo; 2018 return; 2019 } 2020 2021 AddUnwindInfo(&code_desc); 2022 JITCodeEntry* entry = CreateELFObject(&code_desc, isolate); 2023 2024 delete lineinfo; 2025 2026 const char* name_hint = nullptr; 2027 bool should_dump = false; 2028 if (FLAG_gdbjit_dump) { 2029 if (strlen(FLAG_gdbjit_dump_filter) == 0) { 2030 name_hint = name; 2031 should_dump = true; 2032 } else if (name != nullptr) { 2033 name_hint = strstr(name, FLAG_gdbjit_dump_filter); 2034 should_dump = (name_hint != nullptr); 2035 } 2036 } 2037 AddJITCodeEntry(code_map, region, entry, should_dump, name_hint); 2038} 2039 2040void EventHandler(const v8::JitCodeEvent* event) { 2041 if (!FLAG_gdbjit) return; 2042 if ((event->code_type != v8::JitCodeEvent::JIT_CODE) && 2043 (event->code_type != v8::JitCodeEvent::WASM_CODE)) { 2044 return; 2045 } 2046 base::MutexGuard lock_guard(mutex.Pointer()); 2047 switch (event->type) { 2048 case v8::JitCodeEvent::CODE_ADDED: { 2049 Address addr = reinterpret_cast<Address>(event->code_start); 2050 LineInfo* lineinfo = GetLineInfo(addr); 2051 std::string event_name(event->name.str, event->name.len); 2052 // It's called UnboundScript in the API but it's a SharedFunctionInfo. 2053 SharedFunctionInfo shared = event->script.IsEmpty() 2054 ? SharedFunctionInfo() 2055 : *Utils::OpenHandle(*event->script); 2056 Isolate* isolate = reinterpret_cast<Isolate*>(event->isolate); 2057 bool is_function = false; 2058 // TODO(zhin): See if we can use event->code_type to determine 2059 // is_function, the difference currently is that JIT_CODE is SparkPlug, 2060 // TurboProp, TurboFan, whereas CodeKindIsOptimizedJSFunction is only 2061 // TurboProp and TurboFan. is_function is used for AddUnwindInfo, and the 2062 // prologue that SP generates probably matches that of TP/TF, so we can 2063 // use event->code_type here instead of finding the Code. 2064 // TODO(zhin): Rename is_function to be more accurate. 2065 if (event->code_type == v8::JitCodeEvent::JIT_CODE) { 2066 Code code = isolate->heap()->GcSafeFindCodeForInnerPointer(addr); 2067 is_function = CodeKindIsOptimizedJSFunction(code.kind()); 2068 } 2069 AddCode(event_name.c_str(), {addr, event->code_len}, shared, lineinfo, 2070 isolate, is_function); 2071 break; 2072 } 2073 case v8::JitCodeEvent::CODE_MOVED: 2074 // Enabling the GDB JIT interface should disable code compaction. 2075 UNREACHABLE(); 2076 case v8::JitCodeEvent::CODE_REMOVED: 2077 // Do nothing. Instead, adding code causes eviction of any entry whose 2078 // address range intersects the address range of the added code. 2079 break; 2080 case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: { 2081 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2082 line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset), 2083 static_cast<int>(event->line_info.pos), 2084 event->line_info.position_type == 2085 v8::JitCodeEvent::STATEMENT_POSITION); 2086 break; 2087 } 2088 case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: { 2089 v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event); 2090 mutable_event->user_data = new LineInfo(); 2091 break; 2092 } 2093 case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: { 2094 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2095 PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info); 2096 break; 2097 } 2098 } 2099} 2100 2101void AddRegionForTesting(const base::AddressRegion region) { 2102 // For testing purposes we don't care about JITCodeEntry, pass nullptr. 2103 auto result = GetCodeMap()->emplace(region, nullptr); 2104 DCHECK(result.second); // Insertion happened. 2105 USE(result); 2106} 2107 2108void ClearCodeMapForTesting() { GetCodeMap()->clear(); } 2109 2110size_t NumOverlapEntriesForTesting(const base::AddressRegion region) { 2111 if (auto overlaps = GetOverlappingRegions(GetCodeMap(), region)) { 2112 return std::distance(overlaps->first, overlaps->second); 2113 } 2114 return 0; 2115} 2116 2117#endif 2118} // namespace GDBJITInterface 2119} // namespace internal 2120} // namespace v8 2121 2122#undef __MACH_O 2123#undef __ELF 2124