1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_CODEGEN_S390_CONSTANTS_S390_H_
6#define V8_CODEGEN_S390_CONSTANTS_S390_H_
7
8// Get the standard printf format macros for C99 stdint types.
9#ifndef __STDC_FORMAT_MACROS
10#define __STDC_FORMAT_MACROS
11#endif
12#include <inttypes.h>
13
14#include <stdint.h>
15
16#include "src/base/logging.h"
17#include "src/base/macros.h"
18#include "src/common/globals.h"
19
20// UNIMPLEMENTED_ macro for S390.
21#ifdef DEBUG
22#define UNIMPLEMENTED_S390()                                               \
23  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
24                       __FILE__, __LINE__, __func__)
25#else
26#define UNIMPLEMENTED_S390()
27#endif
28
29namespace v8 {
30namespace internal {
31
32constexpr size_t kMaxPCRelativeCodeRangeInMB = 4096;
33
34// Number of registers
35const int kNumRegisters = 16;
36
37// FP support.
38const int kNumDoubleRegisters = 16;
39
40const int kNoRegister = -1;
41
42// Actual value of root register is offset from the root array's start
43// to take advantage of negative displacement values.
44// TODO(sigurds): Choose best value.
45constexpr int kRootRegisterBias = 128;
46
47// sign-extend the least significant 16-bits of value <imm>
48#define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)
49
50// sign-extend the least significant 26-bits of value <imm>
51#define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)
52
53// -----------------------------------------------------------------------------
54// Conditions.
55
56// Defines constants and accessor classes to assemble, disassemble and
57// simulate z/Architecture instructions.
58//
59// Section references in the code refer to the "z/Architecture Principles
60// Of Operation" http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf
61//
62
63// Constants for specific fields are defined in their respective named enums.
64// General constants are in an anonymous enum in class Instr.
65enum Condition {
66  kNoCondition = -1,
67  eq = 0x8,  // Equal.
68  ne = 0x7,  // Not equal.
69  ge = 0xa,  // Greater or equal.
70  lt = 0x4,  // Less than.
71  gt = 0x2,  // Greater than.
72  le = 0xc,  // Less then or equal
73  al = 0xf,  // Always.
74
75  CC_NOP = 0x0,           // S390 NOP
76  CC_EQ = 0x08,           // S390 condition code 0b1000
77  CC_LT = 0x04,           // S390 condition code 0b0100
78  CC_LE = CC_EQ | CC_LT,  // S390 condition code 0b1100
79  CC_GT = 0x02,           // S390 condition code 0b0010
80  CC_GE = CC_EQ | CC_GT,  // S390 condition code 0b1010
81  CC_OF = 0x01,           // S390 condition code 0b0001
82  CC_NOF = 0x0E,          // S390 condition code 0b1110
83  CC_ALWAYS = 0x0F,       // S390 always taken branch
84  unordered = CC_OF,      // Floating-point unordered
85  ordered = CC_NOF,       // floating-point ordered
86  overflow = CC_OF,       // Summary overflow
87  nooverflow = CC_NOF,
88
89  mask0x0 = 0,  // no jumps
90  mask0x1 = 1,
91  mask0x2 = 2,
92  mask0x3 = 3,
93  mask0x4 = 4,
94  mask0x5 = 5,
95  mask0x6 = 6,
96  mask0x7 = 7,
97  mask0x8 = 8,
98  mask0x9 = 9,
99  mask0xA = 10,
100  mask0xB = 11,
101  mask0xC = 12,
102  mask0xD = 13,
103  mask0xE = 14,
104  mask0xF = 15
105};
106
107inline Condition NegateCondition(Condition cond) {
108  DCHECK(cond != al);
109  switch (cond) {
110    case eq:
111      return ne;
112    case ne:
113      return eq;
114    case ge:
115      return lt;
116    case gt:
117      return le;
118    case le:
119      return gt;
120    case lt:
121      return ge;
122    case lt | gt:
123      return eq;
124    case le | ge:
125      return CC_OF;
126    case CC_OF:
127      return CC_NOF;
128    default:
129      DCHECK(false);
130  }
131  return al;
132}
133
134// -----------------------------------------------------------------------------
135// Instructions encoding.
136
137// Instr is merely used by the Assembler to distinguish 32bit integers
138// representing instructions from usual 32 bit values.
139// Instruction objects are pointers to 32bit values, and provide methods to
140// access the various ISA fields.
141using Instr = int32_t;
142using TwoByteInstr = uint16_t;
143using FourByteInstr = uint32_t;
144using SixByteInstr = uint64_t;
145
146#define S390_RSY_A_OPCODE_LIST(V)                                              \
147  V(lmg, LMG, 0xEB04)     /* type = RSY_A LOAD MULTIPLE (64)  */               \
148  V(srag, SRAG, 0xEB0A)   /* type = RSY_A SHIFT RIGHT SINGLE (64)  */          \
149  V(slag, SLAG, 0xEB0B)   /* type = RSY_A SHIFT LEFT SINGLE (64)  */           \
150  V(srlg, SRLG, 0xEB0C)   /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (64)  */  \
151  V(sllg, SLLG, 0xEB0D)   /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (64)  */   \
152  V(tracg, TRACG, 0xEB0F) /* type = RSY_A TRACE (64)  */                       \
153  V(csy, CSY, 0xEB14)     /* type = RSY_A COMPARE AND SWAP (32)  */            \
154  V(rllg, RLLG, 0xEB1C)   /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (64)  */  \
155  V(rll, RLL, 0xEB1D)     /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (32)  */  \
156  V(stmg, STMG, 0xEB24)   /* type = RSY_A STORE MULTIPLE (64)  */              \
157  V(stctg, STCTG, 0xEB25) /* type = RSY_A STORE CONTROL (64)  */               \
158  V(stmh, STMH, 0xEB26)   /* type = RSY_A STORE MULTIPLE HIGH (32)  */         \
159  V(lctlg, LCTLG, 0xEB2F) /* type = RSY_A LOAD CONTROL (64)  */                \
160  V(csg, CSG, 0xEB30)     /* type = RSY_A COMPARE AND SWAP (64)  */            \
161  V(cdsy, CDSY, 0xEB31)   /* type = RSY_A COMPARE DOUBLE AND SWAP (32)  */     \
162  V(cdsg, CDSG, 0xEB3E)   /* type = RSY_A COMPARE DOUBLE AND SWAP (64)  */     \
163  V(bxhg, BXHG, 0xEB44)   /* type = RSY_A BRANCH ON INDEX HIGH (64)  */        \
164  V(bxleg, BXLEG, 0xEB45) /* type = RSY_A BRANCH ON INDEX LOW OR EQUAL (64) */ \
165  V(ecag, ECAG, 0xEB4C)   /* type = RSY_A EXTRACT CPU ATTRIBUTE  */            \
166  V(mvclu, MVCLU, 0xEB8E) /* type = RSY_A MOVE LONG UNICODE  */                \
167  V(clclu, CLCLU, 0xEB8F) /* type = RSY_A COMPARE LOGICAL LONG UNICODE  */     \
168  V(stmy, STMY, 0xEB90)   /* type = RSY_A STORE MULTIPLE (32)  */              \
169  V(lmh, LMH, 0xEB96)     /* type = RSY_A LOAD MULTIPLE HIGH (32)  */          \
170  V(lmy, LMY, 0xEB98)     /* type = RSY_A LOAD MULTIPLE (32)  */               \
171  V(lamy, LAMY, 0xEB9A)   /* type = RSY_A LOAD ACCESS MULTIPLE  */             \
172  V(stamy, STAMY, 0xEB9B) /* type = RSY_A STORE ACCESS MULTIPLE  */            \
173  V(srak, SRAK, 0xEBDC)   /* type = RSY_A SHIFT RIGHT SINGLE (32)  */          \
174  V(slak, SLAK, 0xEBDD)   /* type = RSY_A SHIFT LEFT SINGLE (32)  */           \
175  V(srlk, SRLK, 0xEBDE)   /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (32)  */  \
176  V(sllk, SLLK, 0xEBDF)   /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (32)  */   \
177  V(lang, LANG, 0xEBE4)   /* type = RSY_A LOAD AND AND (64)  */                \
178  V(laog, LAOG, 0xEBE6)   /* type = RSY_A LOAD AND OR (64)  */                 \
179  V(laxg, LAXG, 0xEBE7)   /* type = RSY_A LOAD AND EXCLUSIVE OR (64)  */       \
180  V(laag, LAAG, 0xEBE8)   /* type = RSY_A LOAD AND ADD (64)  */                \
181  V(laalg, LAALG, 0xEBEA) /* type = RSY_A LOAD AND ADD LOGICAL (64)  */        \
182  V(lan, LAN, 0xEBF4)     /* type = RSY_A LOAD AND AND (32)  */                \
183  V(lao, LAO, 0xEBF6)     /* type = RSY_A LOAD AND OR (32)  */                 \
184  V(lax, LAX, 0xEBF7)     /* type = RSY_A LOAD AND EXCLUSIVE OR (32)  */       \
185  V(laa, LAA, 0xEBF8)     /* type = RSY_A LOAD AND ADD (32)  */                \
186  V(laal, LAAL, 0xEBFA)   /* type = RSY_A LOAD AND ADD LOGICAL (32)  */
187
188#define S390_RSY_B_OPCODE_LIST(V)                                              \
189  V(clmh, CLMH,                                                                \
190    0xEB20) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (high)  */        \
191  V(clmy, CLMY,                                                                \
192    0xEB21) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (low)  */         \
193  V(clt, CLT, 0xEB23)   /* type = RSY_B COMPARE LOGICAL AND TRAP (32)  */      \
194  V(clgt, CLGT, 0xEB2B) /* type = RSY_B COMPARE LOGICAL AND TRAP (64)  */      \
195  V(stcmh, STCMH,                                                              \
196    0xEB2C) /* type = RSY_B STORE CHARACTERS UNDER MASK (high)  */             \
197  V(stcmy, STCMY, 0xEB2D) /* type = RSY_B STORE CHARACTERS UNDER MASK (low) */ \
198  V(icmh, ICMH, 0xEB80) /* type = RSY_B INSERT CHARACTERS UNDER MASK (high) */ \
199  V(icmy, ICMY, 0xEB81) /* type = RSY_B INSERT CHARACTERS UNDER MASK (low)  */ \
200  V(locfh, LOCFH, 0xEBE0)   /* type = RSY_B LOAD HIGH ON CONDITION (32)  */    \
201  V(stocfh, STOCFH, 0xEBE1) /* type = RSY_B STORE HIGH ON CONDITION  */        \
202  V(locg, LOCG, 0xEBE2)     /* type = RSY_B LOAD ON CONDITION (64)  */         \
203  V(stocg, STOCG, 0xEBE3)   /* type = RSY_B STORE ON CONDITION (64)  */        \
204  V(loc, LOC, 0xEBF2)       /* type = RSY_B LOAD ON CONDITION (32)  */         \
205  V(stoc, STOC, 0xEBF3)     /* type = RSY_B STORE ON CONDITION (32)  */
206
207#define S390_RXE_OPCODE_LIST(V)                                                \
208  V(lcbb, LCBB, 0xE727) /* type = RXE   LOAD COUNT TO BLOCK BOUNDARY  */       \
209  V(ldeb, LDEB, 0xED04) /* type = RXE   LOAD LENGTHENED (short to long BFP) */ \
210  V(lxdb, LXDB,                                                                \
211    0xED05) /* type = RXE   LOAD LENGTHENED (long to extended BFP)  */         \
212  V(lxeb, LXEB,                                                                \
213    0xED06) /* type = RXE   LOAD LENGTHENED (short to extended BFP)  */        \
214  V(mxdb, MXDB, 0xED07) /* type = RXE   MULTIPLY (long to extended BFP)  */    \
215  V(keb, KEB, 0xED08)   /* type = RXE   COMPARE AND SIGNAL (short BFP)  */     \
216  V(ceb, CEB, 0xED09)   /* type = RXE   COMPARE (short BFP)  */                \
217  V(aeb, AEB, 0xED0A)   /* type = RXE   ADD (short BFP)  */                    \
218  V(seb, SEB, 0xED0B)   /* type = RXE   SUBTRACT (short BFP)  */               \
219  V(mdeb, MDEB, 0xED0C) /* type = RXE   MULTIPLY (short to long BFP)  */       \
220  V(deb, DEB, 0xED0D)   /* type = RXE   DIVIDE (short BFP)  */                 \
221  V(tceb, TCEB, 0xED10) /* type = RXE   TEST DATA CLASS (short BFP)  */        \
222  V(tcdb, TCDB, 0xED11) /* type = RXE   TEST DATA CLASS (long BFP)  */         \
223  V(tcxb, TCXB, 0xED12) /* type = RXE   TEST DATA CLASS (extended BFP)  */     \
224  V(sqeb, SQEB, 0xED14) /* type = RXE   SQUARE ROOT (short BFP)  */            \
225  V(sqdb, SQDB, 0xED15) /* type = RXE   SQUARE ROOT (long BFP)  */             \
226  V(meeb, MEEB, 0xED17) /* type = RXE   MULTIPLY (short BFP)  */               \
227  V(kdb, KDB, 0xED18)   /* type = RXE   COMPARE AND SIGNAL (long BFP)  */      \
228  V(cdb, CDB, 0xED19)   /* type = RXE   COMPARE (long BFP)  */                 \
229  V(adb, ADB, 0xED1A)   /* type = RXE   ADD (long BFP)  */                     \
230  V(sdb, SDB, 0xED1B)   /* type = RXE   SUBTRACT (long BFP)  */                \
231  V(mdb, MDB, 0xED1C)   /* type = RXE   MULTIPLY (long BFP)  */                \
232  V(ddb, DDB, 0xED1D)   /* type = RXE   DIVIDE (long BFP)  */                  \
233  V(lde, LDE, 0xED24) /* type = RXE   LOAD LENGTHENED (short to long HFP)  */  \
234  V(lxd, LXD,                                                                  \
235    0xED25) /* type = RXE   LOAD LENGTHENED (long to extended HFP)  */         \
236  V(lxe, LXE,                                                                  \
237    0xED26) /* type = RXE   LOAD LENGTHENED (short to extended HFP)  */        \
238  V(sqe, SQE, 0xED34)     /* type = RXE   SQUARE ROOT (short HFP)  */          \
239  V(sqd, SQD, 0xED35)     /* type = RXE   SQUARE ROOT (long HFP)  */           \
240  V(mee, MEE, 0xED37)     /* type = RXE   MULTIPLY (short HFP)  */             \
241  V(tdcet, TDCET, 0xED50) /* type = RXE   TEST DATA CLASS (short DFP)  */      \
242  V(tdget, TDGET, 0xED51) /* type = RXE   TEST DATA GROUP (short DFP)  */      \
243  V(tdcdt, TDCDT, 0xED54) /* type = RXE   TEST DATA CLASS (long DFP)  */       \
244  V(tdgdt, TDGDT, 0xED55) /* type = RXE   TEST DATA GROUP (long DFP)  */       \
245  V(tdcxt, TDCXT, 0xED58) /* type = RXE   TEST DATA CLASS (extended DFP)  */   \
246  V(tdgxt, TDGXT, 0xED59) /* type = RXE   TEST DATA GROUP (extended DFP)  */
247
248#define S390_RRF_A_OPCODE_LIST(V)                                           \
249  V(ipte, IPTE, 0xB221)     /* type = RRF_A INVALIDATE PAGE TABLE ENTRY  */ \
250  V(mdtra, MDTRA, 0xB3D0)   /* type = RRF_A MULTIPLY (long DFP)  */         \
251  V(ddtra, DDTRA, 0xB3D1)   /* type = RRF_A DIVIDE (long DFP)  */           \
252  V(adtra, ADTRA, 0xB3D2)   /* type = RRF_A ADD (long DFP)  */              \
253  V(sdtra, SDTRA, 0xB3D3)   /* type = RRF_A SUBTRACT (long DFP)  */         \
254  V(mxtra, MXTRA, 0xB3D8)   /* type = RRF_A MULTIPLY (extended DFP)  */     \
255  V(msrkc, MSRKC, 0xB9FD)   /* type = RRF_A MULTIPLY (32)*/                 \
256  V(msgrkc, MSGRKC, 0xB9ED) /* type = RRF_A MULTIPLY (64)*/                 \
257  V(dxtra, DXTRA, 0xB3D9)   /* type = RRF_A DIVIDE (extended DFP)  */       \
258  V(axtra, AXTRA, 0xB3DA)   /* type = RRF_A ADD (extended DFP)  */          \
259  V(sxtra, SXTRA, 0xB3DB)   /* type = RRF_A SUBTRACT (extended DFP)  */     \
260  V(ahhhr, AHHHR, 0xB9C8)   /* type = RRF_A ADD HIGH (32)  */               \
261  V(shhhr, SHHHR, 0xB9C9)   /* type = RRF_A SUBTRACT HIGH (32)  */          \
262  V(alhhhr, ALHHHR, 0xB9CA) /* type = RRF_A ADD LOGICAL HIGH (32)  */       \
263  V(slhhhr, SLHHHR, 0xB9CB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32)  */  \
264  V(ahhlr, AHHLR, 0xB9D8)   /* type = RRF_A ADD HIGH (32)  */               \
265  V(shhlr, SHHLR, 0xB9D9)   /* type = RRF_A SUBTRACT HIGH (32)  */          \
266  V(alhhlr, ALHHLR, 0xB9DA) /* type = RRF_A ADD LOGICAL HIGH (32)  */       \
267  V(slhhlr, SLHHLR, 0xB9DB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32)  */  \
268  V(ngrk, NGRK, 0xB9E4)     /* type = RRF_A AND (64)  */                    \
269  V(ogrk, OGRK, 0xB9E6)     /* type = RRF_A OR (64)  */                     \
270  V(xgrk, XGRK, 0xB9E7)     /* type = RRF_A EXCLUSIVE OR (64)  */           \
271  V(agrk, AGRK, 0xB9E8)     /* type = RRF_A ADD (64)  */                    \
272  V(sgrk, SGRK, 0xB9E9)     /* type = RRF_A SUBTRACT (64)  */               \
273  V(algrk, ALGRK, 0xB9EA)   /* type = RRF_A ADD LOGICAL (64)  */            \
274  V(slgrk, SLGRK, 0xB9EB)   /* type = RRF_A SUBTRACT LOGICAL (64)  */       \
275  V(nrk, NRK, 0xB9F4)       /* type = RRF_A AND (32)  */                    \
276  V(ork, ORK, 0xB9F6)       /* type = RRF_A OR (32)  */                     \
277  V(xrk, XRK, 0xB9F7)       /* type = RRF_A EXCLUSIVE OR (32)  */           \
278  V(ark, ARK, 0xB9F8)       /* type = RRF_A ADD (32)  */                    \
279  V(srk, SRK, 0xB9F9)       /* type = RRF_A SUBTRACT (32)  */               \
280  V(alrk, ALRK, 0xB9FA)     /* type = RRF_A ADD LOGICAL (32)  */            \
281  V(slrk, SLRK, 0xB9FB)     /* type = RRF_A SUBTRACT LOGICAL (32)  */
282
283#define S390_RXF_OPCODE_LIST(V)                                                \
284  V(maeb, MAEB, 0xED0E) /* type = RXF   MULTIPLY AND ADD (short BFP)  */       \
285  V(mseb, MSEB, 0xED0F) /* type = RXF   MULTIPLY AND SUBTRACT (short BFP)  */  \
286  V(madb, MADB, 0xED1E) /* type = RXF   MULTIPLY AND ADD (long BFP)  */        \
287  V(msdb, MSDB, 0xED1F) /* type = RXF   MULTIPLY AND SUBTRACT (long BFP)  */   \
288  V(mae, MAE, 0xED2E)   /* type = RXF   MULTIPLY AND ADD (short HFP)  */       \
289  V(mse, MSE, 0xED2F)   /* type = RXF   MULTIPLY AND SUBTRACT (short HFP)  */  \
290  V(mayl, MAYL,                                                                \
291    0xED38) /* type = RXF   MULTIPLY AND ADD UNNRM. (long to ext. low HFP)  */ \
292  V(myl, MYL,                                                                  \
293    0xED39) /* type = RXF   MULTIPLY UNNORM. (long to ext. low HFP)  */        \
294  V(may, MAY,                                                                  \
295    0xED3A) /* type = RXF   MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)  */ \
296  V(my, MY,                                                                    \
297    0xED3B) /* type = RXF   MULTIPLY UNNORMALIZED (long to ext. HFP)  */       \
298  V(mayh, MAYH,                                                                \
299    0xED3C) /* type = RXF   MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \
300  V(myh, MYH,                                                                  \
301    0xED3D) /* type = RXF   MULTIPLY UNNORM. (long to ext. high HFP)  */       \
302  V(mad, MAD, 0xED3E)   /* type = RXF   MULTIPLY AND ADD (long HFP)  */        \
303  V(msd, MSD, 0xED3F)   /* type = RXF   MULTIPLY AND SUBTRACT (long HFP)  */   \
304  V(sldt, SLDT, 0xED40) /* type = RXF   SHIFT SIGNIFICAND LEFT (long DFP)  */  \
305  V(srdt, SRDT, 0xED41) /* type = RXF   SHIFT SIGNIFICAND RIGHT (long DFP)  */ \
306  V(slxt, SLXT,                                                                \
307    0xED48) /* type = RXF   SHIFT SIGNIFICAND LEFT (extended DFP)  */          \
308  V(srxt, SRXT,                                                                \
309    0xED49) /* type = RXF   SHIFT SIGNIFICAND RIGHT (extended DFP)  */
310
311#define S390_IE_OPCODE_LIST(V) \
312  V(niai, NIAI, 0xB2FA) /* type = IE    NEXT INSTRUCTION ACCESS INTENT  */
313
314#define S390_RRF_B_OPCODE_LIST(V)                                           \
315  V(diebr, DIEBR, 0xB353) /* type = RRF_B DIVIDE TO INTEGER (short BFP)  */ \
316  V(didbr, DIDBR, 0xB35B) /* type = RRF_B DIVIDE TO INTEGER (long BFP)  */  \
317  V(cpsdr, CPSDR, 0xB372) /* type = RRF_B COPY SIGN (long)  */              \
318  V(qadtr, QADTR, 0xB3F5) /* type = RRF_B QUANTIZE (long DFP)  */           \
319  V(iedtr, IEDTR,                                                           \
320    0xB3F6) /* type = RRF_B INSERT BIASED EXPONENT (64 to long DFP)  */     \
321  V(rrdtr, RRDTR, 0xB3F7) /* type = RRF_B REROUND (long DFP)  */            \
322  V(qaxtr, QAXTR, 0xB3FD) /* type = RRF_B QUANTIZE (extended DFP)  */       \
323  V(iextr, IEXTR,                                                           \
324    0xB3FE) /* type = RRF_B INSERT BIASED EXPONENT (64 to extended DFP)  */ \
325  V(rrxtr, RRXTR, 0xB3FF) /* type = RRF_B REROUND (extended DFP)  */        \
326  V(kmctr, KMCTR, 0xB92D) /* type = RRF_B CIPHER MESSAGE WITH COUNTER  */   \
327  V(idte, IDTE, 0xB98E)   /* type = RRF_B INVALIDATE DAT TABLE ENTRY  */    \
328  V(crdte, CRDTE,                                                           \
329    0xB98F) /* type = RRF_B COMPARE AND REPLACE DAT TABLE ENTRY  */         \
330  V(lptea, LPTEA, 0xB9AA) /* type = RRF_B LOAD PAGE TABLE ENTRY ADDRESS  */
331
332#define S390_RRF_C_OPCODE_LIST(V)                                           \
333  V(sske, SSKE, 0xB22B)   /* type = RRF_C SET STORAGE KEY EXTENDED  */      \
334  V(cu21, CU21, 0xB2A6)   /* type = RRF_C CONVERT UTF-16 TO UTF-8  */       \
335  V(cu12, CU12, 0xB2A7)   /* type = RRF_C CONVERT UTF-8 TO UTF-16  */       \
336  V(ppa, PPA, 0xB2E8)     /* type = RRF_C PERFORM PROCESSOR ASSIST  */      \
337  V(cgrt, CGRT, 0xB960)   /* type = RRF_C COMPARE AND TRAP (64)  */         \
338  V(clgrt, CLGRT, 0xB961) /* type = RRF_C COMPARE LOGICAL AND TRAP (64)  */ \
339  V(crt, CRT, 0xB972)     /* type = RRF_C COMPARE AND TRAP (32)  */         \
340  V(clrt, CLRT, 0xB973)   /* type = RRF_C COMPARE LOGICAL AND TRAP (32)  */ \
341  V(trtt, TRTT, 0xB990)   /* type = RRF_C TRANSLATE TWO TO TWO  */          \
342  V(trto, TRTO, 0xB991)   /* type = RRF_C TRANSLATE TWO TO ONE  */          \
343  V(trot, TROT, 0xB992)   /* type = RRF_C TRANSLATE ONE TO TWO  */          \
344  V(troo, TROO, 0xB993)   /* type = RRF_C TRANSLATE ONE TO ONE  */          \
345  V(cu14, CU14, 0xB9B0)   /* type = RRF_C CONVERT UTF-8 TO UTF-32  */       \
346  V(cu24, CU24, 0xB9B1)   /* type = RRF_C CONVERT UTF-16 TO UTF-32  */      \
347  V(trtre, TRTRE,                                                           \
348    0xB9BD) /* type = RRF_C TRANSLATE AND TEST REVERSE EXTENDED  */         \
349  V(trte, TRTE, 0xB9BF)     /* type = RRF_C TRANSLATE AND TEST EXTENDED  */ \
350  V(locfhr, LOCFHR, 0xB9E0) /* type = RRF_C LOAD HIGH ON CONDITION (32)  */ \
351  V(locgr, LOCGR, 0xB9E2)   /* type = RRF_C LOAD ON CONDITION (64)  */      \
352  V(locr, LOCR, 0xB9F2)     /* type = RRF_C LOAD ON CONDITION (32)  */
353
354#define S390_MII_OPCODE_LIST(V) \
355  V(bprp, BPRP, 0xC5) /* type = MII   BRANCH PREDICTION RELATIVE PRELOAD  */
356
357#define S390_RRF_D_OPCODE_LIST(V)                                         \
358  V(ldetr, LDETR,                                                         \
359    0xB3D4) /* type = RRF_D LOAD LENGTHENED (short to long DFP)  */       \
360  V(lxdtr, LXDTR,                                                         \
361    0xB3DC) /* type = RRF_D LOAD LENGTHENED (long to extended DFP)  */    \
362  V(csdtr, CSDTR,                                                         \
363    0xB3E3) /* type = RRF_D CONVERT TO SIGNED PACKED (long DFP to 64)  */ \
364  V(csxtr, CSXTR,                                                         \
365    0xB3EB) /* type = RRF_D CONVERT TO SIGNED PACKED (extended DFP to 128)  */
366
367#define S390_RRF_E_OPCODE_LIST(V)                                              \
368  V(ledbra, LEDBRA,                                                            \
369    0xB344) /* type = RRF_E LOAD ROUNDED (long to short BFP)  */               \
370  V(ldxbra, LDXBRA,                                                            \
371    0xB345) /* type = RRF_E LOAD ROUNDED (extended to long BFP)  */            \
372  V(lexbra, LEXBRA,                                                            \
373    0xB346) /* type = RRF_E LOAD ROUNDED (extended to short BFP)  */           \
374  V(fixbra, FIXBRA, 0xB347) /* type = RRF_E LOAD FP INTEGER (extended BFP)  */ \
375  V(tbedr, TBEDR,                                                              \
376    0xB350)             /* type = RRF_E CONVERT HFP TO BFP (long to short)  */ \
377  V(tbdr, TBDR, 0xB351) /* type = RRF_E CONVERT HFP TO BFP (long)  */          \
378  V(fiebra, FIEBRA, 0xB357) /* type = RRF_E LOAD FP INTEGER (short BFP)  */    \
379  V(fidbra, FIDBRA, 0xB35F) /* type = RRF_E LOAD FP INTEGER (long BFP)  */     \
380  V(celfbr, CELFBR,                                                            \
381    0xB390) /* type = RRF_E CONVERT FROM LOGICAL (32 to short BFP)  */         \
382  V(cdlfbr, CDLFBR,                                                            \
383    0xB391) /* type = RRF_E CONVERT FROM LOGICAL (32 to long BFP)  */          \
384  V(cxlfbr, CXLFBR,                                                            \
385    0xB392) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended BFP)  */      \
386  V(cefbra, CEFBRA,                                                            \
387    0xB394) /* type = RRF_E CONVERT FROM FIXED (32 to short BFP)  */           \
388  V(cdfbra, CDFBRA,                                                            \
389    0xB395) /* type = RRF_E CONVERT FROM FIXED (32 to long BFP)  */            \
390  V(cxfbra, CXFBRA,                                                            \
391    0xB396) /* type = RRF_E CONVERT FROM FIXED (32 to extended BFP)  */        \
392  V(cfebra, CFEBRA,                                                            \
393    0xB398) /* type = RRF_E CONVERT TO FIXED (short BFP to 32)  */             \
394  V(cfdbra, CFDBRA,                                                            \
395    0xB399) /* type = RRF_E CONVERT TO FIXED (long BFP to 32)  */              \
396  V(cfxbra, CFXBRA,                                                            \
397    0xB39A) /* type = RRF_E CONVERT TO FIXED (extended BFP to 32)  */          \
398  V(clfebr, CLFEBR,                                                            \
399    0xB39C) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 32)  */           \
400  V(clfdbr, CLFDBR,                                                            \
401    0xB39D) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 32)  */            \
402  V(clfxbr, CLFXBR,                                                            \
403    0xB39E) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 32)  */        \
404  V(celgbr, CELGBR,                                                            \
405    0xB3A0) /* type = RRF_E CONVERT FROM LOGICAL (64 to short BFP)  */         \
406  V(cdlgbr, CDLGBR,                                                            \
407    0xB3A1) /* type = RRF_E CONVERT FROM LOGICAL (64 to long BFP)  */          \
408  V(cxlgbr, CXLGBR,                                                            \
409    0xB3A2) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended BFP)  */      \
410  V(cegbra, CEGBRA,                                                            \
411    0xB3A4) /* type = RRF_E CONVERT FROM FIXED (64 to short BFP)  */           \
412  V(cdgbra, CDGBRA,                                                            \
413    0xB3A5) /* type = RRF_E CONVERT FROM FIXED (64 to long BFP)  */            \
414  V(cxgbra, CXGBRA,                                                            \
415    0xB3A6) /* type = RRF_E CONVERT FROM FIXED (64 to extended BFP)  */        \
416  V(cgebra, CGEBRA,                                                            \
417    0xB3A8) /* type = RRF_E CONVERT TO FIXED (short BFP to 64)  */             \
418  V(cgdbra, CGDBRA,                                                            \
419    0xB3A9) /* type = RRF_E CONVERT TO FIXED (long BFP to 64)  */              \
420  V(cgxbra, CGXBRA,                                                            \
421    0xB3AA) /* type = RRF_E CONVERT TO FIXED (extended BFP to 64)  */          \
422  V(clgebr, CLGEBR,                                                            \
423    0xB3AC) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 64)  */           \
424  V(clgdbr, CLGDBR,                                                            \
425    0xB3AD) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 64)  */            \
426  V(clgxbr, CLGXBR,                                                            \
427    0xB3AE) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 64)  */        \
428  V(cfer, CFER, 0xB3B8) /* type = RRF_E CONVERT TO FIXED (short HFP to 32)  */ \
429  V(cfdr, CFDR, 0xB3B9) /* type = RRF_E CONVERT TO FIXED (long HFP to 32)  */  \
430  V(cfxr, CFXR,                                                                \
431    0xB3BA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 32)  */          \
432  V(cger, CGER, 0xB3C8) /* type = RRF_E CONVERT TO FIXED (short HFP to 64)  */ \
433  V(cgdr, CGDR, 0xB3C9) /* type = RRF_E CONVERT TO FIXED (long HFP to 64)  */  \
434  V(cgxr, CGXR,                                                                \
435    0xB3CA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 64)  */          \
436  V(ledtr, LEDTR, 0xB3D5) /* type = RRF_E LOAD ROUNDED (long to short DFP)  */ \
437  V(fidtr, FIDTR, 0xB3D7) /* type = RRF_E LOAD FP INTEGER (long DFP)  */       \
438  V(ldxtr, LDXTR,                                                              \
439    0xB3DD) /* type = RRF_E LOAD ROUNDED (extended to long DFP)  */            \
440  V(fixtr, FIXTR, 0xB3DF) /* type = RRF_E LOAD FP INTEGER (extended DFP)  */   \
441  V(cgdtra, CGDTRA,                                                            \
442    0xB3E1) /* type = RRF_E CONVERT TO FIXED (long DFP to 64)  */              \
443  V(cgxtra, CGXTRA,                                                            \
444    0xB3E9) /* type = RRF_E CONVERT TO FIXED (extended DFP to 64)  */          \
445  V(cdgtra, CDGTRA,                                                            \
446    0xB3F1) /* type = RRF_E CONVERT FROM FIXED (64 to long DFP)  */            \
447  V(cxgtra, CXGTRA,                                                            \
448    0xB3F9) /* type = RRF_E CONVERT FROM FIXED (64 to extended DFP)  */        \
449  V(cfdtr, CFDTR, 0xB941) /* type = RRF_E CONVERT TO FIXED (long DFP to 32) */ \
450  V(clgdtr, CLGDTR,                                                            \
451    0xB942) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 64)  */            \
452  V(clfdtr, CLFDTR,                                                            \
453    0xB943) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 32)  */            \
454  V(cfxtr, CFXTR,                                                              \
455    0xB949) /* type = RRF_E CONVERT TO FIXED (extended DFP to 32)  */          \
456  V(clgxtr, CLGXTR,                                                            \
457    0xB94A) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 64)  */        \
458  V(clfxtr, CLFXTR,                                                            \
459    0xB94B) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 32)  */        \
460  V(cdlgtr, CDLGTR,                                                            \
461    0xB952) /* type = RRF_E CONVERT FROM LOGICAL (64 to long DFP)  */          \
462  V(cdlftr, CDLFTR,                                                            \
463    0xB953) /* type = RRF_E CONVERT FROM LOGICAL (32 to long DFP)  */          \
464  V(cxlgtr, CXLGTR,                                                            \
465    0xB95A) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended DFP)  */      \
466  V(cxlftr, CXLFTR,                                                            \
467    0xB95B) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended DFP)  */
468
469#define S390_VRR_A_OPCODE_LIST(V)                                              \
470  V(vpopct, VPOPCT, 0xE750) /* type = VRR_A VECTOR POPULATION COUNT  */        \
471  V(vctz, VCTZ, 0xE752)     /* type = VRR_A VECTOR COUNT TRAILING ZEROS  */    \
472  V(vclz, VCLZ, 0xE753)     /* type = VRR_A VECTOR COUNT LEADING ZEROS  */     \
473  V(vlr, VLR, 0xE756)       /* type = VRR_A VECTOR LOAD  */                    \
474  V(vistr, VISTR, 0xE75C)   /* type = VRR_A VECTOR ISOLATE STRING  */          \
475  V(vseg, VSEG, 0xE75F) /* type = VRR_A VECTOR SIGN EXTEND TO DOUBLEWORD  */   \
476  V(vclgd, VCLGD,                                                              \
477    0xE7C0) /* type = VRR_A VECTOR FP CONVERT TO LOGICAL 64-BIT  */            \
478  V(vcdlg, VCDLG,                                                              \
479    0xE7C1) /* type = VRR_A VECTOR FP CONVERT FROM LOGICAL 64-BIT  */          \
480  V(vcgd, VCGD, 0xE7C2) /* type = VRR_A VECTOR FP CONVERT TO FIXED 64-BIT  */  \
481  V(vcdg, VCDG, 0xE7C3) /* type = VRR_A VECTOR FP CONVERT FROM FIXED 64-BIT */ \
482  V(vlde, VLDE, 0xE7C4) /* type = VRR_A VECTOR FP LOAD LENGTHENED  */          \
483  V(vled, VLED, 0xE7C5) /* type = VRR_A VECTOR FP LOAD ROUNDED  */             \
484  V(vfi, VFI, 0xE7C7)   /* type = VRR_A VECTOR LOAD FP INTEGER  */             \
485  V(wfk, WFK, 0xE7CA) /* type = VRR_A VECTOR FP COMPARE AND SIGNAL SCALAR  */  \
486  V(wfc, WFC, 0xE7CB) /* type = VRR_A VECTOR FP COMPARE SCALAR  */             \
487  V(vfpso, VFPSO, 0xE7CC) /* type = VRR_A VECTOR FP PERFORM SIGN OPERATION  */ \
488  V(vfsq, VFSQ, 0xE7CE)   /* type = VRR_A VECTOR FP SQUARE ROOT  */            \
489  V(vupll, VUPLL, 0xE7D4) /* type = VRR_A VECTOR UNPACK LOGICAL LOW  */        \
490  V(vuplh, VUPLH, 0xE7D5) /* type = VRR_A VECTOR UNPACK LOGICAL HIGH  */       \
491  V(vupl, VUPL, 0xE7D6)   /* type = VRR_A VECTOR UNPACK LOW  */                \
492  V(vuph, VUPH, 0xE7D7)   /* type = VRR_A VECTOR UNPACK HIGH  */               \
493  V(vtm, VTM, 0xE7D8)     /* type = VRR_A VECTOR TEST UNDER MASK  */           \
494  V(vecl, VECL, 0xE7D9)   /* type = VRR_A VECTOR ELEMENT COMPARE LOGICAL  */   \
495  V(vec, VEC, 0xE7DB)     /* type = VRR_A VECTOR ELEMENT COMPARE  */           \
496  V(vlc, VLC, 0xE7DE)     /* type = VRR_A VECTOR LOAD COMPLEMENT  */           \
497  V(vlp, VLP, 0xE7DF)     /* type = VRR_A VECTOR LOAD POSITIVE  */
498
499#define S390_VRR_B_OPCODE_LIST(V)                                           \
500  V(vfee, VFEE, 0xE780)   /* type = VRR_B VECTOR FIND ELEMENT EQUAL  */     \
501  V(vfene, VFENE, 0xE781) /* type = VRR_B VECTOR FIND ELEMENT NOT EQUAL  */ \
502  V(vfae, VFAE, 0xE782)   /* type = VRR_B VECTOR FIND ANY ELEMENT EQUAL  */ \
503  V(vpkls, VPKLS, 0xE795) /* type = VRR_B VECTOR PACK LOGICAL SATURATE  */  \
504  V(vpks, VPKS, 0xE797)   /* type = VRR_B VECTOR PACK SATURATE  */          \
505  V(vceq, VCEQ, 0xE7F8)   /* type = VRR_B VECTOR COMPARE EQUAL  */          \
506  V(vchl, VCHL, 0xE7F9)   /* type = VRR_B VECTOR COMPARE HIGH LOGICAL  */   \
507  V(vch, VCH, 0xE7FB)     /* type = VRR_B VECTOR COMPARE HIGH  */
508
509#define S390_VRR_C_OPCODE_LIST(V)                                              \
510  V(vmrl, VMRL, 0xE760)   /* type = VRR_C VECTOR MERGE LOW  */                 \
511  V(vmrh, VMRH, 0xE761)   /* type = VRR_C VECTOR MERGE HIGH  */                \
512  V(vsum, VSUM, 0xE764)   /* type = VRR_C VECTOR SUM ACROSS WORD  */           \
513  V(vsumg, VSUMG, 0xE765) /* type = VRR_C VECTOR SUM ACROSS DOUBLEWORD  */     \
514  V(vcksm, VCKSM, 0xE766) /* type = VRR_C VECTOR CHECKSUM  */                  \
515  V(vsumq, VSUMQ, 0xE767) /* type = VRR_C VECTOR SUM ACROSS QUADWORD  */       \
516  V(vn, VN, 0xE768)       /* type = VRR_C VECTOR AND  */                       \
517  V(vnc, VNC, 0xE769)     /* type = VRR_C VECTOR AND WITH COMPLEMENT  */       \
518  V(vo, VO, 0xE76A)       /* type = VRR_C VECTOR OR  */                        \
519  V(vno, VNO, 0xE76B)     /* type = VRR_C VECTOR NOR  */                       \
520  V(vx, VX, 0xE76D)       /* type = VRR_C VECTOR EXCLUSIVE OR  */              \
521  V(veslv, VESLV, 0xE770) /* type = VRR_C VECTOR ELEMENT SHIFT LEFT  */        \
522  V(verllv, VERLLV,                                                            \
523    0xE773)             /* type = VRR_C VECTOR ELEMENT ROTATE LEFT LOGICAL  */ \
524  V(vsl, VSL, 0xE774)   /* type = VRR_C VECTOR SHIFT LEFT  */                  \
525  V(vslb, VSLB, 0xE775) /* type = VRR_C VECTOR SHIFT LEFT BY BYTE  */          \
526  V(vesrlv, VESRLV,                                                            \
527    0xE778) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT LOGICAL  */             \
528  V(vesrav, VESRAV,                                                            \
529    0xE77A) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT ARITHMETIC  */          \
530  V(vsrl, VSRL, 0xE77C) /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL  */         \
531  V(vsrlb, VSRLB,                                                              \
532    0xE77D)             /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL BY BYTE  */ \
533  V(vsra, VSRA, 0xE77E) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC  */      \
534  V(vsrab, VSRAB,                                                              \
535    0xE77F) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC BY BYTE  */          \
536  V(vpdi, VPDI, 0xE784) /* type = VRR_C VECTOR PERMUTE DOUBLEWORD IMMEDIATE */ \
537  V(vpk, VPK, 0xE794)   /* type = VRR_C VECTOR PACK  */                        \
538  V(vmlh, VMLH, 0xE7A1) /* type = VRR_C VECTOR MULTIPLY LOGICAL HIGH  */       \
539  V(vml, VML, 0xE7A2)   /* type = VRR_C VECTOR MULTIPLY LOW  */                \
540  V(vmh, VMH, 0xE7A3)   /* type = VRR_C VECTOR MULTIPLY HIGH  */               \
541  V(vmle, VMLE, 0xE7A4) /* type = VRR_C VECTOR MULTIPLY LOGICAL EVEN  */       \
542  V(vmlo, VMLO, 0xE7A5) /* type = VRR_C VECTOR MULTIPLY LOGICAL ODD  */        \
543  V(vme, VME, 0xE7A6)   /* type = VRR_C VECTOR MULTIPLY EVEN  */               \
544  V(vmo, VMO, 0xE7A7)   /* type = VRR_C VECTOR MULTIPLY ODD  */                \
545  V(vgfm, VGFM, 0xE7B4) /* type = VRR_C VECTOR GALOIS FIELD MULTIPLY SUM  */   \
546  V(vfs, VFS, 0xE7E2)   /* type = VRR_C VECTOR FP SUBTRACT  */                 \
547  V(vfa, VFA, 0xE7E3)   /* type = VRR_C VECTOR FP ADD  */                      \
548  V(vfd, VFD, 0xE7E5)   /* type = VRR_C VECTOR FP DIVIDE  */                   \
549  V(vfm, VFM, 0xE7E7)   /* type = VRR_C VECTOR FP MULTIPLY  */                 \
550  V(vfce, VFCE, 0xE7E8) /* type = VRR_C VECTOR FP COMPARE EQUAL  */            \
551  V(vfche, VFCHE, 0xE7EA) /* type = VRR_C VECTOR FP COMPARE HIGH OR EQUAL  */  \
552  V(vfch, VFCH, 0xE7EB)   /* type = VRR_C VECTOR FP COMPARE HIGH  */           \
553  V(vfmax, VFMAX, 0xE7EF) /* type = VRR_C VECTOR FP MAXIMUM */                 \
554  V(vfmin, VFMIN, 0xE7EE) /* type = VRR_C VECTOR FP MINIMUM */                 \
555  V(vavgl, VAVGL, 0xE7F0) /* type = VRR_C VECTOR AVERAGE LOGICAL  */           \
556  V(vacc, VACC, 0xE7F1)   /* type = VRR_C VECTOR ADD COMPUTE CARRY  */         \
557  V(vavg, VAVG, 0xE7F2)   /* type = VRR_C VECTOR AVERAGE  */                   \
558  V(va, VA, 0xE7F3)       /* type = VRR_C VECTOR ADD  */                       \
559  V(vscbi, VSCBI,                                                              \
560    0xE7F5) /* type = VRR_C VECTOR SUBTRACT COMPUTE BORROW INDICATION  */      \
561  V(vs, VS, 0xE7F7)         /* type = VRR_C VECTOR SUBTRACT  */                \
562  V(vmnl, VMNL, 0xE7FC)     /* type = VRR_C VECTOR MINIMUM LOGICAL  */         \
563  V(vmxl, VMXL, 0xE7FD)     /* type = VRR_C VECTOR MAXIMUM LOGICAL  */         \
564  V(vmn, VMN, 0xE7FE)       /* type = VRR_C VECTOR MINIMUM  */                 \
565  V(vmx, VMX, 0xE7FF)       /* type = VRR_C VECTOR MAXIMUM  */                 \
566  V(vbperm, VBPERM, 0xE785) /* type = VRR_C VECTOR BIT PERMUTE  */
567
568#define S390_VRI_A_OPCODE_LIST(V)                                              \
569  V(vleib, VLEIB, 0xE740) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (8) */ \
570  V(vleih, VLEIH,                                                              \
571    0xE741) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (16)  */             \
572  V(vleig, VLEIG,                                                              \
573    0xE742) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (64)  */             \
574  V(vleif, VLEIF,                                                              \
575    0xE743)             /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (32)  */ \
576  V(vgbm, VGBM, 0xE744) /* type = VRI_A VECTOR GENERATE BYTE MASK  */          \
577  V(vrepi, VREPI, 0xE745) /* type = VRI_A VECTOR REPLICATE IMMEDIATE  */
578
579#define S390_VRR_D_OPCODE_LIST(V)                                              \
580  V(vstrc, VSTRC, 0xE78A) /* type = VRR_D VECTOR STRING RANGE COMPARE  */      \
581  V(vmalh, VMALH,                                                              \
582    0xE7A9) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL HIGH  */           \
583  V(vmal, VMAL, 0xE7AA) /* type = VRR_D VECTOR MULTIPLY AND ADD LOW  */        \
584  V(vmah, VMAH, 0xE7AB) /* type = VRR_D VECTOR MULTIPLY AND ADD HIGH  */       \
585  V(vmale, VMALE,                                                              \
586    0xE7AC) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL EVEN  */           \
587  V(vmalo, VMALO,                                                              \
588    0xE7AD) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL ODD  */            \
589  V(vmae, VMAE, 0xE7AE) /* type = VRR_D VECTOR MULTIPLY AND ADD EVEN  */       \
590  V(vmao, VMAO, 0xE7AF) /* type = VRR_D VECTOR MULTIPLY AND ADD ODD  */        \
591  V(vaccc, VACCC,                                                              \
592    0xE7B9)           /* type = VRR_D VECTOR ADD WITH CARRY COMPUTE CARRY  */  \
593  V(vac, VAC, 0xE7BB) /* type = VRR_D VECTOR ADD WITH CARRY  */                \
594  V(vgfma, VGFMA,                                                              \
595    0xE7BC) /* type = VRR_D VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE */ \
596  V(vsbcbi, VSBCBI, 0xE7BD) /* type = VRR_D VECTOR SUBTRACT WITH BORROW     */ \
597                            /* COMPUTE BORROW INDICATION  */                   \
598  V(vsbi, VSBI,                                                                \
599    0xE7BF) /* type = VRR_D VECTOR SUBTRACT WITH BORROW INDICATION  */
600
601#define S390_VRI_B_OPCODE_LIST(V) \
602  V(vgm, VGM, 0xE746) /* type = VRI_B VECTOR GENERATE MASK  */
603
604#define S390_VRR_E_OPCODE_LIST(V)                                             \
605  V(vperm, VPERM, 0xE78C) /* type = VRR_E VECTOR PERMUTE  */                  \
606  V(vsel, VSEL, 0xE78D)   /* type = VRR_E VECTOR SELECT  */                   \
607  V(vfms, VFMS, 0xE78E)   /* type = VRR_E VECTOR FP MULTIPLY AND SUBTRACT  */ \
608  V(vfnms, VFNMS,                                                             \
609    0xE79E) /* type = VRR_E VECTOR FP NEGATIVE MULTIPLY AND SUBTRACT  */      \
610  V(vfma, VFMA, 0xE78F) /* type = VRR_E VECTOR FP MULTIPLY AND ADD  */
611
612#define S390_VRI_C_OPCODE_LIST(V) \
613  V(vrep, VREP, 0xE74D) /* type = VRI_C VECTOR REPLICATE  */
614
615#define S390_VRI_D_OPCODE_LIST(V)                                           \
616  V(verim, VERIM,                                                           \
617    0xE772) /* type = VRI_D VECTOR ELEMENT ROTATE AND INSERT UNDER MASK  */ \
618  V(vsldb, VSLDB, 0xE777) /* type = VRI_D VECTOR SHIFT LEFT DOUBLE BY BYTE  */
619
620#define S390_VRR_F_OPCODE_LIST(V) \
621  V(vlvgp, VLVGP, 0xE762) /* type = VRR_F VECTOR LOAD VR FROM GRS DISJOINT  */
622
623#define S390_RIS_OPCODE_LIST(V)                                                \
624  V(cgib, CGIB,                                                                \
625    0xECFC) /* type = RIS   COMPARE IMMEDIATE AND BRANCH (64<-8)  */           \
626  V(clgib, CLGIB,                                                              \
627    0xECFD) /* type = RIS   COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)  */   \
628  V(cib, CIB, 0xECFE) /* type = RIS   COMPARE IMMEDIATE AND BRANCH (32<-8)  */ \
629  V(clib, CLIB,                                                                \
630    0xECFF) /* type = RIS   COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)  */
631
632#define S390_VRI_E_OPCODE_LIST(V) \
633  V(vftci, VFTCI,                 \
634    0xE74A) /* type = VRI_E VECTOR FP TEST DATA CLASS IMMEDIATE  */
635
636#define S390_RSL_A_OPCODE_LIST(V) \
637  V(tp, TP, 0xEBC0) /* type = RSL_A TEST DECIMAL  */
638
639#define S390_RSL_B_OPCODE_LIST(V)                                             \
640  V(cpdt, CPDT, 0xEDAC) /* type = RSL_B CONVERT TO PACKED (from long DFP)  */ \
641  V(cpxt, CPXT,                                                               \
642    0xEDAD) /* type = RSL_B CONVERT TO PACKED (from extended DFP)  */         \
643  V(cdpt, CDPT, 0xEDAE) /* type = RSL_B CONVERT FROM PACKED (to long DFP)  */ \
644  V(cxpt, CXPT,                                                               \
645    0xEDAF) /* type = RSL_B CONVERT FROM PACKED (to extended DFP)  */         \
646  V(czdt, CZDT, 0xEDA8) /* type = RSL CONVERT TO ZONED (from long DFP)  */    \
647  V(czxt, CZXT, 0xEDA9) /* type = RSL CONVERT TO ZONED (from extended DFP) */ \
648  V(cdzt, CDZT, 0xEDAA) /* type = RSL CONVERT FROM ZONED (to long DFP)  */    \
649  V(cxzt, CXZT, 0xEDAB) /* type = RSL CONVERT FROM ZONED (to extended DFP) */
650
651#define S390_SI_OPCODE_LIST(V)                                          \
652  V(tm, TM, 0x91)       /* type = SI    TEST UNDER MASK  */             \
653  V(mvi, MVI, 0x92)     /* type = SI    MOVE (immediate)  */            \
654  V(ni, NI, 0x94)       /* type = SI    AND (immediate)  */             \
655  V(cli, CLI, 0x95)     /* type = SI    COMPARE LOGICAL (immediate)  */ \
656  V(oi, OI, 0x96)       /* type = SI    OR (immediate)  */              \
657  V(xi, XI, 0x97)       /* type = SI    EXCLUSIVE OR (immediate)  */    \
658  V(stnsm, STNSM, 0xAC) /* type = SI    STORE THEN AND SYSTEM MASK  */  \
659  V(stosm, STOSM, 0xAD) /* type = SI    STORE THEN OR SYSTEM MASK  */   \
660  V(mc, MC, 0xAF)       /* type = SI    MONITOR CALL  */
661
662#define S390_SIL_OPCODE_LIST(V)                                                \
663  V(mvhhi, MVHHI, 0xE544) /* type = SIL   MOVE (16<-16)  */                    \
664  V(mvghi, MVGHI, 0xE548) /* type = SIL   MOVE (64<-16)  */                    \
665  V(mvhi, MVHI, 0xE54C)   /* type = SIL   MOVE (32<-16)  */                    \
666  V(chhsi, CHHSI,                                                              \
667    0xE554) /* type = SIL   COMPARE HALFWORD IMMEDIATE (16<-16)  */            \
668  V(clhhsi, CLHHSI,                                                            \
669    0xE555) /* type = SIL   COMPARE LOGICAL IMMEDIATE (16<-16)  */             \
670  V(cghsi, CGHSI,                                                              \
671    0xE558) /* type = SIL   COMPARE HALFWORD IMMEDIATE (64<-16)  */            \
672  V(clghsi, CLGHSI,                                                            \
673    0xE559)             /* type = SIL   COMPARE LOGICAL IMMEDIATE (64<-16)  */ \
674  V(chsi, CHSI, 0xE55C) /* type = SIL   COMPARE HALFWORD IMMEDIATE (32<-16) */ \
675  V(clfhsi, CLFHSI,                                                            \
676    0xE55D) /* type = SIL   COMPARE LOGICAL IMMEDIATE (32<-16)  */             \
677  V(tbegin, TBEGIN,                                                            \
678    0xE560) /* type = SIL   TRANSACTION BEGIN (nonconstrained)  */             \
679  V(tbeginc, TBEGINC,                                                          \
680    0xE561) /* type = SIL   TRANSACTION BEGIN (constrained)  */
681
682#define S390_VRS_A_OPCODE_LIST(V)                                            \
683  V(vesl, VESL, 0xE730) /* type = VRS_A VECTOR ELEMENT SHIFT LEFT  */        \
684  V(verll, VERLL,                                                            \
685    0xE733)           /* type = VRS_A VECTOR ELEMENT ROTATE LEFT LOGICAL  */ \
686  V(vlm, VLM, 0xE736) /* type = VRS_A VECTOR LOAD MULTIPLE  */               \
687  V(vesrl, VESRL,                                                            \
688    0xE738) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT LOGICAL  */           \
689  V(vesra, VESRA,                                                            \
690    0xE73A) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT ARITHMETIC  */        \
691  V(vstm, VSTM, 0xE73E) /* type = VRS_A VECTOR STORE MULTIPLE  */
692
693#define S390_RIL_A_OPCODE_LIST(V)                                              \
694  V(lgfi, LGFI, 0xC01)   /* type = RIL_A LOAD IMMEDIATE (64<-32)  */           \
695  V(xihf, XIHF, 0xC06)   /* type = RIL_A EXCLUSIVE OR IMMEDIATE (high)  */     \
696  V(xilf, XILF, 0xC07)   /* type = RIL_A EXCLUSIVE OR IMMEDIATE (low)  */      \
697  V(iihf, IIHF, 0xC08)   /* type = RIL_A INSERT IMMEDIATE (high)  */           \
698  V(iilf, IILF, 0xC09)   /* type = RIL_A INSERT IMMEDIATE (low)  */            \
699  V(nihf, NIHF, 0xC0A)   /* type = RIL_A AND IMMEDIATE (high)  */              \
700  V(nilf, NILF, 0xC0B)   /* type = RIL_A AND IMMEDIATE (low)  */               \
701  V(oihf, OIHF, 0xC0C)   /* type = RIL_A OR IMMEDIATE (high)  */               \
702  V(oilf, OILF, 0xC0D)   /* type = RIL_A OR IMMEDIATE (low)  */                \
703  V(llihf, LLIHF, 0xC0E) /* type = RIL_A LOAD LOGICAL IMMEDIATE (high)  */     \
704  V(llilf, LLILF, 0xC0F) /* type = RIL_A LOAD LOGICAL IMMEDIATE (low)  */      \
705  V(msgfi, MSGFI, 0xC20) /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (64<-32) */ \
706  V(msfi, MSFI, 0xC21)   /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (32)  */    \
707  V(slgfi, SLGFI,                                                              \
708    0xC24)             /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (64<-32)  */ \
709  V(slfi, SLFI, 0xC25) /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (32)  */     \
710  V(agfi, AGFI, 0xC28) /* type = RIL_A ADD IMMEDIATE (64<-32)  */              \
711  V(afi, AFI, 0xC29)   /* type = RIL_A ADD IMMEDIATE (32)  */                  \
712  V(algfi, ALGFI, 0xC2A) /* type = RIL_A ADD LOGICAL IMMEDIATE (64<-32)  */    \
713  V(alfi, ALFI, 0xC2B)   /* type = RIL_A ADD LOGICAL IMMEDIATE (32)  */        \
714  V(cgfi, CGFI, 0xC2C)   /* type = RIL_A COMPARE IMMEDIATE (64<-32)  */        \
715  V(cfi, CFI, 0xC2D)     /* type = RIL_A COMPARE IMMEDIATE (32)  */            \
716  V(clgfi, CLGFI, 0xC2E) /* type = RIL_A COMPARE LOGICAL IMMEDIATE (64<-32) */ \
717  V(clfi, CLFI, 0xC2F)   /* type = RIL_A COMPARE LOGICAL IMMEDIATE (32)  */    \
718  V(aih, AIH, 0xCC8)     /* type = RIL_A ADD IMMEDIATE HIGH (32)  */           \
719  V(alsih, ALSIH,                                                              \
720    0xCCA) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)  */     \
721  V(alsihn, ALSIHN,                                                            \
722    0xCCB) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)  */     \
723  V(cih, CIH, 0xCCD)   /* type = RIL_A COMPARE IMMEDIATE HIGH (32)  */         \
724  V(clih, CLIH, 0xCCF) /* type = RIL_A COMPARE LOGICAL IMMEDIATE HIGH (32)  */
725
726#define S390_RIL_B_OPCODE_LIST(V)                                              \
727  V(larl, LARL, 0xC00)   /* type = RIL_B LOAD ADDRESS RELATIVE LONG  */        \
728  V(brasl, BRASL, 0xC05) /* type = RIL_B BRANCH RELATIVE AND SAVE LONG  */     \
729  V(llhrl, LLHRL,                                                              \
730    0xC42) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)  */    \
731  V(lghrl, LGHRL,                                                              \
732    0xC44) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (64<-16)  */            \
733  V(lhrl, LHRL, 0xC45) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (32<-16) */ \
734  V(llghrl, LLGHRL,                                                            \
735    0xC46) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)  */    \
736  V(sthrl, STHRL, 0xC47) /* type = RIL_B STORE HALFWORD RELATIVE LONG (16)  */ \
737  V(lgrl, LGRL, 0xC48)   /* type = RIL_B LOAD RELATIVE LONG (64)  */           \
738  V(stgrl, STGRL, 0xC4B) /* type = RIL_B STORE RELATIVE LONG (64)  */          \
739  V(lgfrl, LGFRL, 0xC4C) /* type = RIL_B LOAD RELATIVE LONG (64<-32)  */       \
740  V(lrl, LRL, 0xC4D)     /* type = RIL_B LOAD RELATIVE LONG (32)  */           \
741  V(llgfrl, LLGFRL,                                                            \
742    0xC4E)             /* type = RIL_B LOAD LOGICAL RELATIVE LONG (64<-32)  */ \
743  V(strl, STRL, 0xC4F) /* type = RIL_B STORE RELATIVE LONG (32)  */            \
744  V(exrl, EXRL, 0xC60) /* type = RIL_B EXECUTE RELATIVE LONG  */               \
745  V(cghrl, CGHRL,                                                              \
746    0xC64) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (64<-16)  */         \
747  V(chrl, CHRL,                                                                \
748    0xC65) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (32<-16)  */         \
749  V(clghrl, CLGHRL,                                                            \
750    0xC66) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-16)  */          \
751  V(clhrl, CLHRL,                                                              \
752    0xC67) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32<-16)  */          \
753  V(cgrl, CGRL, 0xC68)   /* type = RIL_B COMPARE RELATIVE LONG (64)  */        \
754  V(clgrl, CLGRL, 0xC6A) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64) */ \
755  V(cgfrl, CGFRL, 0xC6C) /* type = RIL_B COMPARE RELATIVE LONG (64<-32)  */    \
756  V(crl, CRL, 0xC6D)     /* type = RIL_B COMPARE RELATIVE LONG (32)  */        \
757  V(clgfrl, CLGFRL,                                                            \
758    0xC6E) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-32)  */          \
759  V(clrl, CLRL, 0xC6F) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32)  */  \
760  V(brcth, BRCTH, 0xCC6) /* type = RIL_B BRANCH RELATIVE ON COUNT HIGH (32) */
761
762#define S390_VRS_B_OPCODE_LIST(V)                                          \
763  V(vlvg, VLVG, 0xE722) /* type = VRS_B VECTOR LOAD VR ELEMENT FROM GR  */ \
764  V(vll, VLL, 0xE737)   /* type = VRS_B VECTOR LOAD WITH LENGTH  */        \
765  V(vstl, VSTL, 0xE73F) /* type = VRS_B VECTOR STORE WITH LENGTH  */
766
767#define S390_RIL_C_OPCODE_LIST(V)                                              \
768  V(brcl, BRCL, 0xC04)   /* type = RIL_C BRANCH RELATIVE ON CONDITION LONG  */ \
769  V(pfdrl, PFDRL, 0xC62) /* type = RIL_C PREFETCH DATA RELATIVE LONG  */
770
771#define S390_VRS_C_OPCODE_LIST(V) \
772  V(vlgv, VLGV, 0xE721) /* type = VRS_C VECTOR LOAD GR FROM VR ELEMENT  */
773
774#define S390_RI_A_OPCODE_LIST(V)                                               \
775  V(iihh, IIHH, 0xA50)   /* type = RI_A  INSERT IMMEDIATE (high high)  */      \
776  V(iihl, IIHL, 0xA51)   /* type = RI_A  INSERT IMMEDIATE (high low)  */       \
777  V(iilh, IILH, 0xA52)   /* type = RI_A  INSERT IMMEDIATE (low high)  */       \
778  V(iill, IILL, 0xA53)   /* type = RI_A  INSERT IMMEDIATE (low low)  */        \
779  V(nihh, NIHH, 0xA54)   /* type = RI_A  AND IMMEDIATE (high high)  */         \
780  V(nihl, NIHL, 0xA55)   /* type = RI_A  AND IMMEDIATE (high low)  */          \
781  V(nilh, NILH, 0xA56)   /* type = RI_A  AND IMMEDIATE (low high)  */          \
782  V(nill, NILL, 0xA57)   /* type = RI_A  AND IMMEDIATE (low low)  */           \
783  V(oihh, OIHH, 0xA58)   /* type = RI_A  OR IMMEDIATE (high high)  */          \
784  V(oihl, OIHL, 0xA59)   /* type = RI_A  OR IMMEDIATE (high low)  */           \
785  V(oilh, OILH, 0xA5A)   /* type = RI_A  OR IMMEDIATE (low high)  */           \
786  V(oill, OILL, 0xA5B)   /* type = RI_A  OR IMMEDIATE (low low)  */            \
787  V(llihh, LLIHH, 0xA5C) /* type = RI_A  LOAD LOGICAL IMMEDIATE (high high) */ \
788  V(llihl, LLIHL, 0xA5D) /* type = RI_A  LOAD LOGICAL IMMEDIATE (high low)  */ \
789  V(llilh, LLILH, 0xA5E) /* type = RI_A  LOAD LOGICAL IMMEDIATE (low high)  */ \
790  V(llill, LLILL, 0xA5F) /* type = RI_A  LOAD LOGICAL IMMEDIATE (low low)  */  \
791  V(tmlh, TMLH, 0xA70)   /* type = RI_A  TEST UNDER MASK (low high)  */        \
792  V(tmll, TMLL, 0xA71)   /* type = RI_A  TEST UNDER MASK (low low)  */         \
793  V(tmhh, TMHH, 0xA72)   /* type = RI_A  TEST UNDER MASK (high high)  */       \
794  V(tmhl, TMHL, 0xA73)   /* type = RI_A  TEST UNDER MASK (high low)  */        \
795  V(lhi, LHI, 0xA78)     /* type = RI_A  LOAD HALFWORD IMMEDIATE (32)<-16  */  \
796  V(lghi, LGHI, 0xA79)   /* type = RI_A  LOAD HALFWORD IMMEDIATE (64<-16)  */  \
797  V(ahi, AHI, 0xA7A)     /* type = RI_A  ADD HALFWORD IMMEDIATE (32<-16)  */   \
798  V(aghi, AGHI, 0xA7B)   /* type = RI_A  ADD HALFWORD IMMEDIATE (64<-16)  */   \
799  V(mhi, MHI, 0xA7C) /* type = RI_A  MULTIPLY HALFWORD IMMEDIATE (32<-16)  */  \
800  V(mghi, MGHI, 0xA7D) /* type = RI_A  MULTIPLY HALFWORD IMMEDIATE (64<-16) */ \
801  V(chi, CHI, 0xA7E)   /* type = RI_A  COMPARE HALFWORD IMMEDIATE (32<-16)  */ \
802  V(cghi, CGHI, 0xA7F) /* type = RI_A  COMPARE HALFWORD IMMEDIATE (64<-16)  */
803
804#define S390_RSI_OPCODE_LIST(V)                                              \
805  V(brxh, BRXH, 0x84) /* type = RSI   BRANCH RELATIVE ON INDEX HIGH (32)  */ \
806  V(brxle, BRXLE,                                                            \
807    0x85) /* type = RSI   BRANCH RELATIVE ON INDEX LOW OR EQ. (32)  */
808
809#define S390_RI_B_OPCODE_LIST(V)                                           \
810  V(bras, BRAS, 0xA75)   /* type = RI_B  BRANCH RELATIVE AND SAVE  */      \
811  V(brct, BRCT, 0xA76)   /* type = RI_B  BRANCH RELATIVE ON COUNT (32)  */ \
812  V(brctg, BRCTG, 0xA77) /* type = RI_B  BRANCH RELATIVE ON COUNT (64)  */
813
814#define S390_RI_C_OPCODE_LIST(V) \
815  V(brc, BRC, 0xA74) /* type = RI_C BRANCH RELATIVE ON CONDITION  */
816
817#define S390_SMI_OPCODE_LIST(V) \
818  V(bpp, BPP, 0xC7) /* type = SMI   BRANCH PREDICTION PRELOAD  */
819
820#define S390_RXY_A_OPCODE_LIST(V)                                              \
821  V(ltg, LTG, 0xE302)   /* type = RXY_A LOAD AND TEST (64)  */                 \
822  V(lrag, LRAG, 0xE303) /* type = RXY_A LOAD REAL ADDRESS (64)  */             \
823  V(lg, LG, 0xE304)     /* type = RXY_A LOAD (64)  */                          \
824  V(cvby, CVBY, 0xE306) /* type = RXY_A CONVERT TO BINARY (32)  */             \
825  V(ag, AG, 0xE308)     /* type = RXY_A ADD (64)  */                           \
826  V(sg, SG, 0xE309)     /* type = RXY_A SUBTRACT (64)  */                      \
827  V(alg, ALG, 0xE30A)   /* type = RXY_A ADD LOGICAL (64)  */                   \
828  V(slg, SLG, 0xE30B)   /* type = RXY_A SUBTRACT LOGICAL (64)  */              \
829  V(msg, MSG, 0xE30C)   /* type = RXY_A MULTIPLY SINGLE (64)  */               \
830  V(dsg, DSG, 0xE30D)   /* type = RXY_A DIVIDE SINGLE (64)  */                 \
831  V(cvbg, CVBG, 0xE30E) /* type = RXY_A CONVERT TO BINARY (64)  */             \
832  V(lrvg, LRVG, 0xE30F) /* type = RXY_A LOAD REVERSED (64)  */                 \
833  V(lt_z, LT, 0xE312)   /* type = RXY_A LOAD AND TEST (32)  */                 \
834  V(lray, LRAY, 0xE313) /* type = RXY_A LOAD REAL ADDRESS (32)  */             \
835  V(lgf, LGF, 0xE314)   /* type = RXY_A LOAD (64<-32)  */                      \
836  V(lgh, LGH, 0xE315)   /* type = RXY_A LOAD HALFWORD (64<-16)  */             \
837  V(llgf, LLGF, 0xE316) /* type = RXY_A LOAD LOGICAL (64<-32)  */              \
838  V(llgt, LLGT,                                                                \
839    0xE317) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS (64<-31)  */          \
840  V(agf, AGF, 0xE318)     /* type = RXY_A ADD (64<-32)  */                     \
841  V(sgf, SGF, 0xE319)     /* type = RXY_A SUBTRACT (64<-32)  */                \
842  V(algf, ALGF, 0xE31A)   /* type = RXY_A ADD LOGICAL (64<-32)  */             \
843  V(slgf, SLGF, 0xE31B)   /* type = RXY_A SUBTRACT LOGICAL (64<-32)  */        \
844  V(msgf, MSGF, 0xE31C)   /* type = RXY_A MULTIPLY SINGLE (64<-32)  */         \
845  V(dsgf, DSGF, 0xE31D)   /* type = RXY_A DIVIDE SINGLE (64<-32)  */           \
846  V(lrv, LRV, 0xE31E)     /* type = RXY_A LOAD REVERSED (32)  */               \
847  V(lrvh, LRVH, 0xE31F)   /* type = RXY_A LOAD REVERSED (16)  */               \
848  V(cg, CG, 0xE320)       /* type = RXY_A COMPARE (64)  */                     \
849  V(clg, CLG, 0xE321)     /* type = RXY_A COMPARE LOGICAL (64)  */             \
850  V(stg, STG, 0xE324)     /* type = RXY_A STORE (64)  */                       \
851  V(ntstg, NTSTG, 0xE325) /* type = RXY_A NONTRANSACTIONAL STORE (64)  */      \
852  V(cvdy, CVDY, 0xE326)   /* type = RXY_A CONVERT TO DECIMAL (32)  */          \
853  V(lzrg, LZRG, 0xE32A) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (64)  */  \
854  V(cvdg, CVDG, 0xE32E) /* type = RXY_A CONVERT TO DECIMAL (64)  */            \
855  V(strvg, STRVG, 0xE32F) /* type = RXY_A STORE REVERSED (64)  */              \
856  V(cgf, CGF, 0xE330)     /* type = RXY_A COMPARE (64<-32)  */                 \
857  V(clgf, CLGF, 0xE331)   /* type = RXY_A COMPARE LOGICAL (64<-32)  */         \
858  V(ltgf, LTGF, 0xE332)   /* type = RXY_A LOAD AND TEST (64<-32)  */           \
859  V(cgh, CGH, 0xE334)     /* type = RXY_A COMPARE HALFWORD (64<-16)  */        \
860  V(llzrgf, LLZRGF,                                                            \
861    0xE33A) /* type = RXY_A LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64<-32)  */  \
862  V(lzrf, LZRF, 0xE33B) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (32)  */  \
863  V(strv, STRV, 0xE33E) /* type = RXY_A STORE REVERSED (32)  */                \
864  V(strvh, STRVH, 0xE33F) /* type = RXY_A STORE REVERSED (16)  */              \
865  V(bctg, BCTG, 0xE346)   /* type = RXY_A BRANCH ON COUNT (64)  */             \
866  V(sty, STY, 0xE350)     /* type = RXY_A STORE (32)  */                       \
867  V(msy, MSY, 0xE351)     /* type = RXY_A MULTIPLY SINGLE (32)  */             \
868  V(ny, NY, 0xE354)       /* type = RXY_A AND (32)  */                         \
869  V(cly, CLY, 0xE355)     /* type = RXY_A COMPARE LOGICAL (32)  */             \
870  V(oy, OY, 0xE356)       /* type = RXY_A OR (32)  */                          \
871  V(xy, XY, 0xE357)       /* type = RXY_A EXCLUSIVE OR (32)  */                \
872  V(ly, LY, 0xE358)       /* type = RXY_A LOAD (32)  */                        \
873  V(cy, CY, 0xE359)       /* type = RXY_A COMPARE (32)  */                     \
874  V(ay, AY, 0xE35A)       /* type = RXY_A ADD (32)  */                         \
875  V(sy, SY, 0xE35B)       /* type = RXY_A SUBTRACT (32)  */                    \
876  V(mfy, MFY, 0xE35C)     /* type = RXY_A MULTIPLY (64<-32)  */                \
877  V(aly, ALY, 0xE35E)     /* type = RXY_A ADD LOGICAL (32)  */                 \
878  V(sly, SLY, 0xE35F)     /* type = RXY_A SUBTRACT LOGICAL (32)  */            \
879  V(sthy, STHY, 0xE370)   /* type = RXY_A STORE HALFWORD (16)  */              \
880  V(lay, LAY, 0xE371)     /* type = RXY_A LOAD ADDRESS  */                     \
881  V(stcy, STCY, 0xE372)   /* type = RXY_A STORE CHARACTER  */                  \
882  V(icy, ICY, 0xE373)     /* type = RXY_A INSERT CHARACTER  */                 \
883  V(laey, LAEY, 0xE375)   /* type = RXY_A LOAD ADDRESS EXTENDED  */            \
884  V(lb, LB, 0xE376)       /* type = RXY_A LOAD BYTE (32<-8)  */                \
885  V(lgb, LGB, 0xE377)     /* type = RXY_A LOAD BYTE (64<-8)  */                \
886  V(lhy, LHY, 0xE378)     /* type = RXY_A LOAD HALFWORD (32)<-16  */           \
887  V(chy, CHY, 0xE379)     /* type = RXY_A COMPARE HALFWORD (32<-16)  */        \
888  V(ahy, AHY, 0xE37A)     /* type = RXY_A ADD HALFWORD (32<-16)  */            \
889  V(shy, SHY, 0xE37B)     /* type = RXY_A SUBTRACT HALFWORD (32<-16)  */       \
890  V(mhy, MHY, 0xE37C)     /* type = RXY_A MULTIPLY HALFWORD (32<-16)  */       \
891  V(ng, NG, 0xE380)       /* type = RXY_A AND (64)  */                         \
892  V(og, OG, 0xE381)       /* type = RXY_A OR (64)  */                          \
893  V(xg, XG, 0xE382)       /* type = RXY_A EXCLUSIVE OR (64)  */                \
894  V(lgat, LGAT, 0xE385)   /* type = RXY_A LOAD AND TRAP (64)  */               \
895  V(mlg, MLG, 0xE386)     /* type = RXY_A MULTIPLY LOGICAL (128<-64)  */       \
896  V(dlg, DLG, 0xE387)     /* type = RXY_A DIVIDE LOGICAL (64<-128)  */         \
897  V(alcg, ALCG, 0xE388)   /* type = RXY_A ADD LOGICAL WITH CARRY (64)  */      \
898  V(slbg, SLBG, 0xE389) /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (64)  */  \
899  V(stpq, STPQ, 0xE38E) /* type = RXY_A STORE PAIR TO QUADWORD  */             \
900  V(lpq, LPQ, 0xE38F) /* type = RXY_A LOAD PAIR FROM QUADWORD (64&64<-128)  */ \
901  V(llgc, LLGC, 0xE390) /* type = RXY_A LOAD LOGICAL CHARACTER (64<-8)  */     \
902  V(llgh, LLGH, 0xE391) /* type = RXY_A LOAD LOGICAL HALFWORD (64<-16)  */     \
903  V(llc, LLC, 0xE394)   /* type = RXY_A LOAD LOGICAL CHARACTER (32<-8)  */     \
904  V(llh, LLH, 0xE395)   /* type = RXY_A LOAD LOGICAL HALFWORD (32<-16)  */     \
905  V(ml, ML, 0xE396)     /* type = RXY_A MULTIPLY LOGICAL (64<-32)  */          \
906  V(dl, DL, 0xE397)     /* type = RXY_A DIVIDE LOGICAL (32<-64)  */            \
907  V(alc, ALC, 0xE398)   /* type = RXY_A ADD LOGICAL WITH CARRY (32)  */        \
908  V(slb, SLB, 0xE399)   /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (32)  */  \
909  V(llgtat, LLGTAT,                                                            \
910    0xE39C) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)  */ \
911  V(llgfat, LLGFAT, 0xE39D) /* type = RXY_A LOAD LOGICAL AND TRAP (64<-32)  */ \
912  V(lat, LAT, 0xE39F)       /* type = RXY_A LOAD AND TRAP (32L<-32)  */        \
913  V(lbh, LBH, 0xE3C0)       /* type = RXY_A LOAD BYTE HIGH (32<-8)  */         \
914  V(llch, LLCH, 0xE3C2) /* type = RXY_A LOAD LOGICAL CHARACTER HIGH (32<-8) */ \
915  V(stch, STCH, 0xE3C3) /* type = RXY_A STORE CHARACTER HIGH (8)  */           \
916  V(lhh, LHH, 0xE3C4)   /* type = RXY_A LOAD HALFWORD HIGH (32<-16)  */        \
917  V(llhh, LLHH, 0xE3C6) /* type = RXY_A LOAD LOGICAL HALFWORD HIGH (32<-16) */ \
918  V(sthh, STHH, 0xE3C7) /* type = RXY_A STORE HALFWORD HIGH (16)  */           \
919  V(lfhat, LFHAT, 0xE3C8) /* type = RXY_A LOAD HIGH AND TRAP (32H<-32)  */     \
920  V(lfh, LFH, 0xE3CA)     /* type = RXY_A LOAD HIGH (32)  */                   \
921  V(stfh, STFH, 0xE3CB)   /* type = RXY_A STORE HIGH (32)  */                  \
922  V(chf, CHF, 0xE3CD)     /* type = RXY_A COMPARE HIGH (32)  */                \
923  V(clhf, CLHF, 0xE3CF)   /* type = RXY_A COMPARE LOGICAL HIGH (32)  */        \
924  V(ley, LEY, 0xED64)     /* type = RXY_A LOAD (short)  */                     \
925  V(ldy, LDY, 0xED65)     /* type = RXY_A LOAD (long)  */                      \
926  V(stey, STEY, 0xED66)   /* type = RXY_A STORE (short)  */                    \
927  V(stdy, STDY, 0xED67)   /* type = RXY_A STORE (long)  */                     \
928  V(msc, MSC, 0xE353)     /* type = RSY_A MULTIPLY SINGLE (32)  */             \
929  V(msgc, MSGC, 0xE383)   /* type = RSY_A MULTIPLY SINGLE (64)  */
930
931#define S390_RXY_B_OPCODE_LIST(V) \
932  V(pfd, PFD, 0xE336) /* type = RXY_B PREFETCH DATA  */
933
934#define S390_SIY_OPCODE_LIST(V)                                           \
935  V(tmy, TMY, 0xEB51)   /* type = SIY   TEST UNDER MASK  */               \
936  V(mviy, MVIY, 0xEB52) /* type = SIY   MOVE (immediate)  */              \
937  V(niy, NIY, 0xEB54)   /* type = SIY   AND (immediate)  */               \
938  V(cliy, CLIY, 0xEB55) /* type = SIY   COMPARE LOGICAL (immediate)  */   \
939  V(oiy, OIY, 0xEB56)   /* type = SIY   OR (immediate)  */                \
940  V(xiy, XIY, 0xEB57)   /* type = SIY   EXCLUSIVE OR (immediate)  */      \
941  V(asi, ASI, 0xEB6A)   /* type = SIY   ADD IMMEDIATE (32<-8)  */         \
942  V(alsi, ALSI,                                                           \
943    0xEB6E) /* type = SIY   ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)  */ \
944  V(agsi, AGSI, 0xEB7A) /* type = SIY   ADD IMMEDIATE (64<-8)  */         \
945  V(algsi, ALGSI,                                                         \
946    0xEB7E) /* type = SIY   ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)  */
947
948#define S390_SS_A_OPCODE_LIST(V)                                        \
949  V(trtr, TRTR, 0xD0)   /* type = SS_A  TRANSLATE AND TEST REVERSE  */  \
950  V(mvn, MVN, 0xD1)     /* type = SS_A  MOVE NUMERICS  */               \
951  V(mvc, MVC, 0xD2)     /* type = SS_A  MOVE (character)  */            \
952  V(mvz, MVZ, 0xD3)     /* type = SS_A  MOVE ZONES  */                  \
953  V(nc, NC, 0xD4)       /* type = SS_A  AND (character)  */             \
954  V(clc, CLC, 0xD5)     /* type = SS_A  COMPARE LOGICAL (character)  */ \
955  V(oc, OC, 0xD6)       /* type = SS_A  OR (character)  */              \
956  V(xc, XC, 0xD7)       /* type = SS_A  EXCLUSIVE OR (character)  */    \
957  V(tr, TR, 0xDC)       /* type = SS_A  TRANSLATE  */                   \
958  V(trt, TRT, 0xDD)     /* type = SS_A  TRANSLATE AND TEST  */          \
959  V(ed, ED, 0xDE)       /* type = SS_A  EDIT  */                        \
960  V(edmk, EDMK, 0xDF)   /* type = SS_A  EDIT AND MARK  */               \
961  V(unpku, UNPKU, 0xE2) /* type = SS_A  UNPACK UNICODE  */              \
962  V(mvcin, MVCIN, 0xE8) /* type = SS_A  MOVE INVERSE  */                \
963  V(unpka, UNPKA, 0xEA) /* type = SS_A  UNPACK ASCII  */
964
965#define S390_E_OPCODE_LIST(V)                                                  \
966  V(pr, PR, 0x0101)       /* type = E     PROGRAM RETURN  */                   \
967  V(upt, UPT, 0x0102)     /* type = E     UPDATE TREE  */                      \
968  V(ptff, PTFF, 0x0104)   /* type = E     PERFORM TIMING FACILITY FUNCTION  */ \
969  V(sckpf, SCKPF, 0x0107) /* type = E     SET CLOCK PROGRAMMABLE FIELD  */     \
970  V(pfpo, PFPO, 0x010A)   /* type = E     PERFORM FLOATING-POINT OPERATION  */ \
971  V(tam, TAM, 0x010B)     /* type = E     TEST ADDRESSING MODE  */             \
972  V(sam24, SAM24, 0x010C) /* type = E     SET ADDRESSING MODE (24)  */         \
973  V(sam31, SAM31, 0x010D) /* type = E     SET ADDRESSING MODE (31)  */         \
974  V(sam64, SAM64, 0x010E) /* type = E     SET ADDRESSING MODE (64)  */         \
975  V(trap2, TRAP2, 0x01FF) /* type = E     TRAP  */
976
977#define S390_SS_B_OPCODE_LIST(V)                           \
978  V(mvo, MVO, 0xF1)   /* type = SS_B  MOVE WITH OFFSET  */ \
979  V(pack, PACK, 0xF2) /* type = SS_B  PACK  */             \
980  V(unpk, UNPK, 0xF3) /* type = SS_B  UNPACK  */           \
981  V(zap, ZAP, 0xF8)   /* type = SS_B  ZERO AND ADD  */     \
982  V(cp, CP, 0xF9)     /* type = SS_B  COMPARE DECIMAL  */  \
983  V(ap, AP, 0xFA)     /* type = SS_B  ADD DECIMAL  */      \
984  V(sp, SP, 0xFB)     /* type = SS_B  SUBTRACT DECIMAL  */ \
985  V(mp, MP, 0xFC)     /* type = SS_B  MULTIPLY DECIMAL  */ \
986  V(dp, DP, 0xFD)     /* type = SS_B  DIVIDE DECIMAL  */
987
988#define S390_SS_C_OPCODE_LIST(V) \
989  V(srp, SRP, 0xF0) /* type = SS_C  SHIFT AND ROUND DECIMAL  */
990
991#define S390_SS_D_OPCODE_LIST(V)                          \
992  V(mvck, MVCK, 0xD9) /* type = SS_D  MOVE WITH KEY  */   \
993  V(mvcp, MVCP, 0xDA) /* type = SS_D  MOVE TO PRIMARY  */ \
994  V(mvcs, MVCS, 0xDB) /* type = SS_D  MOVE TO SECONDARY  */
995
996#define S390_SS_E_OPCODE_LIST(V)                                 \
997  V(plo, PLO, 0xEE) /* type = SS_E  PERFORM LOCKED OPERATION  */ \
998  V(lmd, LMD, 0xEF) /* type = SS_E  LOAD MULTIPLE DISJOINT (64<-32&32)  */
999
1000#define S390_I_OPCODE_LIST(V) \
1001  V(svc, SVC, 0x0A) /* type = I     SUPERVISOR CALL  */
1002
1003#define S390_SS_F_OPCODE_LIST(V)                     \
1004  V(pku, PKU, 0xE1) /* type = SS_F  PACK UNICODE  */ \
1005  V(pka, PKA, 0xE9) /* type = SS_F  PACK ASCII  */
1006
1007#define S390_SSE_OPCODE_LIST(V)                                             \
1008  V(lasp, LASP, 0xE500)   /* type = SSE   LOAD ADDRESS SPACE PARAMETERS  */ \
1009  V(tprot, TPROT, 0xE501) /* type = SSE   TEST PROTECTION  */               \
1010  V(strag, STRAG, 0xE502) /* type = SSE   STORE REAL ADDRESS  */            \
1011  V(mvcsk, MVCSK, 0xE50E) /* type = SSE   MOVE WITH SOURCE KEY  */          \
1012  V(mvcdk, MVCDK, 0xE50F) /* type = SSE   MOVE WITH DESTINATION KEY  */
1013
1014#define S390_SSF_OPCODE_LIST(V)                                                \
1015  V(mvcos, MVCOS, 0xC80) /* type = SSF   MOVE WITH OPTIONAL SPECIFICATIONS  */ \
1016  V(ectg, ECTG, 0xC81)   /* type = SSF   EXTRACT CPU TIME  */                  \
1017  V(csst, CSST, 0xC82)   /* type = SSF   COMPARE AND SWAP AND STORE  */        \
1018  V(lpd, LPD, 0xC84)     /* type = SSF   LOAD PAIR DISJOINT (32)  */           \
1019  V(lpdg, LPDG, 0xC85)   /* type = SSF   LOAD PAIR DISJOINT (64)  */
1020
1021#define S390_RS_A_OPCODE_LIST(V)                                              \
1022  V(bxh, BXH, 0x86)     /* type = RS_A  BRANCH ON INDEX HIGH (32)  */         \
1023  V(bxle, BXLE, 0x87)   /* type = RS_A  BRANCH ON INDEX LOW OR EQUAL (32)  */ \
1024  V(srl, SRL, 0x88)     /* type = RS_A  SHIFT RIGHT SINGLE LOGICAL (32)  */   \
1025  V(sll, SLL, 0x89)     /* type = RS_A  SHIFT LEFT SINGLE LOGICAL (32)  */    \
1026  V(sra, SRA, 0x8A)     /* type = RS_A  SHIFT RIGHT SINGLE (32)  */           \
1027  V(sla, SLA, 0x8B)     /* type = RS_A  SHIFT LEFT SINGLE (32)  */            \
1028  V(srdl, SRDL, 0x8C)   /* type = RS_A  SHIFT RIGHT DOUBLE LOGICAL (64)  */   \
1029  V(sldl, SLDL, 0x8D)   /* type = RS_A  SHIFT LEFT DOUBLE LOGICAL (64)  */    \
1030  V(srda, SRDA, 0x8E)   /* type = RS_A  SHIFT RIGHT DOUBLE (64)  */           \
1031  V(slda, SLDA, 0x8F)   /* type = RS_A  SHIFT LEFT DOUBLE (64)  */            \
1032  V(stm, STM, 0x90)     /* type = RS_A  STORE MULTIPLE (32)  */               \
1033  V(lm, LM, 0x98)       /* type = RS_A  LOAD MULTIPLE (32)  */                \
1034  V(trace, TRACE, 0x99) /* type = RS_A  TRACE (32)  */                        \
1035  V(lam, LAM, 0x9A)     /* type = RS_A  LOAD ACCESS MULTIPLE  */              \
1036  V(stam, STAM, 0x9B)   /* type = RS_A  STORE ACCESS MULTIPLE  */             \
1037  V(mvcle, MVCLE, 0xA8) /* type = RS_A  MOVE LONG EXTENDED  */                \
1038  V(clcle, CLCLE, 0xA9) /* type = RS_A  COMPARE LOGICAL LONG EXTENDED  */     \
1039  V(sigp, SIGP, 0xAE)   /* type = RS_A  SIGNAL PROCESSOR  */                  \
1040  V(stctl, STCTL, 0xB6) /* type = RS_A  STORE CONTROL (32)  */                \
1041  V(lctl, LCTL, 0xB7)   /* type = RS_A  LOAD CONTROL (32)  */                 \
1042  V(cs, CS, 0xBA)       /* type = RS_A  COMPARE AND SWAP (32)  */             \
1043  V(cds, CDS, 0xBB)     /* type = RS_A  COMPARE DOUBLE AND SWAP (32)  */
1044
1045#define S390_RS_B_OPCODE_LIST(V)                                               \
1046  V(clm, CLM, 0xBD) /* type = RS_B  COMPARE LOGICAL CHAR. UNDER MASK (low)  */ \
1047  V(stcm, STCM, 0xBE) /* type = RS_B  STORE CHARACTERS UNDER MASK (low)  */    \
1048  V(icm, ICM, 0xBF)   /* type = RS_B  INSERT CHARACTERS UNDER MASK (low)  */
1049
1050#define S390_S_OPCODE_LIST(V)                                                  \
1051  V(lpsw, LPSW, 0x82)         /* type = S     LOAD PSW  */                     \
1052  V(diagnose, DIAGNOSE, 0x83) /* type = S     DIAGNOSE  */                     \
1053  V(ts, TS, 0x93)             /* type = S     TEST AND SET  */                 \
1054  V(stidp, STIDP, 0xB202)     /* type = S     STORE CPU ID  */                 \
1055  V(sck, SCK, 0xB204)         /* type = S     SET CLOCK  */                    \
1056  V(stck, STCK, 0xB205)       /* type = S     STORE CLOCK  */                  \
1057  V(sckc, SCKC, 0xB206)       /* type = S     SET CLOCK COMPARATOR  */         \
1058  V(stckc, STCKC, 0xB207)     /* type = S     STORE CLOCK COMPARATOR  */       \
1059  V(spt, SPT, 0xB208)         /* type = S     SET CPU TIMER  */                \
1060  V(stpt, STPT, 0xB209)       /* type = S     STORE CPU TIMER  */              \
1061  V(spka, SPKA, 0xB20A)       /* type = S     SET PSW KEY FROM ADDRESS  */     \
1062  V(ipk, IPK, 0xB20B)         /* type = S     INSERT PSW KEY  */               \
1063  V(ptlb, PTLB, 0xB20D)       /* type = S     PURGE TLB  */                    \
1064  V(spx, SPX, 0xB210)         /* type = S     SET PREFIX  */                   \
1065  V(stpx, STPX, 0xB211)       /* type = S     STORE PREFIX  */                 \
1066  V(stap, STAP, 0xB212)       /* type = S     STORE CPU ADDRESS  */            \
1067  V(pc, PC, 0xB218)           /* type = S     PROGRAM CALL  */                 \
1068  V(sac, SAC, 0xB219)         /* type = S     SET ADDRESS SPACE CONTROL  */    \
1069  V(cfc, CFC, 0xB21A)         /* type = S     COMPARE AND FORM CODEWORD  */    \
1070  V(csch, CSCH, 0xB230)       /* type = S     CLEAR SUBCHANNEL  */             \
1071  V(hsch, HSCH, 0xB231)       /* type = S     HALT SUBCHANNEL  */              \
1072  V(msch, MSCH, 0xB232)       /* type = S     MODIFY SUBCHANNEL  */            \
1073  V(ssch, SSCH, 0xB233)       /* type = S     START SUBCHANNEL  */             \
1074  V(stsch, STSCH, 0xB234)     /* type = S     STORE SUBCHANNEL  */             \
1075  V(tsch, TSCH, 0xB235)       /* type = S     TEST SUBCHANNEL  */              \
1076  V(tpi, TPI, 0xB236)         /* type = S     TEST PENDING INTERRUPTION  */    \
1077  V(sal, SAL, 0xB237)         /* type = S     SET ADDRESS LIMIT  */            \
1078  V(rsch, RSCH, 0xB238)       /* type = S     RESUME SUBCHANNEL  */            \
1079  V(stcrw, STCRW, 0xB239)     /* type = S     STORE CHANNEL REPORT WORD  */    \
1080  V(stcps, STCPS, 0xB23A)     /* type = S     STORE CHANNEL PATH STATUS  */    \
1081  V(rchp, RCHP, 0xB23B)       /* type = S     RESET CHANNEL PATH  */           \
1082  V(schm, SCHM, 0xB23C)       /* type = S     SET CHANNEL MONITOR  */          \
1083  V(xsch, XSCH, 0xB276)       /* type = S     CANCEL SUBCHANNEL  */            \
1084  V(rp, RP_Z, 0xB277)         /* type = S     RESUME PROGRAM  */               \
1085  V(stcke, STCKE, 0xB278)     /* type = S     STORE CLOCK EXTENDED  */         \
1086  V(sacf, SACF, 0xB279)     /* type = S     SET ADDRESS SPACE CONTROL FAST  */ \
1087  V(stckf, STCKF, 0xB27C)   /* type = S     STORE CLOCK FAST  */               \
1088  V(stsi, STSI, 0xB27D)     /* type = S     STORE SYSTEM INFORMATION  */       \
1089  V(srnm, SRNM, 0xB299)     /* type = S     SET BFP ROUNDING MODE (2 bit)  */  \
1090  V(stfpc, STFPC, 0xB29C)   /* type = S     STORE FPC  */                      \
1091  V(lfpc, LFPC, 0xB29D)     /* type = S     LOAD FPC  */                       \
1092  V(stfle, STFLE, 0xB2B0)   /* type = S     STORE FACILITY LIST EXTENDED  */   \
1093  V(stfl, STFL, 0xB2B1)     /* type = S     STORE FACILITY LIST  */            \
1094  V(lpswe, LPSWE, 0xB2B2)   /* type = S     LOAD PSW EXTENDED  */              \
1095  V(srnmb, SRNMB, 0xB2B8)   /* type = S     SET BFP ROUNDING MODE (3 bit)  */  \
1096  V(srnmt, SRNMT, 0xB2B9)   /* type = S     SET DFP ROUNDING MODE  */          \
1097  V(lfas, LFAS, 0xB2BD)     /* type = S     LOAD FPC AND SIGNAL  */            \
1098  V(tend, TEND, 0xB2F8)     /* type = S     TRANSACTION END  */                \
1099  V(tabort, TABORT, 0xB2FC) /* type = S     TRANSACTION ABORT  */              \
1100  V(trap4, TRAP4, 0xB2FF)   /* type = S     TRAP  */
1101
1102#define S390_RX_A_OPCODE_LIST(V)                                            \
1103  V(la, LA, 0x41)     /* type = RX_A  LOAD ADDRESS  */                      \
1104  V(stc, STC, 0x42)   /* type = RX_A  STORE CHARACTER  */                   \
1105  V(ic_z, IC_z, 0x43) /* type = RX_A  INSERT CHARACTER  */                  \
1106  V(ex, EX, 0x44)     /* type = RX_A  EXECUTE  */                           \
1107  V(bal, BAL, 0x45)   /* type = RX_A  BRANCH AND LINK  */                   \
1108  V(bct, BCT, 0x46)   /* type = RX_A  BRANCH ON COUNT (32)  */              \
1109  V(lh, LH, 0x48)     /* type = RX_A  LOAD HALFWORD (32<-16)  */            \
1110  V(ch, CH, 0x49)     /* type = RX_A  COMPARE HALFWORD (32<-16)  */         \
1111  V(ah, AH, 0x4A)     /* type = RX_A  ADD HALFWORD (32<-16)  */             \
1112  V(sh, SH, 0x4B)     /* type = RX_A  SUBTRACT HALFWORD (32<-16)  */        \
1113  V(mh, MH, 0x4C)     /* type = RX_A  MULTIPLY HALFWORD (32<-16)  */        \
1114  V(bas, BAS, 0x4D)   /* type = RX_A  BRANCH AND SAVE  */                   \
1115  V(cvd, CVD, 0x4E)   /* type = RX_A  CONVERT TO DECIMAL (32)  */           \
1116  V(cvb, CVB, 0x4F)   /* type = RX_A  CONVERT TO BINARY (32)  */            \
1117  V(st, ST, 0x50)     /* type = RX_A  STORE (32)  */                        \
1118  V(lae, LAE, 0x51)   /* type = RX_A  LOAD ADDRESS EXTENDED  */             \
1119  V(n, N, 0x54)       /* type = RX_A  AND (32)  */                          \
1120  V(cl, CL, 0x55)     /* type = RX_A  COMPARE LOGICAL (32)  */              \
1121  V(o, O, 0x56)       /* type = RX_A  OR (32)  */                           \
1122  V(x, X, 0x57)       /* type = RX_A  EXCLUSIVE OR (32)  */                 \
1123  V(l, L, 0x58)       /* type = RX_A  LOAD (32)  */                         \
1124  V(c, C, 0x59)       /* type = RX_A  COMPARE (32)  */                      \
1125  V(a, A, 0x5A)       /* type = RX_A  ADD (32)  */                          \
1126  V(s, S, 0x5B)       /* type = RX_A  SUBTRACT (32)  */                     \
1127  V(m, M, 0x5C)       /* type = RX_A  MULTIPLY (64<-32)  */                 \
1128  V(d, D, 0x5D)       /* type = RX_A  DIVIDE (32<-64)  */                   \
1129  V(al_z, AL, 0x5E)   /* type = RX_A  ADD LOGICAL (32)  */                  \
1130  V(sl, SL, 0x5F)     /* type = RX_A  SUBTRACT LOGICAL (32)  */             \
1131  V(std, STD, 0x60)   /* type = RX_A  STORE (long)  */                      \
1132  V(mxd, MXD, 0x67)   /* type = RX_A  MULTIPLY (long to extended HFP)  */   \
1133  V(ld, LD, 0x68)     /* type = RX_A  LOAD (long)  */                       \
1134  V(cd, CD, 0x69)     /* type = RX_A  COMPARE (long HFP)  */                \
1135  V(ad, AD, 0x6A)     /* type = RX_A  ADD NORMALIZED (long HFP)  */         \
1136  V(sd, SD, 0x6B)     /* type = RX_A  SUBTRACT NORMALIZED (long HFP)  */    \
1137  V(md, MD, 0x6C)     /* type = RX_A  MULTIPLY (long HFP)  */               \
1138  V(dd, DD, 0x6D)     /* type = RX_A  DIVIDE (long HFP)  */                 \
1139  V(aw, AW, 0x6E)     /* type = RX_A  ADD UNNORMALIZED (long HFP)  */       \
1140  V(sw, SW, 0x6F)     /* type = RX_A  SUBTRACT UNNORMALIZED (long HFP)  */  \
1141  V(ste, STE, 0x70)   /* type = RX_A  STORE (short)  */                     \
1142  V(ms, MS, 0x71)     /* type = RX_A  MULTIPLY SINGLE (32)  */              \
1143  V(le_z, LE, 0x78)   /* type = RX_A  LOAD (short)  */                      \
1144  V(ce, CE, 0x79)     /* type = RX_A  COMPARE (short HFP)  */               \
1145  V(ae, AE, 0x7A)     /* type = RX_A  ADD NORMALIZED (short HFP)  */        \
1146  V(se, SE, 0x7B)     /* type = RX_A  SUBTRACT NORMALIZED (short HFP)  */   \
1147  V(mde, MDE, 0x7C)   /* type = RX_A  MULTIPLY (short to long HFP)  */      \
1148  V(de, DE, 0x7D)     /* type = RX_A  DIVIDE (short HFP)  */                \
1149  V(au, AU, 0x7E)     /* type = RX_A  ADD UNNORMALIZED (short HFP)  */      \
1150  V(su, SU, 0x7F)     /* type = RX_A  SUBTRACT UNNORMALIZED (short HFP)  */ \
1151  V(ssm, SSM, 0x80)   /* type = RX_A  SET SYSTEM MASK  */                   \
1152  V(lra, LRA, 0xB1)   /* type = RX_A  LOAD REAL ADDRESS (32)  */            \
1153  V(sth, STH, 0x40)   /* type = RX_A  STORE HALFWORD (16)  */
1154
1155#define S390_RX_B_OPCODE_LIST(V) \
1156  V(bc, BC, 0x47) /* type = RX_B  BRANCH ON CONDITION  */
1157
1158#define S390_RIE_A_OPCODE_LIST(V)                                              \
1159  V(cgit, CGIT, 0xEC70) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (64<-16) */ \
1160  V(clgit, CLGIT,                                                              \
1161    0xEC71) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)  */    \
1162  V(cit, CIT, 0xEC72) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (32<-16)  */  \
1163  V(clfit, CLFIT,                                                              \
1164    0xEC73) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)  */
1165
1166#define S390_RRD_OPCODE_LIST(V)                                                \
1167  V(maebr, MAEBR, 0xB30E) /* type = RRD   MULTIPLY AND ADD (short BFP)  */     \
1168  V(msebr, MSEBR, 0xB30F) /* type = RRD   MULTIPLY AND SUBTRACT (short BFP) */ \
1169  V(madbr, MADBR, 0xB31E) /* type = RRD   MULTIPLY AND ADD (long BFP)  */      \
1170  V(msdbr, MSDBR, 0xB31F) /* type = RRD   MULTIPLY AND SUBTRACT (long BFP)  */ \
1171  V(maer, MAER, 0xB32E)   /* type = RRD   MULTIPLY AND ADD (short HFP)  */     \
1172  V(mser, MSER, 0xB32F) /* type = RRD   MULTIPLY AND SUBTRACT (short HFP)  */  \
1173  V(maylr, MAYLR,                                                              \
1174    0xB338) /* type = RRD   MULTIPLY AND ADD UNNRM. (long to ext. low HFP)  */ \
1175  V(mylr, MYLR,                                                                \
1176    0xB339) /* type = RRD   MULTIPLY UNNORM. (long to ext. low HFP)  */        \
1177  V(mayr, MAYR,                                                                \
1178    0xB33A) /* type = RRD   MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)  */ \
1179  V(myr, MYR,                                                                  \
1180    0xB33B) /* type = RRD   MULTIPLY UNNORMALIZED (long to ext. HFP)  */       \
1181  V(mayhr, MAYHR,                                                              \
1182    0xB33C) /* type = RRD   MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \
1183  V(myhr, MYHR,                                                                \
1184    0xB33D) /* type = RRD   MULTIPLY UNNORM. (long to ext. high HFP)  */       \
1185  V(madr, MADR, 0xB33E) /* type = RRD   MULTIPLY AND ADD (long HFP)  */        \
1186  V(msdr, MSDR, 0xB33F) /* type = RRD   MULTIPLY AND SUBTRACT (long HFP)  */
1187
1188#define S390_RIE_B_OPCODE_LIST(V)                                            \
1189  V(cgrj, CGRJ, 0xEC64) /* type = RIE_B COMPARE AND BRANCH RELATIVE (64)  */ \
1190  V(clgrj, CLGRJ,                                                            \
1191    0xEC65) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (64)  */     \
1192  V(crj, CRJ, 0xEC76) /* type = RIE_B COMPARE AND BRANCH RELATIVE (32)  */   \
1193  V(clrj, CLRJ,                                                              \
1194    0xEC77) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (32)  */
1195
1196#define S390_RRE_OPCODE_LIST(V)                                                \
1197  V(ipm, IPM, 0xB222)     /* type = RRE   INSERT PROGRAM MASK  */              \
1198  V(ivsk, IVSK, 0xB223)   /* type = RRE   INSERT VIRTUAL STORAGE KEY  */       \
1199  V(iac, IAC, 0xB224)     /* type = RRE   INSERT ADDRESS SPACE CONTROL  */     \
1200  V(ssar, SSAR, 0xB225)   /* type = RRE   SET SECONDARY ASN  */                \
1201  V(epar, EPAR, 0xB226)   /* type = RRE   EXTRACT PRIMARY ASN  */              \
1202  V(esar, ESAR, 0xB227)   /* type = RRE   EXTRACT SECONDARY ASN  */            \
1203  V(pt, PT, 0xB228)       /* type = RRE   PROGRAM TRANSFER  */                 \
1204  V(iske, ISKE, 0xB229)   /* type = RRE   INSERT STORAGE KEY EXTENDED  */      \
1205  V(rrbe, RRBE, 0xB22A)   /* type = RRE   RESET REFERENCE BIT EXTENDED  */     \
1206  V(tb, TB_, 0xB22C)      /* type = RRE   TEST BLOCK  */                       \
1207  V(dxr, DXR, 0xB22D)     /* type = RRE   DIVIDE (extended HFP)  */            \
1208  V(pgin, PGIN, 0xB22E)   /* type = RRE   PAGE IN  */                          \
1209  V(pgout, PGOUT, 0xB22F) /* type = RRE   PAGE OUT  */                         \
1210  V(bakr, BAKR, 0xB240)   /* type = RRE   BRANCH AND STACK  */                 \
1211  V(cksm, CKSM, 0xB241)   /* type = RRE   CHECKSUM  */                         \
1212  V(sqdr, SQDR, 0xB244)   /* type = RRE   SQUARE ROOT (long HFP)  */           \
1213  V(sqer, SQER, 0xB245)   /* type = RRE   SQUARE ROOT (short HFP)  */          \
1214  V(stura, STURA, 0xB246) /* type = RRE   STORE USING REAL ADDRESS (32)  */    \
1215  V(msta, MSTA, 0xB247)   /* type = RRE   MODIFY STACKED STATE  */             \
1216  V(palb, PALB, 0xB248)   /* type = RRE   PURGE ALB  */                        \
1217  V(ereg, EREG, 0xB249)   /* type = RRE   EXTRACT STACKED REGISTERS (32)  */   \
1218  V(esta, ESTA, 0xB24A)   /* type = RRE   EXTRACT STACKED STATE  */            \
1219  V(lura, LURA, 0xB24B)   /* type = RRE   LOAD USING REAL ADDRESS (32)  */     \
1220  V(tar, TAR, 0xB24C)     /* type = RRE   TEST ACCESS  */                      \
1221  V(cpya, CPYA, 0xB24D)   /* type = RRE   COPY ACCESS  */                      \
1222  V(sar, SAR, 0xB24E)     /* type = RRE   SET ACCESS  */                       \
1223  V(ear, EAR, 0xB24F)     /* type = RRE   EXTRACT ACCESS  */                   \
1224  V(csp, CSP, 0xB250)     /* type = RRE   COMPARE AND SWAP AND PURGE (32)  */  \
1225  V(msr, MSR, 0xB252)     /* type = RRE   MULTIPLY SINGLE (32)  */             \
1226  V(mvpg, MVPG, 0xB254)   /* type = RRE   MOVE PAGE  */                        \
1227  V(mvst, MVST, 0xB255)   /* type = RRE   MOVE STRING  */                      \
1228  V(cuse, CUSE, 0xB257)   /* type = RRE   COMPARE UNTIL SUBSTRING EQUAL  */    \
1229  V(bsg, BSG, 0xB258)     /* type = RRE   BRANCH IN SUBSPACE GROUP  */         \
1230  V(bsa, BSA, 0xB25A)     /* type = RRE   BRANCH AND SET AUTHORITY  */         \
1231  V(clst, CLST, 0xB25D)   /* type = RRE   COMPARE LOGICAL STRING  */           \
1232  V(srst, SRST, 0xB25E)   /* type = RRE   SEARCH STRING  */                    \
1233  V(cmpsc, CMPSC, 0xB263) /* type = RRE   COMPRESSION CALL  */                 \
1234  V(tre, TRE, 0xB2A5)     /* type = RRE   TRANSLATE EXTENDED  */               \
1235  V(etnd, ETND, 0xB2EC) /* type = RRE   EXTRACT TRANSACTION NESTING DEPTH  */  \
1236  V(lpebr, LPEBR, 0xB300) /* type = RRE   LOAD POSITIVE (short BFP)  */        \
1237  V(lnebr, LNEBR, 0xB301) /* type = RRE   LOAD NEGATIVE (short BFP)  */        \
1238  V(ltebr, LTEBR, 0xB302) /* type = RRE   LOAD AND TEST (short BFP)  */        \
1239  V(lcebr, LCEBR, 0xB303) /* type = RRE   LOAD COMPLEMENT (short BFP)  */      \
1240  V(ldebr, LDEBR,                                                              \
1241    0xB304) /* type = RRE   LOAD LENGTHENED (short to long BFP)  */            \
1242  V(lxdbr, LXDBR,                                                              \
1243    0xB305) /* type = RRE   LOAD LENGTHENED (long to extended BFP)  */         \
1244  V(lxebr, LXEBR,                                                              \
1245    0xB306) /* type = RRE   LOAD LENGTHENED (short to extended BFP)  */        \
1246  V(mxdbr, MXDBR, 0xB307) /* type = RRE   MULTIPLY (long to extended BFP)  */  \
1247  V(kebr, KEBR, 0xB308)   /* type = RRE   COMPARE AND SIGNAL (short BFP)  */   \
1248  V(cebr, CEBR, 0xB309)   /* type = RRE   COMPARE (short BFP)  */              \
1249  V(aebr, AEBR, 0xB30A)   /* type = RRE   ADD (short BFP)  */                  \
1250  V(sebr, SEBR, 0xB30B)   /* type = RRE   SUBTRACT (short BFP)  */             \
1251  V(mdebr, MDEBR, 0xB30C) /* type = RRE   MULTIPLY (short to long BFP)  */     \
1252  V(debr, DEBR, 0xB30D)   /* type = RRE   DIVIDE (short BFP)  */               \
1253  V(lpdbr, LPDBR, 0xB310) /* type = RRE   LOAD POSITIVE (long BFP)  */         \
1254  V(lndbr, LNDBR, 0xB311) /* type = RRE   LOAD NEGATIVE (long BFP)  */         \
1255  V(ltdbr, LTDBR, 0xB312) /* type = RRE   LOAD AND TEST (long BFP)  */         \
1256  V(lcdbr, LCDBR, 0xB313) /* type = RRE   LOAD COMPLEMENT (long BFP)  */       \
1257  V(sqebr, SQEBR, 0xB314) /* type = RRE   SQUARE ROOT (short BFP)  */          \
1258  V(sqdbr, SQDBR, 0xB315) /* type = RRE   SQUARE ROOT (long BFP)  */           \
1259  V(sqxbr, SQXBR, 0xB316) /* type = RRE   SQUARE ROOT (extended BFP)  */       \
1260  V(meebr, MEEBR, 0xB317) /* type = RRE   MULTIPLY (short BFP)  */             \
1261  V(kdbr, KDBR, 0xB318)   /* type = RRE   COMPARE AND SIGNAL (long BFP)  */    \
1262  V(cdbr, CDBR, 0xB319)   /* type = RRE   COMPARE (long BFP)  */               \
1263  V(adbr, ADBR, 0xB31A)   /* type = RRE   ADD (long BFP)  */                   \
1264  V(sdbr, SDBR, 0xB31B)   /* type = RRE   SUBTRACT (long BFP)  */              \
1265  V(mdbr, MDBR, 0xB31C)   /* type = RRE   MULTIPLY (long BFP)  */              \
1266  V(ddbr, DDBR, 0xB31D)   /* type = RRE   DIVIDE (long BFP)  */                \
1267  V(lder, LDER, 0xB324) /* type = RRE   LOAD LENGTHENED (short to long HFP) */ \
1268  V(lxdr, LXDR,                                                                \
1269    0xB325) /* type = RRE   LOAD LENGTHENED (long to extended HFP)  */         \
1270  V(lxer, LXER,                                                                \
1271    0xB326) /* type = RRE   LOAD LENGTHENED (short to extended HFP)  */        \
1272  V(sqxr, SQXR, 0xB336)   /* type = RRE   SQUARE ROOT (extended HFP)  */       \
1273  V(meer, MEER, 0xB337)   /* type = RRE   MULTIPLY (short HFP)  */             \
1274  V(lpxbr, LPXBR, 0xB340) /* type = RRE   LOAD POSITIVE (extended BFP)  */     \
1275  V(lnxbr, LNXBR, 0xB341) /* type = RRE   LOAD NEGATIVE (extended BFP)  */     \
1276  V(ltxbr, LTXBR, 0xB342) /* type = RRE   LOAD AND TEST (extended BFP)  */     \
1277  V(lcxbr, LCXBR, 0xB343) /* type = RRE   LOAD COMPLEMENT (extended BFP)  */   \
1278  V(kxbr, KXBR, 0xB348) /* type = RRE   COMPARE AND SIGNAL (extended BFP)  */  \
1279  V(cxbr, CXBR, 0xB349) /* type = RRE   COMPARE (extended BFP)  */             \
1280  V(axbr, AXBR, 0xB34A) /* type = RRE   ADD (extended BFP)  */                 \
1281  V(sxbr, SXBR, 0xB34B) /* type = RRE   SUBTRACT (extended BFP)  */            \
1282  V(mxbr, MXBR, 0xB34C) /* type = RRE   MULTIPLY (extended BFP)  */            \
1283  V(dxbr, DXBR, 0xB34D) /* type = RRE   DIVIDE (extended BFP)  */              \
1284  V(thder, THDER,                                                              \
1285    0xB358)             /* type = RRE   CONVERT BFP TO HFP (short to long)  */ \
1286  V(thdr, THDR, 0xB359) /* type = RRE   CONVERT BFP TO HFP (long)  */          \
1287  V(lpxr, LPXR, 0xB360) /* type = RRE   LOAD POSITIVE (extended HFP)  */       \
1288  V(lnxr, LNXR, 0xB361) /* type = RRE   LOAD NEGATIVE (extended HFP)  */       \
1289  V(ltxr, LTXR, 0xB362) /* type = RRE   LOAD AND TEST (extended HFP)  */       \
1290  V(lcxr, LCXR, 0xB363) /* type = RRE   LOAD COMPLEMENT (extended HFP)  */     \
1291  V(lxr, LXR, 0xB365)   /* type = RRE   LOAD (extended)  */                    \
1292  V(lexr, LEXR,                                                                \
1293    0xB366) /* type = RRE   LOAD ROUNDED (extended to short HFP)  */           \
1294  V(fixr, FIXR, 0xB367)   /* type = RRE   LOAD FP INTEGER (extended HFP)  */   \
1295  V(cxr, CXR, 0xB369)     /* type = RRE   COMPARE (extended HFP)  */           \
1296  V(lpdfr, LPDFR, 0xB370) /* type = RRE   LOAD POSITIVE (long)  */             \
1297  V(lndfr, LNDFR, 0xB371) /* type = RRE   LOAD NEGATIVE (long)  */             \
1298  V(lcdfr, LCDFR, 0xB373) /* type = RRE   LOAD COMPLEMENT (long)  */           \
1299  V(lzer, LZER, 0xB374)   /* type = RRE   LOAD ZERO (short)  */                \
1300  V(lzdr, LZDR, 0xB375)   /* type = RRE   LOAD ZERO (long)  */                 \
1301  V(lzxr, LZXR, 0xB376)   /* type = RRE   LOAD ZERO (extended)  */             \
1302  V(fier, FIER, 0xB377)   /* type = RRE   LOAD FP INTEGER (short HFP)  */      \
1303  V(fidr, FIDR, 0xB37F)   /* type = RRE   LOAD FP INTEGER (long HFP)  */       \
1304  V(sfpc, SFPC, 0xB384)   /* type = RRE   SET FPC  */                          \
1305  V(sfasr, SFASR, 0xB385) /* type = RRE   SET FPC AND SIGNAL  */               \
1306  V(efpc, EFPC, 0xB38C)   /* type = RRE   EXTRACT FPC  */                      \
1307  V(cefr, CEFR,                                                                \
1308    0xB3B4) /* type = RRE   CONVERT FROM FIXED (32 to short HFP)  */           \
1309  V(cdfr, CDFR, 0xB3B5) /* type = RRE   CONVERT FROM FIXED (32 to long HFP) */ \
1310  V(cxfr, CXFR,                                                                \
1311    0xB3B6) /* type = RRE   CONVERT FROM FIXED (32 to extended HFP)  */        \
1312  V(ldgr, LDGR, 0xB3C1) /* type = RRE   LOAD FPR FROM GR (64 to long)  */      \
1313  V(cegr, CEGR,                                                                \
1314    0xB3C4) /* type = RRE   CONVERT FROM FIXED (64 to short HFP)  */           \
1315  V(cdgr, CDGR, 0xB3C5) /* type = RRE   CONVERT FROM FIXED (64 to long HFP) */ \
1316  V(cxgr, CXGR,                                                                \
1317    0xB3C6) /* type = RRE   CONVERT FROM FIXED (64 to extended HFP)  */        \
1318  V(lgdr, LGDR, 0xB3CD)   /* type = RRE   LOAD GR FROM FPR (long to 64)  */    \
1319  V(ltdtr, LTDTR, 0xB3D6) /* type = RRE   LOAD AND TEST (long DFP)  */         \
1320  V(ltxtr, LTXTR, 0xB3DE) /* type = RRE   LOAD AND TEST (extended DFP)  */     \
1321  V(kdtr, KDTR, 0xB3E0)   /* type = RRE   COMPARE AND SIGNAL (long DFP)  */    \
1322  V(cudtr, CUDTR, 0xB3E2) /* type = RRE   CONVERT TO UNSIGNED PACKED (long */  \
1323                          /* DFP to 64) CUDTR  */                              \
1324  V(cdtr, CDTR, 0xB3E4)   /* type = RRE   COMPARE (long DFP)  */               \
1325  V(eedtr, EEDTR,                                                              \
1326    0xB3E5) /* type = RRE   EXTRACT BIASED EXPONENT (long DFP to 64)  */       \
1327  V(esdtr, ESDTR,                                                              \
1328    0xB3E7) /* type = RRE   EXTRACT SIGNIFICANCE (long DFP to 64)  */          \
1329  V(kxtr, KXTR, 0xB3E8) /* type = RRE   COMPARE AND SIGNAL (extended DFP)  */  \
1330  V(cuxtr, CUXTR,                                                              \
1331    0xB3EA) /* type = RRE   CONVERT TO UNSIGNED PACKED (extended DFP       */  \
1332            /* CUXTR to 128)  */                                               \
1333  V(cxtr, CXTR, 0xB3EC) /* type = RRE   COMPARE (extended DFP)  */             \
1334  V(eextr, EEXTR,                                                              \
1335    0xB3ED) /* type = RRE   EXTRACT BIASED EXPONENT (extended DFP to 64)  */   \
1336  V(esxtr, ESXTR,                                                              \
1337    0xB3EF) /* type = RRE   EXTRACT SIGNIFICANCE (extended DFP to 64)  */      \
1338  V(cdutr, CDUTR,                                                              \
1339    0xB3F2) /* type = RRE   CONVERT FROM UNSIGNED PACKED (64 to long DFP)  */  \
1340  V(cdstr, CDSTR,                                                              \
1341    0xB3F3) /* type = RRE   CONVERT FROM SIGNED PACKED (64 to long DFP)  */    \
1342  V(cedtr, CEDTR,                                                              \
1343    0xB3F4) /* type = RRE   COMPARE BIASED EXPONENT (long DFP)  */             \
1344  V(cxutr, CXUTR,                                                              \
1345    0xB3FA) /* type = RRE   CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)  */ \
1346  V(cxstr, CXSTR, 0xB3FB) /* type = RRE   CONVERT FROM SIGNED PACKED (128 to*/ \
1347                          /* extended DFP)  */                                 \
1348  V(cextr, CEXTR,                                                              \
1349    0xB3FC) /* type = RRE   COMPARE BIASED EXPONENT (extended DFP)  */         \
1350  V(lpgr, LPGR, 0xB900)   /* type = RRE   LOAD POSITIVE (64)  */               \
1351  V(lngr, LNGR, 0xB901)   /* type = RRE   LOAD NEGATIVE (64)  */               \
1352  V(ltgr, LTGR, 0xB902)   /* type = RRE   LOAD AND TEST (64)  */               \
1353  V(lcgr, LCGR, 0xB903)   /* type = RRE   LOAD COMPLEMENT (64)  */             \
1354  V(lgr, LGR, 0xB904)     /* type = RRE   LOAD (64)  */                        \
1355  V(lurag, LURAG, 0xB905) /* type = RRE   LOAD USING REAL ADDRESS (64)  */     \
1356  V(lgbr, LGBR, 0xB906)   /* type = RRE   LOAD BYTE (64<-8)  */                \
1357  V(lghr, LGHR, 0xB907)   /* type = RRE   LOAD HALFWORD (64<-16)  */           \
1358  V(agr, AGR, 0xB908)     /* type = RRE   ADD (64)  */                         \
1359  V(sgr, SGR, 0xB909)     /* type = RRE   SUBTRACT (64)  */                    \
1360  V(algr, ALGR, 0xB90A)   /* type = RRE   ADD LOGICAL (64)  */                 \
1361  V(slgr, SLGR, 0xB90B)   /* type = RRE   SUBTRACT LOGICAL (64)  */            \
1362  V(msgr, MSGR, 0xB90C)   /* type = RRE   MULTIPLY SINGLE (64)  */             \
1363  V(dsgr, DSGR, 0xB90D)   /* type = RRE   DIVIDE SINGLE (64)  */               \
1364  V(eregg, EREGG, 0xB90E) /* type = RRE   EXTRACT STACKED REGISTERS (64)  */   \
1365  V(lrvgr, LRVGR, 0xB90F) /* type = RRE   LOAD REVERSED (64)  */               \
1366  V(lpgfr, LPGFR, 0xB910) /* type = RRE   LOAD POSITIVE (64<-32)  */           \
1367  V(lngfr, LNGFR, 0xB911) /* type = RRE   LOAD NEGATIVE (64<-32)  */           \
1368  V(ltgfr, LTGFR, 0xB912) /* type = RRE   LOAD AND TEST (64<-32)  */           \
1369  V(lcgfr, LCGFR, 0xB913) /* type = RRE   LOAD COMPLEMENT (64<-32)  */         \
1370  V(lgfr, LGFR, 0xB914)   /* type = RRE   LOAD (64<-32)  */                    \
1371  V(llgfr, LLGFR, 0xB916) /* type = RRE   LOAD LOGICAL (64<-32)  */            \
1372  V(llgtr, LLGTR,                                                              \
1373    0xB917) /* type = RRE   LOAD LOGICAL THIRTY ONE BITS (64<-31)  */          \
1374  V(agfr, AGFR, 0xB918)   /* type = RRE   ADD (64<-32)  */                     \
1375  V(sgfr, SGFR, 0xB919)   /* type = RRE   SUBTRACT (64<-32)  */                \
1376  V(algfr, ALGFR, 0xB91A) /* type = RRE   ADD LOGICAL (64<-32)  */             \
1377  V(slgfr, SLGFR, 0xB91B) /* type = RRE   SUBTRACT LOGICAL (64<-32)  */        \
1378  V(msgfr, MSGFR, 0xB91C) /* type = RRE   MULTIPLY SINGLE (64<-32)  */         \
1379  V(dsgfr, DSGFR, 0xB91D) /* type = RRE   DIVIDE SINGLE (64<-32)  */           \
1380  V(kmac, KMAC, 0xB91E) /* type = RRE   COMPUTE MESSAGE AUTHENTICATION CODE */ \
1381  V(lrvr, LRVR, 0xB91F) /* type = RRE   LOAD REVERSED (32)  */                 \
1382  V(cgr, CGR, 0xB920)   /* type = RRE   COMPARE (64)  */                       \
1383  V(clgr, CLGR, 0xB921) /* type = RRE   COMPARE LOGICAL (64)  */               \
1384  V(sturg, STURG, 0xB925) /* type = RRE   STORE USING REAL ADDRESS (64)  */    \
1385  V(lbr, LBR, 0xB926)     /* type = RRE   LOAD BYTE (32<-8)  */                \
1386  V(lhr, LHR, 0xB927)     /* type = RRE   LOAD HALFWORD (32<-16)  */           \
1387  V(pckmo, PCKMO,                                                              \
1388    0xB928) /* type = RRE   PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS  */     \
1389  V(kmf, KMF, 0xB92A) /* type = RRE   CIPHER MESSAGE WITH CIPHER FEEDBACK  */  \
1390  V(kmo, KMO, 0xB92B) /* type = RRE   CIPHER MESSAGE WITH OUTPUT FEEDBACK  */  \
1391  V(pcc, PCC, 0xB92C) /* type = RRE   PERFORM CRYPTOGRAPHIC COMPUTATION  */    \
1392  V(km, KM, 0xB92E)   /* type = RRE   CIPHER MESSAGE  */                       \
1393  V(kmc, KMC, 0xB92F) /* type = RRE   CIPHER MESSAGE WITH CHAINING  */         \
1394  V(cgfr, CGFR, 0xB930)   /* type = RRE   COMPARE (64<-32)  */                 \
1395  V(clgfr, CLGFR, 0xB931) /* type = RRE   COMPARE LOGICAL (64<-32)  */         \
1396  V(ppno, PPNO,                                                                \
1397    0xB93C) /* type = RRE   PERFORM PSEUDORANDOM NUMBER OPERATION  */          \
1398  V(kimd, KIMD, 0xB93E) /* type = RRE   COMPUTE INTERMEDIATE MESSAGE DIGEST */ \
1399  V(klmd, KLMD, 0xB93F) /* type = RRE   COMPUTE LAST MESSAGE DIGEST  */        \
1400  V(bctgr, BCTGR, 0xB946) /* type = RRE   BRANCH ON COUNT (64)  */             \
1401  V(cdftr, CDFTR,                                                              \
1402    0xB951) /* type = RRE   CONVERT FROM FIXED (32 to long DFP)  */            \
1403  V(cxftr, CXFTR,                                                              \
1404    0xB959) /* type = RRE   CONVERT FROM FIXED (32 to extended DFP)  */        \
1405  V(ngr, NGR, 0xB980)     /* type = RRE   AND (64)  */                         \
1406  V(ogr, OGR, 0xB981)     /* type = RRE   OR (64)  */                          \
1407  V(xgr, XGR, 0xB982)     /* type = RRE   EXCLUSIVE OR (64)  */                \
1408  V(flogr, FLOGR, 0xB983) /* type = RRE   FIND LEFTMOST ONE  */                \
1409  V(llgcr, LLGCR, 0xB984) /* type = RRE   LOAD LOGICAL CHARACTER (64<-8)  */   \
1410  V(llghr, LLGHR, 0xB985) /* type = RRE   LOAD LOGICAL HALFWORD (64<-16)  */   \
1411  V(mlgr, MLGR, 0xB986)   /* type = RRE   MULTIPLY LOGICAL (128<-64)  */       \
1412  V(dlgr, DLGR, 0xB987)   /* type = RRE   DIVIDE LOGICAL (64<-128)  */         \
1413  V(alcgr, ALCGR, 0xB988) /* type = RRE   ADD LOGICAL WITH CARRY (64)  */      \
1414  V(slbgr, SLBGR, 0xB989) /* type = RRE   SUBTRACT LOGICAL WITH BORROW (64) */ \
1415  V(cspg, CSPG, 0xB98A)   /* type = RRE   COMPARE AND SWAP AND PURGE (64)  */  \
1416  V(epsw, EPSW, 0xB98D)   /* type = RRE   EXTRACT PSW  */                      \
1417  V(llcr, LLCR, 0xB994)   /* type = RRE   LOAD LOGICAL CHARACTER (32<-8)  */   \
1418  V(llhr, LLHR, 0xB995)   /* type = RRE   LOAD LOGICAL HALFWORD (32<-16)  */   \
1419  V(mlr, MLR, 0xB996)     /* type = RRE   MULTIPLY LOGICAL (64<-32)  */        \
1420  V(dlr, DLR, 0xB997)     /* type = RRE   DIVIDE LOGICAL (32<-64)  */          \
1421  V(alcr, ALCR, 0xB998)   /* type = RRE   ADD LOGICAL WITH CARRY (32)  */      \
1422  V(slbr, SLBR, 0xB999) /* type = RRE   SUBTRACT LOGICAL WITH BORROW (32)  */  \
1423  V(epair, EPAIR, 0xB99A) /* type = RRE   EXTRACT PRIMARY ASN AND INSTANCE  */ \
1424  V(esair, ESAIR,                                                              \
1425    0xB99B)             /* type = RRE   EXTRACT SECONDARY ASN AND INSTANCE  */ \
1426  V(esea, ESEA, 0xB99D) /* type = RRE   EXTRACT AND SET EXTENDED AUTHORITY  */ \
1427  V(pti, PTI, 0xB99E)   /* type = RRE   PROGRAM TRANSFER WITH INSTANCE  */     \
1428  V(ssair, SSAIR, 0xB99F) /* type = RRE   SET SECONDARY ASN WITH INSTANCE  */  \
1429  V(ptf, PTF, 0xB9A2)     /* type = RRE   PERFORM TOPOLOGY FUNCTION  */        \
1430  V(rrbm, RRBM, 0xB9AE)   /* type = RRE   RESET REFERENCE BITS MULTIPLE  */    \
1431  V(pfmf, PFMF, 0xB9AF) /* type = RRE   PERFORM FRAME MANAGEMENT FUNCTION  */  \
1432  V(cu41, CU41, 0xB9B2) /* type = RRE   CONVERT UTF-32 TO UTF-8  */            \
1433  V(cu42, CU42, 0xB9B3) /* type = RRE   CONVERT UTF-32 TO UTF-16  */           \
1434  V(srstu, SRSTU, 0xB9BE)     /* type = RRE   SEARCH STRING UNICODE  */        \
1435  V(chhr, CHHR, 0xB9CD)       /* type = RRE   COMPARE HIGH (32)  */            \
1436  V(clhhr, CLHHR, 0xB9CF)     /* type = RRE   COMPARE LOGICAL HIGH (32)  */    \
1437  V(chlr, CHLR, 0xB9DD)       /* type = RRE   COMPARE HIGH (32)  */            \
1438  V(clhlr, CLHLR, 0xB9DF)     /* type = RRE   COMPARE LOGICAL HIGH (32)  */    \
1439  V(popcnt, POPCNT_Z, 0xB9E1) /* type = RRE   POPULATION COUNT  */
1440
1441#define S390_RIE_C_OPCODE_LIST(V)                                             \
1442  V(cgij, CGIJ,                                                               \
1443    0xEC7C) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)  */ \
1444  V(clgij, CLGIJ,                                                             \
1445    0xEC7D) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE  */ \
1446            /* (64<-8)  */                                                    \
1447  V(cij, CIJ,                                                                 \
1448    0xEC7E) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)  */ \
1449  V(clij, CLIJ, 0xEC7F) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND      */ \
1450                        /* BRANCH RELATIVE (32<-8)  */
1451
1452#define S390_RIE_D_OPCODE_LIST(V)                                          \
1453  V(ahik, AHIK, 0xECD8)   /* type = RIE_D ADD IMMEDIATE (32<-16)  */       \
1454  V(aghik, AGHIK, 0xECD9) /* type = RIE_D ADD IMMEDIATE (64<-16)  */       \
1455  V(alhsik, ALHSIK,                                                        \
1456    0xECDA) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)  */ \
1457  V(alghsik, ALGHSIK,                                                      \
1458    0xECDB) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)  */
1459
1460#define S390_VRV_OPCODE_LIST(V)                                           \
1461  V(vgeg, VGEG, 0xE712)   /* type = VRV   VECTOR GATHER ELEMENT (64)  */  \
1462  V(vgef, VGEF, 0xE713)   /* type = VRV   VECTOR GATHER ELEMENT (32)  */  \
1463  V(vsceg, VSCEG, 0xE71A) /* type = VRV   VECTOR SCATTER ELEMENT (64)  */ \
1464  V(vscef, VSCEF, 0xE71B) /* type = VRV   VECTOR SCATTER ELEMENT (32)  */
1465
1466#define S390_RIE_E_OPCODE_LIST(V)                                  \
1467  V(brxhg, BRXHG,                                                  \
1468    0xEC44) /* type = RIE_E BRANCH RELATIVE ON INDEX HIGH (64)  */ \
1469  V(brxlg, BRXLG,                                                  \
1470    0xEC45) /* type = RIE_E BRANCH RELATIVE ON INDEX LOW OR EQ. (64)  */
1471
1472#define S390_RR_OPCODE_LIST(V)                                                 \
1473  V(awr, AWR, 0x2E)     /* type = RR    ADD UNNORMALIZED (long HFP)  */        \
1474  V(spm, SPM, 0x04)     /* type = RR    SET PROGRAM MASK  */                   \
1475  V(balr, BALR, 0x05)   /* type = RR    BRANCH AND LINK  */                    \
1476  V(bctr, BCTR, 0x06)   /* type = RR    BRANCH ON COUNT (32)  */               \
1477  V(bcr, BCR, 0x07)     /* type = RR    BRANCH ON CONDITION  */                \
1478  V(bsm, BSM, 0x0B)     /* type = RR    BRANCH AND SET MODE  */                \
1479  V(bassm, BASSM, 0x0C) /* type = RR    BRANCH AND SAVE AND SET MODE  */       \
1480  V(basr, BASR, 0x0D)   /* type = RR    BRANCH AND SAVE  */                    \
1481  V(mvcl, MVCL, 0x0E)   /* type = RR    MOVE LONG  */                          \
1482  V(clcl, CLCL, 0x0F)   /* type = RR    COMPARE LOGICAL LONG  */               \
1483  V(lpr, LPR, 0x10)     /* type = RR    LOAD POSITIVE (32)  */                 \
1484  V(lnr, LNR, 0x11)     /* type = RR    LOAD NEGATIVE (32)  */                 \
1485  V(ltr, LTR, 0x12)     /* type = RR    LOAD AND TEST (32)  */                 \
1486  V(lcr, LCR, 0x13)     /* type = RR    LOAD COMPLEMENT (32)  */               \
1487  V(nr, NR, 0x14)       /* type = RR    AND (32)  */                           \
1488  V(clr, CLR, 0x15)     /* type = RR    COMPARE LOGICAL (32)  */               \
1489  V(or_z, OR, 0x16)     /* type = RR    OR (32)  */                            \
1490  V(xr, XR, 0x17)       /* type = RR    EXCLUSIVE OR (32)  */                  \
1491  V(lr, LR, 0x18)       /* type = RR    LOAD (32)  */                          \
1492  V(cr_z, CR, 0x19)     /* type = RR    COMPARE (32)  */                       \
1493  V(ar, AR, 0x1A)       /* type = RR    ADD (32)  */                           \
1494  V(sr, SR, 0x1B)       /* type = RR    SUBTRACT (32)  */                      \
1495  V(mr_z, MR, 0x1C)     /* type = RR    MULTIPLY (64<-32)  */                  \
1496  V(dr, DR, 0x1D)       /* type = RR    DIVIDE (32<-64)  */                    \
1497  V(alr, ALR, 0x1E)     /* type = RR    ADD LOGICAL (32)  */                   \
1498  V(slr, SLR, 0x1F)     /* type = RR    SUBTRACT LOGICAL (32)  */              \
1499  V(lpdr, LPDR, 0x20)   /* type = RR    LOAD POSITIVE (long HFP)  */           \
1500  V(lndr, LNDR, 0x21)   /* type = RR    LOAD NEGATIVE (long HFP)  */           \
1501  V(ltdr, LTDR, 0x22)   /* type = RR    LOAD AND TEST (long HFP)  */           \
1502  V(lcdr, LCDR, 0x23)   /* type = RR    LOAD COMPLEMENT (long HFP)  */         \
1503  V(hdr, HDR, 0x24)     /* type = RR    HALVE (long HFP)  */                   \
1504  V(ldxr, LDXR, 0x25) /* type = RR    LOAD ROUNDED (extended to long HFP)  */  \
1505  V(mxr, MXR, 0x26)   /* type = RR    MULTIPLY (extended HFP)  */              \
1506  V(mxdr, MXDR, 0x27) /* type = RR    MULTIPLY (long to extended HFP)  */      \
1507  V(ldr, LDR, 0x28)   /* type = RR    LOAD (long)  */                          \
1508  V(cdr, CDR, 0x29)   /* type = RR    COMPARE (long HFP)  */                   \
1509  V(adr, ADR, 0x2A)   /* type = RR    ADD NORMALIZED (long HFP)  */            \
1510  V(sdr, SDR, 0x2B)   /* type = RR    SUBTRACT NORMALIZED (long HFP)  */       \
1511  V(mdr, MDR, 0x2C)   /* type = RR    MULTIPLY (long HFP)  */                  \
1512  V(ddr, DDR, 0x2D)   /* type = RR    DIVIDE (long HFP)  */                    \
1513  V(swr, SWR, 0x2F)   /* type = RR    SUBTRACT UNNORMALIZED (long HFP)  */     \
1514  V(lper, LPER, 0x30) /* type = RR    LOAD POSITIVE (short HFP)  */            \
1515  V(lner, LNER, 0x31) /* type = RR    LOAD NEGATIVE (short HFP)  */            \
1516  V(lter, LTER, 0x32) /* type = RR    LOAD AND TEST (short HFP)  */            \
1517  V(lcer, LCER, 0x33) /* type = RR    LOAD COMPLEMENT (short HFP)  */          \
1518  V(her_z, HER_Z, 0x34) /* type = RR    HALVE (short HFP)  */                  \
1519  V(ledr, LEDR, 0x35)   /* type = RR    LOAD ROUNDED (long to short HFP)  */   \
1520  V(axr, AXR, 0x36)     /* type = RR    ADD NORMALIZED (extended HFP)  */      \
1521  V(sxr, SXR, 0x37)     /* type = RR    SUBTRACT NORMALIZED (extended HFP)  */ \
1522  V(ler, LER, 0x38)     /* type = RR    LOAD (short)  */                       \
1523  V(cer, CER, 0x39)     /* type = RR    COMPARE (short HFP)  */                \
1524  V(aer, AER, 0x3A)     /* type = RR    ADD NORMALIZED (short HFP)  */         \
1525  V(ser, SER, 0x3B)     /* type = RR    SUBTRACT NORMALIZED (short HFP)  */    \
1526  V(mder, MDER, 0x3C)   /* type = RR    MULTIPLY (short to long HFP)  */       \
1527  V(der, DER, 0x3D)     /* type = RR    DIVIDE (short HFP)  */                 \
1528  V(aur, AUR, 0x3E)     /* type = RR    ADD UNNORMALIZED (short HFP)  */       \
1529  V(sur, SUR, 0x3F)     /* type = RR    SUBTRACT UNNORMALIZED (short HFP)  */
1530
1531#define S390_RIE_F_OPCODE_LIST(V)                                              \
1532  V(risblg, RISBLG,                                                            \
1533    0xEC51) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS LOW (64)  */      \
1534  V(rnsbg, RNSBG,                                                              \
1535    0xEC54) /* type = RIE_F ROTATE THEN AND SELECTED BITS (64)  */             \
1536  V(risbg, RISBG,                                                              \
1537    0xEC55) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64)  */          \
1538  V(rosbg, ROSBG, 0xEC56) /* type = RIE_F ROTATE THEN OR SELECTED BITS (64) */ \
1539  V(rxsbg, RXSBG,                                                              \
1540    0xEC57) /* type = RIE_F ROTATE THEN EXCLUSIVE OR SELECT. BITS (64)  */     \
1541  V(risbgn, RISBGN,                                                            \
1542    0xEC59) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64)  */          \
1543  V(risbhg, RISBHG,                                                            \
1544    0xEC5D) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS HIGH (64)  */
1545
1546#define S390_VRX_OPCODE_LIST(V)                                               \
1547  V(vleb, VLEB, 0xE700) /* type = VRX   VECTOR LOAD ELEMENT (8)  */           \
1548  V(vleh, VLEH, 0xE701) /* type = VRX   VECTOR LOAD ELEMENT (16)  */          \
1549  V(vleg, VLEG, 0xE702) /* type = VRX   VECTOR LOAD ELEMENT (64)  */          \
1550  V(vlef, VLEF, 0xE703) /* type = VRX   VECTOR LOAD ELEMENT (32)  */          \
1551  V(vllez, VLLEZ,                                                             \
1552    0xE704) /* type = VRX   VECTOR LOAD LOGICAL ELEMENT AND ZERO  */          \
1553  V(vlrep, VLREP, 0xE705) /* type = VRX   VECTOR LOAD AND REPLICATE  */       \
1554  V(vl, VL, 0xE706)       /* type = VRX   VECTOR LOAD  */                     \
1555  V(vlbb, VLBB, 0xE707)   /* type = VRX   VECTOR LOAD TO BLOCK BOUNDARY  */   \
1556  V(vlbr, VLBR, 0xE606) /* type = VRX   VECTOR LOAD BYTE REVERSED ELEMENTS */ \
1557  V(vlbrrep, VLBRREP,                                                         \
1558    0xE605) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT AND REPLICATE */  \
1559  V(vlebrh, VLEBRH,                                                           \
1560    0xE601) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT (16) */           \
1561  V(vlebrf, VLEBRF,                                                           \
1562    0xE603) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT (32) */           \
1563  V(vlebrg, VLEBRG,                                                           \
1564    0xE602) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT (64) */           \
1565  V(vsteb, VSTEB, 0xE708) /* type = VRX   VECTOR STORE ELEMENT (8)  */        \
1566  V(vsteh, VSTEH, 0xE709) /* type = VRX   VECTOR STORE ELEMENT (16)  */       \
1567  V(vsteg, VSTEG, 0xE70A) /* type = VRX   VECTOR STORE ELEMENT (64)  */       \
1568  V(vstef, VSTEF, 0xE70B) /* type = VRX   VECTOR STORE ELEMENT (32)  */       \
1569  V(vst, VST, 0xE70E)     /* type = VRX   VECTOR STORE  */                    \
1570  V(vstbr, VSTBR,                                                             \
1571    0xE60E) /* type = VRX   VECTOR STORE BYTE REVERSED ELEMENTS */            \
1572  V(vstebrh, VSTEBRH,                                                         \
1573    0xE609) /* type = VRX VECTOR STORE BYTE REVERSED ELEMENT (16) */          \
1574  V(vstebrf, VSTEBRF,                                                         \
1575    0xE60B) /* type = VRX VECTOR STORE BYTE REVERSED ELEMENT (32) */          \
1576  V(vstebrg, VSTEBRG,                                                         \
1577    0xE60A) /* type = VRX VECTOR STORE BYTE REVERSED ELEMENT (64) */
1578
1579#define S390_RIE_G_OPCODE_LIST(V)                                             \
1580  V(lochi, LOCHI,                                                             \
1581    0xEC42) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (32<-16)  */ \
1582  V(locghi, LOCGHI,                                                           \
1583    0xEC46) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (64<-16)  */ \
1584  V(lochhi, LOCHHI, 0xEC4E) /* type = RIE_G LOAD HALFWORD HIGH IMMEDIATE   */ \
1585                            /* ON CONDITION (32<-16)  */
1586
1587#define S390_RRS_OPCODE_LIST(V)                                               \
1588  V(cgrb, CGRB, 0xECE4)   /* type = RRS   COMPARE AND BRANCH (64)  */         \
1589  V(clgrb, CLGRB, 0xECE5) /* type = RRS   COMPARE LOGICAL AND BRANCH (64)  */ \
1590  V(crb, CRB, 0xECF6)     /* type = RRS   COMPARE AND BRANCH (32)  */         \
1591  V(clrb, CLRB, 0xECF7)   /* type = RRS   COMPARE LOGICAL AND BRANCH (32)  */
1592
1593#define S390_OPCODE_LIST(V) \
1594  S390_RSY_A_OPCODE_LIST(V) \
1595  S390_RSY_B_OPCODE_LIST(V) \
1596  S390_RXE_OPCODE_LIST(V)   \
1597  S390_RRF_A_OPCODE_LIST(V) \
1598  S390_RXF_OPCODE_LIST(V)   \
1599  S390_IE_OPCODE_LIST(V)    \
1600  S390_RRF_B_OPCODE_LIST(V) \
1601  S390_RRF_C_OPCODE_LIST(V) \
1602  S390_MII_OPCODE_LIST(V)   \
1603  S390_RRF_D_OPCODE_LIST(V) \
1604  S390_RRF_E_OPCODE_LIST(V) \
1605  S390_VRR_A_OPCODE_LIST(V) \
1606  S390_VRR_B_OPCODE_LIST(V) \
1607  S390_VRR_C_OPCODE_LIST(V) \
1608  S390_VRI_A_OPCODE_LIST(V) \
1609  S390_VRR_D_OPCODE_LIST(V) \
1610  S390_VRI_B_OPCODE_LIST(V) \
1611  S390_VRR_E_OPCODE_LIST(V) \
1612  S390_VRI_C_OPCODE_LIST(V) \
1613  S390_VRI_D_OPCODE_LIST(V) \
1614  S390_VRR_F_OPCODE_LIST(V) \
1615  S390_RIS_OPCODE_LIST(V)   \
1616  S390_VRI_E_OPCODE_LIST(V) \
1617  S390_RSL_A_OPCODE_LIST(V) \
1618  S390_RSL_B_OPCODE_LIST(V) \
1619  S390_SI_OPCODE_LIST(V)    \
1620  S390_SIL_OPCODE_LIST(V)   \
1621  S390_VRS_A_OPCODE_LIST(V) \
1622  S390_RIL_A_OPCODE_LIST(V) \
1623  S390_RIL_B_OPCODE_LIST(V) \
1624  S390_VRS_B_OPCODE_LIST(V) \
1625  S390_RIL_C_OPCODE_LIST(V) \
1626  S390_VRS_C_OPCODE_LIST(V) \
1627  S390_RI_A_OPCODE_LIST(V)  \
1628  S390_RSI_OPCODE_LIST(V)   \
1629  S390_RI_B_OPCODE_LIST(V)  \
1630  S390_RI_C_OPCODE_LIST(V)  \
1631  S390_SMI_OPCODE_LIST(V)   \
1632  S390_RXY_A_OPCODE_LIST(V) \
1633  S390_RXY_B_OPCODE_LIST(V) \
1634  S390_SIY_OPCODE_LIST(V)   \
1635  S390_SS_A_OPCODE_LIST(V)  \
1636  S390_E_OPCODE_LIST(V)     \
1637  S390_SS_B_OPCODE_LIST(V)  \
1638  S390_SS_C_OPCODE_LIST(V)  \
1639  S390_SS_D_OPCODE_LIST(V)  \
1640  S390_SS_E_OPCODE_LIST(V)  \
1641  S390_I_OPCODE_LIST(V)     \
1642  S390_SS_F_OPCODE_LIST(V)  \
1643  S390_SSE_OPCODE_LIST(V)   \
1644  S390_SSF_OPCODE_LIST(V)   \
1645  S390_RS_A_OPCODE_LIST(V)  \
1646  S390_RS_B_OPCODE_LIST(V)  \
1647  S390_S_OPCODE_LIST(V)     \
1648  S390_RX_A_OPCODE_LIST(V)  \
1649  S390_RX_B_OPCODE_LIST(V)  \
1650  S390_RIE_A_OPCODE_LIST(V) \
1651  S390_RRD_OPCODE_LIST(V)   \
1652  S390_RIE_B_OPCODE_LIST(V) \
1653  S390_RRE_OPCODE_LIST(V)   \
1654  S390_RIE_C_OPCODE_LIST(V) \
1655  S390_RIE_D_OPCODE_LIST(V) \
1656  S390_VRV_OPCODE_LIST(V)   \
1657  S390_RIE_E_OPCODE_LIST(V) \
1658  S390_RR_OPCODE_LIST(V)    \
1659  S390_RIE_F_OPCODE_LIST(V) \
1660  S390_VRX_OPCODE_LIST(V)   \
1661  S390_RIE_G_OPCODE_LIST(V) \
1662  S390_RRS_OPCODE_LIST(V)
1663
1664// Opcodes as defined in Appendix B-2 table
1665enum Opcode {
1666#define DECLARE_OPCODES(name, opcode_name, opcode_value) \
1667  opcode_name = opcode_value,
1668  S390_OPCODE_LIST(DECLARE_OPCODES)
1669#undef DECLARE_OPCODES
1670
1671      BKPT = 0x0001,  // GDB Software Breakpoint
1672  DUMY = 0xE352       // Special dummy opcode
1673};
1674
1675// Instruction encoding bits and masks.
1676enum {
1677  // Instruction encoding bit
1678  B1 = 1 << 1,
1679  B4 = 1 << 4,
1680  B5 = 1 << 5,
1681  B7 = 1 << 7,
1682  B8 = 1 << 8,
1683  B9 = 1 << 9,
1684  B12 = 1 << 12,
1685  B18 = 1 << 18,
1686  B19 = 1 << 19,
1687  B20 = 1 << 20,
1688  B22 = 1 << 22,
1689  B23 = 1 << 23,
1690  B24 = 1 << 24,
1691  B25 = 1 << 25,
1692  B26 = 1 << 26,
1693  B27 = 1 << 27,
1694  B28 = 1 << 28,
1695
1696  B6 = 1 << 6,
1697  B10 = 1 << 10,
1698  B11 = 1 << 11,
1699  B16 = 1 << 16,
1700  B17 = 1 << 17,
1701  B21 = 1 << 21,
1702
1703  // Instruction bit masks
1704  kCondMask = 0x1F << 21,
1705  kOff12Mask = (1 << 12) - 1,
1706  kImm24Mask = (1 << 24) - 1,
1707  kOff16Mask = (1 << 16) - 1,
1708  kImm16Mask = (1 << 16) - 1,
1709  kImm26Mask = (1 << 26) - 1,
1710  kBOfieldMask = 0x1f << 21,
1711  kOpcodeMask = 0x3f << 26,
1712  kExt2OpcodeMask = 0x1f << 1,
1713  kExt5OpcodeMask = 0x3 << 2,
1714  kBIMask = 0x1F << 16,
1715  kBDMask = 0x14 << 2,
1716  kAAMask = 0x01 << 1,
1717  kLKMask = 0x01,
1718  kRCMask = 0x01,
1719  kTOMask = 0x1f << 21
1720};
1721
1722// S390 instructions requires bigger shifts,
1723// make them macros instead of enum because of the typing issue
1724#define B32 ((uint64_t)1 << 32)
1725#define B36 ((uint64_t)1 << 36)
1726#define B40 ((uint64_t)1 << 40)
1727const FourByteInstr kFourByteBrCondMask = 0xF << 20;
1728const SixByteInstr kSixByteBrCondMask = static_cast<SixByteInstr>(0xF) << 36;
1729
1730// -----------------------------------------------------------------------------
1731// Addressing modes and instruction variants.
1732
1733// Overflow Exception
1734enum OEBit {
1735  SetOE = 1 << 10,   // Set overflow exception
1736  LeaveOE = 0 << 10  // No overflow exception
1737};
1738
1739// Record bit
1740enum RCBit {   // Bit 0
1741  SetRC = 1,   // LT,GT,EQ,SO
1742  LeaveRC = 0  // None
1743};
1744
1745// Link bit
1746enum LKBit {   // Bit 0
1747  SetLK = 1,   // Load effective address of next instruction
1748  LeaveLK = 0  // No action
1749};
1750
1751enum BOfield {        // Bits 25-21
1752  DCBNZF = 0 << 21,   // Decrement CTR; branch if CTR != 0 and condition false
1753  DCBEZF = 2 << 21,   // Decrement CTR; branch if CTR == 0 and condition false
1754  BF = 4 << 21,       // Branch if condition false
1755  DCBNZT = 8 << 21,   // Decrement CTR; branch if CTR != 0 and condition true
1756  DCBEZT = 10 << 21,  // Decrement CTR; branch if CTR == 0 and condition true
1757  BT = 12 << 21,      // Branch if condition true
1758  DCBNZ = 16 << 21,   // Decrement CTR; branch if CTR != 0
1759  DCBEZ = 18 << 21,   // Decrement CTR; branch if CTR == 0
1760  BA = 20 << 21       // Branch always
1761};
1762
1763#ifdef _AIX
1764#undef CR_LT
1765#undef CR_GT
1766#undef CR_EQ
1767#undef CR_SO
1768#endif
1769
1770enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };
1771
1772#define CRWIDTH 4
1773
1774// -----------------------------------------------------------------------------
1775// Supervisor Call (svc) specific support.
1776
1777// Special Software Interrupt codes when used in the presence of the S390
1778// simulator.
1779// SVC provides a 24bit immediate value. Use bits 22:0 for standard
1780// SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
1781enum SoftwareInterruptCodes {
1782  // Transition to C code
1783  kCallRtRedirected = 0x0010,
1784  // Breakpoint
1785  kBreakpoint = 0x0000,
1786  // Stop
1787  kStopCode = 1 << 23
1788};
1789const uint32_t kStopCodeMask = kStopCode - 1;
1790const uint32_t kMaxStopCode = kStopCode - 1;
1791const int32_t kDefaultStopCode = -1;
1792
1793// FP rounding modes.
1794enum FPRoundingMode {
1795  CURRENT_ROUNDING_MODE = 0,
1796  ROUND_TO_NEAREST_AWAY_FROM_0 = 1,
1797  ROUND_TO_NEAREST_TO_EVEN = 4,
1798  ROUND_TOWARD_0 = 5,
1799  ROUND_TOWARD_POS_INF = 6,
1800  ROUND_TOWARD_NEG_INF = 7,
1801
1802  // Aliases.
1803  kRoundToNearest = ROUND_TO_NEAREST_TO_EVEN,
1804  kRoundToZero = ROUND_TOWARD_0,
1805  kRoundToPlusInf = ROUND_TOWARD_POS_INF,
1806  kRoundToMinusInf = ROUND_TOWARD_NEG_INF
1807};
1808
1809const uint32_t kFPRoundingModeMask = 3;
1810
1811enum CheckForInexactConversion {
1812  kCheckForInexactConversion,
1813  kDontCheckForInexactConversion
1814};
1815
1816// -----------------------------------------------------------------------------
1817// Specific instructions, constants, and masks.
1818
1819// use TRAP4 to indicate redirection call for simulation mode
1820const Instr rtCallRedirInstr = TRAP4;
1821
1822// -----------------------------------------------------------------------------
1823// Instruction abstraction.
1824
1825// The class Instruction enables access to individual fields defined in the
1826// z/Architecture instruction set encoding.
1827class Instruction {
1828 public:
1829  // S390 Opcode Format Types
1830  //   Based on the first byte of the opcode, we can determine how to extract
1831  //   the entire opcode of the instruction.  The various favours include:
1832  enum OpcodeFormatType {
1833    ONE_BYTE_OPCODE,           // One Byte - Bits 0 to 7
1834    TWO_BYTE_OPCODE,           // Two Bytes - Bits 0 to 15
1835    TWO_BYTE_DISJOINT_OPCODE,  // Two Bytes - Bits 0 to 7, 40 to 47
1836    THREE_NIBBLE_OPCODE        // Three Nibbles - Bits 0 to 7, 12 to 15
1837  };
1838
1839  static OpcodeFormatType OpcodeFormatTable[256];
1840
1841  // Get the raw instruction bits.
1842  template <typename T>
1843  inline T InstructionBits() const {
1844    return Instruction::InstructionBits<T>(reinterpret_cast<const byte*>(this));
1845  }
1846  inline Instr InstructionBits() const {
1847    return *reinterpret_cast<const Instr*>(this);
1848  }
1849
1850  // Set the raw instruction bits to value.
1851  template <typename T>
1852  inline void SetInstructionBits(T value) const {
1853    Instruction::SetInstructionBits<T>(reinterpret_cast<const byte*>(this),
1854                                       value);
1855  }
1856  inline void SetInstructionBits(Instr value) {
1857    *reinterpret_cast<Instr*>(this) = value;
1858  }
1859
1860  // Read one particular bit out of the instruction bits.
1861  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1862
1863  // Read a bit field's value out of the instruction bits.
1864  inline int Bits(int hi, int lo) const {
1865    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
1866  }
1867
1868  // Read bits according to instruction type
1869  template <typename T, typename U>
1870  inline U Bits(int hi, int lo) const {
1871    return (InstructionBits<T>() >> lo) & ((2 << (hi - lo)) - 1);
1872  }
1873
1874  // Read a bit field out of the instruction bits.
1875  inline int BitField(int hi, int lo) const {
1876    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
1877  }
1878
1879  // Determine the instruction length
1880  inline int InstructionLength() {
1881    return Instruction::InstructionLength(reinterpret_cast<const byte*>(this));
1882  }
1883  // Extract the Instruction Opcode
1884  inline Opcode S390OpcodeValue() {
1885    return Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(this));
1886  }
1887
1888  // Static support.
1889
1890  // Read one particular bit out of the instruction bits.
1891  static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }
1892
1893  // Read the value of a bit field out of the instruction bits.
1894  static inline int Bits(Instr instr, int hi, int lo) {
1895    return (instr >> lo) & ((2 << (hi - lo)) - 1);
1896  }
1897
1898  // Read a bit field out of the instruction bits.
1899  static inline int BitField(Instr instr, int hi, int lo) {
1900    return instr & (((2 << (hi - lo)) - 1) << lo);
1901  }
1902
1903  // Determine the instruction length of the given instruction
1904  static inline int InstructionLength(const byte* instr) {
1905    // Length can be determined by the first nibble.
1906    // 0x0 to 0x3 => 2-bytes
1907    // 0x4 to 0xB => 4-bytes
1908    // 0xC to 0xF => 6-bytes
1909    byte topNibble = (*instr >> 4) & 0xF;
1910    if (topNibble <= 3)
1911      return 2;
1912    else if (topNibble <= 0xB)
1913      return 4;
1914    return 6;
1915  }
1916
1917  // Returns the instruction bits of the given instruction
1918  static inline uint64_t InstructionBits(const byte* instr) {
1919    int length = InstructionLength(instr);
1920    if (2 == length)
1921      return static_cast<uint64_t>(InstructionBits<TwoByteInstr>(instr));
1922    else if (4 == length)
1923      return static_cast<uint64_t>(InstructionBits<FourByteInstr>(instr));
1924    else
1925      return InstructionBits<SixByteInstr>(instr);
1926  }
1927
1928  // Extract the raw instruction bits
1929  template <typename T>
1930  static inline T InstructionBits(const byte* instr) {
1931#if !V8_TARGET_LITTLE_ENDIAN
1932    if (sizeof(T) <= 4) {
1933      return *reinterpret_cast<const T*>(instr);
1934    } else {
1935      // We cannot read 8-byte instructon address directly, because for a
1936      // six-byte instruction, the extra 2-byte address might not be
1937      // allocated.
1938      uint64_t fourBytes = *reinterpret_cast<const uint32_t*>(instr);
1939      uint16_t twoBytes = *reinterpret_cast<const uint16_t*>(instr + 4);
1940      return (fourBytes << 16 | twoBytes);
1941    }
1942#else
1943    // Even on little endian hosts (simulation), the instructions
1944    // are stored as big-endian in order to decode the opcode and
1945    // instruction length.
1946    T instr_bits = 0;
1947
1948    // 6-byte instrs are represented by uint64_t
1949    uint32_t size = (sizeof(T) == 8) ? 6 : sizeof(T);
1950
1951    for (T i = 0; i < size; i++) {
1952      instr_bits <<= 8;
1953      instr_bits |= *(instr + i);
1954    }
1955    return instr_bits;
1956#endif
1957  }
1958
1959  // Set the Instruction Bits to value
1960  template <typename T>
1961  static inline void SetInstructionBits(byte* instr, T value) {
1962#if V8_TARGET_LITTLE_ENDIAN
1963    // The instruction bits are stored in big endian format even on little
1964    // endian hosts, in order to decode instruction length and opcode.
1965    // The following code will reverse the bytes so that the stores later
1966    // (which are in native endianess) will effectively save the instruction
1967    // in big endian.
1968    if (sizeof(T) == 2) {
1969      // Two Byte Instruction
1970      value = ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
1971    } else if (sizeof(T) == 4) {
1972      // Four Byte Instruction
1973      value = ((value & 0x000000FF) << 24) | ((value & 0x0000FF00) << 8) |
1974              ((value & 0x00FF0000) >> 8) | ((value & 0xFF000000) >> 24);
1975    } else if (sizeof(T) == 8) {
1976      // Six Byte Instruction
1977      uint64_t orig_value = static_cast<uint64_t>(value);
1978      value = (static_cast<uint64_t>(orig_value & 0xFF) << 40) |
1979              (static_cast<uint64_t>((orig_value >> 8) & 0xFF) << 32) |
1980              (static_cast<uint64_t>((orig_value >> 16) & 0xFF) << 24) |
1981              (static_cast<uint64_t>((orig_value >> 24) & 0xFF) << 16) |
1982              (static_cast<uint64_t>((orig_value >> 32) & 0xFF) << 8) |
1983              (static_cast<uint64_t>((orig_value >> 40) & 0xFF));
1984    }
1985#endif
1986    if (sizeof(T) <= 4) {
1987      *reinterpret_cast<T*>(instr) = value;
1988    } else {
1989#if V8_TARGET_LITTLE_ENDIAN
1990      uint64_t orig_value = static_cast<uint64_t>(value);
1991      *reinterpret_cast<uint32_t*>(instr) = static_cast<uint32_t>(value);
1992      *reinterpret_cast<uint16_t*>(instr + 4) =
1993          static_cast<uint16_t>((orig_value >> 32) & 0xFFFF);
1994#else
1995      *reinterpret_cast<uint32_t*>(instr) = static_cast<uint32_t>(value >> 16);
1996      *reinterpret_cast<uint16_t*>(instr + 4) =
1997          static_cast<uint16_t>(value & 0xFFFF);
1998#endif
1999    }
2000  }
2001
2002  // Get Instruction Format Type
2003  static OpcodeFormatType getOpcodeFormatType(const byte* instr) {
2004    const byte firstByte = *instr;
2005    return OpcodeFormatTable[firstByte];
2006  }
2007
2008  // Extract the full opcode from the instruction.
2009  static inline Opcode S390OpcodeValue(const byte* instr) {
2010    OpcodeFormatType opcodeType = getOpcodeFormatType(instr);
2011
2012    // The native instructions are encoded in big-endian format
2013    // even if running on little-endian host.  Hence, we need
2014    // to ensure we use byte* based bit-wise logic.
2015    switch (opcodeType) {
2016      case ONE_BYTE_OPCODE:
2017        // One Byte - Bits 0 to 7
2018        return static_cast<Opcode>(*instr);
2019      case TWO_BYTE_OPCODE:
2020        // Two Bytes - Bits 0 to 15
2021        return static_cast<Opcode>((*instr << 8) | (*(instr + 1)));
2022      case TWO_BYTE_DISJOINT_OPCODE:
2023        // Two Bytes - Bits 0 to 7, 40 to 47
2024        return static_cast<Opcode>((*instr << 8) | (*(instr + 5) & 0xFF));
2025      default:
2026        // case THREE_NIBBLE_OPCODE:
2027        // Three Nibbles - Bits 0 to 7, 12 to 15
2028        return static_cast<Opcode>((*instr << 4) | (*(instr + 1) & 0xF));
2029    }
2030
2031    UNREACHABLE();
2032  }
2033
2034  // Fields used in Software interrupt instructions
2035  inline SoftwareInterruptCodes SvcValue() const {
2036    return static_cast<SoftwareInterruptCodes>(Bits<FourByteInstr, int>(15, 0));
2037  }
2038
2039  // Instructions are read of out a code stream. The only way to get a
2040  // reference to an instruction is to convert a pointer. There is no way
2041  // to allocate or create instances of class Instruction.
2042  // Use the At(pc) function to create references to Instruction.
2043  static Instruction* At(byte* pc) {
2044    return reinterpret_cast<Instruction*>(pc);
2045  }
2046
2047 private:
2048  // We need to prevent the creation of instances of class Instruction.
2049  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
2050};
2051
2052#define DECLARE_FIELD_FOR_TWO_BYTE_INSTR(name, T, lo, hi)   \
2053  inline int name() const {                                 \
2054    return Bits<TwoByteInstr, T>(15 - (lo), 15 - (hi) + 1); \
2055  }
2056
2057#define DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(name, T, lo, hi)   \
2058  inline int name() const {                                  \
2059    return Bits<FourByteInstr, T>(31 - (lo), 31 - (hi) + 1); \
2060  }
2061
2062#define DECLARE_FIELD_FOR_SIX_BYTE_INSTR(name, T, lo, hi)   \
2063  inline int name() const {                                 \
2064    return Bits<SixByteInstr, T>(47 - (lo), 47 - (hi) + 1); \
2065  }
2066
2067class TwoByteInstruction : public Instruction {
2068 public:
2069  inline int size() const { return 2; }
2070};
2071
2072class FourByteInstruction : public Instruction {
2073 public:
2074  inline int size() const { return 4; }
2075};
2076
2077class SixByteInstruction : public Instruction {
2078 public:
2079  inline int size() const { return 6; }
2080};
2081
2082// I Instruction
2083class IInstruction : public TwoByteInstruction {
2084 public:
2085  DECLARE_FIELD_FOR_TWO_BYTE_INSTR(IValue, int, 8, 16)
2086};
2087
2088// E Instruction
2089class EInstruction : public TwoByteInstruction {};
2090
2091// IE Instruction
2092class IEInstruction : public FourByteInstruction {
2093 public:
2094  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I1Value, int, 24, 28)
2095  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 28, 32)
2096};
2097
2098// MII Instruction
2099class MIIInstruction : public SixByteInstruction {
2100 public:
2101  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M1Value, uint32_t, 8, 12)
2102  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI2Value, int, 12, 24)
2103  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI3Value, int, 24, 47)
2104};
2105
2106// RI Instruction
2107class RIInstruction : public FourByteInstruction {
2108 public:
2109  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(R1Value, int, 8, 12)
2110  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 16, 32)
2111  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2UnsignedValue, uint32_t, 16, 32)
2112  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(M1Value, uint32_t, 8, 12)
2113};
2114
2115// RR Instruction
2116class RRInstruction : Instruction {
2117 public:
2118  inline int R1Value() const {
2119    // the high and low parameters of Bits is the number of bits from
2120    // rightmost place
2121    return Bits<TwoByteInstr, int>(7, 4);
2122  }
2123  inline int R2Value() const { return Bits<TwoByteInstr, int>(3, 0); }
2124  inline Condition M1Value() const {
2125    return static_cast<Condition>(Bits<TwoByteInstr, int>(7, 4));
2126  }
2127
2128  inline int size() const { return 2; }
2129};
2130
2131// RRE Instruction
2132class RREInstruction : Instruction {
2133 public:
2134  inline int R1Value() const { return Bits<FourByteInstr, int>(7, 4); }
2135  inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
2136  inline int M3Value() const { return Bits<FourByteInstr, int>(15, 12); }
2137  inline int M4Value() const { return Bits<FourByteInstr, int>(19, 16); }
2138  inline int size() const { return 4; }
2139};
2140
2141// RRF Instruction
2142class RRFInstruction : Instruction {
2143 public:
2144  inline int R1Value() const { return Bits<FourByteInstr, int>(7, 4); }
2145  inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
2146  inline int R3Value() const { return Bits<FourByteInstr, int>(15, 12); }
2147  inline int M3Value() const { return Bits<FourByteInstr, int>(15, 12); }
2148  inline int M4Value() const { return Bits<FourByteInstr, int>(11, 8); }
2149  inline int size() const { return 4; }
2150};
2151
2152// RRD Isntruction
2153class RRDInstruction : Instruction {
2154 public:
2155  inline int R1Value() const { return Bits<FourByteInstr, int>(15, 12); }
2156  inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
2157  inline int R3Value() const { return Bits<FourByteInstr, int>(7, 4); }
2158  inline int size() const { return 4; }
2159};
2160
2161// RS Instruction
2162class RSInstruction : Instruction {
2163 public:
2164  inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
2165  inline int R3Value() const { return Bits<FourByteInstr, int>(19, 16); }
2166  inline int B2Value() const { return Bits<FourByteInstr, int>(15, 12); }
2167  inline unsigned int D2Value() const {
2168    return Bits<FourByteInstr, unsigned int>(11, 0);
2169  }
2170  inline int size() const { return 4; }
2171};
2172
2173// RSI Instruction
2174class RSIInstruction : Instruction {
2175 public:
2176  inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
2177  inline int R3Value() const { return Bits<FourByteInstr, int>(19, 16); }
2178  inline int I2Value() const {
2179    return static_cast<int32_t>(Bits<FourByteInstr, int16_t>(15, 0));
2180  }
2181  inline int size() const { return 4; }
2182};
2183
2184// RSY Instruction
2185class RSYInstruction : Instruction {
2186 public:
2187  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
2188  inline int R3Value() const { return Bits<SixByteInstr, int>(35, 32); }
2189  inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
2190  inline int32_t D2Value() const {
2191    int32_t value = Bits<SixByteInstr, int32_t>(27, 16);
2192    value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
2193    return value;
2194  }
2195  inline int size() const { return 6; }
2196};
2197
2198// RX Instruction
2199class RXInstruction : Instruction {
2200 public:
2201  inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
2202  inline int X2Value() const { return Bits<FourByteInstr, int>(19, 16); }
2203  inline int B2Value() const { return Bits<FourByteInstr, int>(15, 12); }
2204  inline uint32_t D2Value() const {
2205    return Bits<FourByteInstr, uint32_t>(11, 0);
2206  }
2207  inline int size() const { return 4; }
2208};
2209
2210// RXY Instruction
2211class RXYInstruction : Instruction {
2212 public:
2213  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
2214  inline int X2Value() const { return Bits<SixByteInstr, int>(35, 32); }
2215  inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
2216  inline int32_t D2Value() const {
2217    int32_t value = Bits<SixByteInstr, uint32_t>(27, 16);
2218    value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
2219    return value;
2220  }
2221  inline int size() const { return 6; }
2222};
2223
2224// RIL Instruction
2225class RILInstruction : Instruction {
2226 public:
2227  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
2228  inline int32_t I2Value() const { return Bits<SixByteInstr, int32_t>(31, 0); }
2229  inline uint32_t I2UnsignedValue() const {
2230    return Bits<SixByteInstr, uint32_t>(31, 0);
2231  }
2232  inline int size() const { return 6; }
2233};
2234
2235// SI Instruction
2236class SIInstruction : Instruction {
2237 public:
2238  inline int B1Value() const { return Bits<FourByteInstr, int>(15, 12); }
2239  inline uint32_t D1Value() const {
2240    return Bits<FourByteInstr, uint32_t>(11, 0);
2241  }
2242  inline uint8_t I2Value() const {
2243    return Bits<FourByteInstr, uint8_t>(23, 16);
2244  }
2245  inline int size() const { return 4; }
2246};
2247
2248// SIY Instruction
2249class SIYInstruction : Instruction {
2250 public:
2251  inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
2252  inline int32_t D1Value() const {
2253    int32_t value = Bits<SixByteInstr, uint32_t>(27, 16);
2254    value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
2255    return value;
2256  }
2257  inline uint8_t I2Value() const { return Bits<SixByteInstr, uint8_t>(39, 32); }
2258  inline int size() const { return 6; }
2259};
2260
2261// SIL Instruction
2262class SILInstruction : Instruction {
2263 public:
2264  inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
2265  inline int D1Value() const { return Bits<SixByteInstr, int>(27, 16); }
2266  inline int I2Value() const { return Bits<SixByteInstr, int>(15, 0); }
2267  inline int size() const { return 6; }
2268};
2269
2270// SS Instruction
2271class SSInstruction : Instruction {
2272 public:
2273  inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
2274  inline int B2Value() const { return Bits<SixByteInstr, int>(15, 12); }
2275  inline int D1Value() const { return Bits<SixByteInstr, int>(27, 16); }
2276  inline int D2Value() const { return Bits<SixByteInstr, int>(11, 0); }
2277  inline int Length() const { return Bits<SixByteInstr, int>(39, 32); }
2278  inline int size() const { return 6; }
2279};
2280
2281// RXE Instruction
2282class RXEInstruction : Instruction {
2283 public:
2284  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
2285  inline int X2Value() const { return Bits<SixByteInstr, int>(35, 32); }
2286  inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
2287  inline int D2Value() const { return Bits<SixByteInstr, int>(27, 16); }
2288  inline int size() const { return 6; }
2289};
2290
2291// RIE Instruction
2292class RIEInstruction : Instruction {
2293 public:
2294  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
2295  inline int R2Value() const { return Bits<SixByteInstr, int>(35, 32); }
2296  inline int I3Value() const { return Bits<SixByteInstr, uint32_t>(31, 24); }
2297  inline int I4Value() const { return Bits<SixByteInstr, uint32_t>(23, 16); }
2298  inline int I5Value() const { return Bits<SixByteInstr, uint32_t>(15, 8); }
2299  inline int I6Value() const {
2300    return static_cast<int32_t>(Bits<SixByteInstr, int16_t>(31, 16));
2301  }
2302  inline int size() const { return 6; }
2303};
2304
2305// VRR Instruction
2306class VRR_A_Instruction : SixByteInstruction {
2307 public:
2308  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2309  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
2310  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 24, 28)
2311  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 28, 32)
2312  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M3Value, uint32_t, 32, 36)
2313};
2314
2315class VRR_B_Instruction : SixByteInstruction {
2316 public:
2317  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2318  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
2319  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
2320  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 24, 28)
2321  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
2322};
2323
2324class VRR_C_Instruction : SixByteInstruction {
2325 public:
2326  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2327  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
2328  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
2329  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M6Value, uint32_t, 24, 28)
2330  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 28, 32)
2331  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
2332};
2333
2334class VRR_E_Instruction : SixByteInstruction {
2335 public:
2336  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2337  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
2338  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
2339  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R4Value, int, 32, 36)
2340  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M6Value, uint32_t, 20, 24)
2341  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 28, 32)
2342};
2343
2344class VRR_F_Instruction : SixByteInstruction {
2345 public:
2346  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2347  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
2348  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
2349};
2350
2351class VRX_Instruction : SixByteInstruction {
2352 public:
2353  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2354  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(X2Value, int, 12, 16)
2355  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(B2Value, int, 16, 20)
2356  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(D2Value, int, 20, 32)
2357  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M3Value, uint32_t, 32, 36)
2358};
2359
2360class VRS_Instruction : SixByteInstruction {
2361 public:
2362  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2363  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 12, 16)
2364  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(B2Value, int, 16, 20)
2365  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(D2Value, int, 20, 32)
2366  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
2367};
2368
2369class VRI_A_Instruction : SixByteInstruction {
2370 public:
2371  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2372  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(I2Value, int, 16, 32)
2373  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M3Value, uint32_t, 32, 36)
2374};
2375
2376class VRI_C_Instruction : SixByteInstruction {
2377 public:
2378  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
2379  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 12, 16)
2380  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(I2Value, int, 16, 32)
2381  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
2382};
2383
2384// Helper functions for converting between register numbers and names.
2385class Registers {
2386 public:
2387  // Lookup the register number for the name provided.
2388  static int Number(const char* name);
2389
2390 private:
2391  static const char* names_[kNumRegisters];
2392};
2393
2394// Helper functions for converting between FP register numbers and names.
2395class DoubleRegisters {
2396 public:
2397  // Lookup the register number for the name provided.
2398  static int Number(const char* name);
2399
2400 private:
2401  static const char* names_[kNumDoubleRegisters];
2402};
2403
2404}  // namespace internal
2405}  // namespace v8
2406
2407#endif  // V8_CODEGEN_S390_CONSTANTS_S390_H_
2408