1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2021 the V8 project authors. All rights reserved.
34
35#ifndef V8_CODEGEN_RISCV64_ASSEMBLER_RISCV64_INL_H_
36#define V8_CODEGEN_RISCV64_ASSEMBLER_RISCV64_INL_H_
37
38#include "src/codegen/assembler.h"
39#include "src/codegen/riscv64/assembler-riscv64.h"
40#include "src/debug/debug.h"
41#include "src/objects/objects-inl.h"
42
43namespace v8 {
44namespace internal {
45
46bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
47
48// -----------------------------------------------------------------------------
49// Operand and MemOperand.
50
51bool Operand::is_reg() const { return rm_.is_valid(); }
52
53int64_t Operand::immediate() const {
54  DCHECK(!is_reg());
55  DCHECK(!IsHeapObjectRequest());
56  return value_.immediate;
57}
58
59// -----------------------------------------------------------------------------
60// RelocInfo.
61
62void RelocInfo::apply(intptr_t delta) {
63  if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
64    // Absolute code pointer inside code object moves with the code object.
65    Assembler::RelocateInternalReference(rmode_, pc_, delta);
66  } else {
67    DCHECK(IsRelativeCodeTarget(rmode_));
68    Assembler::RelocateRelativeReference(rmode_, pc_, delta);
69  }
70}
71
72Address RelocInfo::target_address() {
73  DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
74         IsWasmCall(rmode_));
75  return Assembler::target_address_at(pc_, constant_pool_);
76}
77
78Address RelocInfo::target_address_address() {
79  DCHECK(HasTargetAddressAddress());
80  // Read the address of the word containing the target_address in an
81  // instruction stream.
82  // The only architecture-independent user of this function is the serializer.
83  // The serializer uses it to find out how many raw bytes of instruction to
84  // output before the next target.
85  // For an instruction like LUI/ORI where the target bits are mixed into the
86  // instruction bits, the size of the target will be zero, indicating that the
87  // serializer should not step forward in memory after a target is resolved
88  // and written. In this case the target_address_address function should
89  // return the end of the instructions to be patched, allowing the
90  // deserializer to deserialize the instructions as raw bytes and put them in
91  // place, ready to be patched with the target. After jump optimization,
92  // that is the address of the instruction that follows J/JAL/JR/JALR
93  // instruction.
94  return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize;
95}
96
97Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
98
99int RelocInfo::target_address_size() {
100  if (IsCodedSpecially()) {
101    return Assembler::kSpecialTargetSize;
102  } else {
103    return kSystemPointerSize;
104  }
105}
106
107void Assembler::set_target_compressed_address_at(
108    Address pc, Address constant_pool, Tagged_t target,
109    ICacheFlushMode icache_flush_mode) {
110  Assembler::set_target_address_at(
111      pc, constant_pool, static_cast<Address>(target), icache_flush_mode);
112}
113
114Tagged_t Assembler::target_compressed_address_at(Address pc,
115                                                 Address constant_pool) {
116  return static_cast<Tagged_t>(target_address_at(pc, constant_pool));
117}
118
119Handle<Object> Assembler::code_target_object_handle_at(Address pc,
120                                                       Address constant_pool) {
121  int index =
122      static_cast<int>(target_address_at(pc, constant_pool)) & 0xFFFFFFFF;
123  return GetCodeTarget(index);
124}
125
126Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(
127    Address pc, Address const_pool) {
128  return GetEmbeddedObject(target_compressed_address_at(pc, const_pool));
129}
130
131void Assembler::deserialization_set_special_target_at(
132    Address instruction_payload, Code code, Address target) {
133  set_target_address_at(instruction_payload,
134                        !code.is_null() ? code.constant_pool() : kNullAddress,
135                        target);
136}
137
138int Assembler::deserialization_special_target_size(
139    Address instruction_payload) {
140  return kSpecialTargetSize;
141}
142
143void Assembler::set_target_internal_reference_encoded_at(Address pc,
144                                                         Address target) {
145  set_target_value_at(pc, static_cast<uint64_t>(target));
146}
147
148void Assembler::deserialization_set_target_internal_reference_at(
149    Address pc, Address target, RelocInfo::Mode mode) {
150  if (RelocInfo::IsInternalReferenceEncoded(mode)) {
151    DCHECK(IsLui(instr_at(pc)));
152    set_target_internal_reference_encoded_at(pc, target);
153  } else {
154    DCHECK(RelocInfo::IsInternalReference(mode));
155    Memory<Address>(pc) = target;
156  }
157}
158
159HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) {
160  DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
161  if (IsDataEmbeddedObject(rmode_)) {
162    return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
163  } else if (IsCompressedEmbeddedObject(rmode_)) {
164    return HeapObject::cast(Object(DecompressTaggedAny(
165        cage_base,
166        Assembler::target_compressed_address_at(pc_, constant_pool_))));
167  } else {
168    return HeapObject::cast(
169        Object(Assembler::target_address_at(pc_, constant_pool_)));
170  }
171}
172
173Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
174  if (IsDataEmbeddedObject(rmode_)) {
175    return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
176  } else if (IsCodeTarget(rmode_)) {
177    return Handle<HeapObject>::cast(
178        origin->code_target_object_handle_at(pc_, constant_pool_));
179  } else if (IsCompressedEmbeddedObject(rmode_)) {
180    return origin->compressed_embedded_object_handle_at(pc_, constant_pool_);
181  } else if (IsFullEmbeddedObject(rmode_)) {
182    return Handle<HeapObject>(reinterpret_cast<Address*>(
183        Assembler::target_address_at(pc_, constant_pool_)));
184  } else {
185    DCHECK(IsRelativeCodeTarget(rmode_));
186    return origin->relative_code_target_object_handle_at(pc_);
187  }
188}
189
190void RelocInfo::set_target_object(Heap* heap, HeapObject target,
191                                  WriteBarrierMode write_barrier_mode,
192                                  ICacheFlushMode icache_flush_mode) {
193  DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
194  if (IsDataEmbeddedObject(rmode_)) {
195    WriteUnalignedValue(pc_, target.ptr());
196    // No need to flush icache since no instructions were changed.
197  } else if (IsCompressedEmbeddedObject(rmode_)) {
198    Assembler::set_target_compressed_address_at(
199        pc_, constant_pool_, CompressTagged(target.ptr()), icache_flush_mode);
200  } else {
201    DCHECK(IsFullEmbeddedObject(rmode_));
202    Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
203                                     icache_flush_mode);
204  }
205  if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
206      !FLAG_disable_write_barriers) {
207    WriteBarrierForCode(host(), this, target);
208  }
209}
210
211Address RelocInfo::target_external_reference() {
212  DCHECK(rmode_ == EXTERNAL_REFERENCE);
213  return Assembler::target_address_at(pc_, constant_pool_);
214}
215
216void RelocInfo::set_target_external_reference(
217    Address target, ICacheFlushMode icache_flush_mode) {
218  DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
219  Assembler::set_target_address_at(pc_, constant_pool_, target,
220                                   icache_flush_mode);
221}
222
223Address RelocInfo::target_internal_reference() {
224  if (IsInternalReference(rmode_)) {
225    return Memory<Address>(pc_);
226  } else {
227    // Encoded internal references are j/jal instructions.
228    DCHECK(IsInternalReferenceEncoded(rmode_));
229    DCHECK(Assembler::IsLui(Assembler::instr_at(pc_ + 0 * kInstrSize)));
230    Address address = Assembler::target_address_at(pc_);
231    return address;
232  }
233}
234
235Address RelocInfo::target_internal_reference_address() {
236  DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
237  return pc_;
238}
239
240Handle<Code> Assembler::relative_code_target_object_handle_at(
241    Address pc) const {
242  Instr instr1 = Assembler::instr_at(pc);
243  Instr instr2 = Assembler::instr_at(pc + kInstrSize);
244  DCHECK(IsAuipc(instr1));
245  DCHECK(IsJalr(instr2));
246  int32_t code_target_index = BrachlongOffset(instr1, instr2);
247  return GetCodeTarget(code_target_index);
248}
249
250Address RelocInfo::target_runtime_entry(Assembler* origin) {
251  DCHECK(IsRuntimeEntry(rmode_));
252  return target_address();
253}
254
255void RelocInfo::set_target_runtime_entry(Address target,
256                                         WriteBarrierMode write_barrier_mode,
257                                         ICacheFlushMode icache_flush_mode) {
258  DCHECK(IsRuntimeEntry(rmode_));
259  if (target_address() != target)
260    set_target_address(target, write_barrier_mode, icache_flush_mode);
261}
262
263Address RelocInfo::target_off_heap_target() {
264  DCHECK(IsOffHeapTarget(rmode_));
265  return Assembler::target_address_at(pc_, constant_pool_);
266}
267
268void RelocInfo::WipeOut() {
269  DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
270         IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
271         IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
272         IsOffHeapTarget(rmode_));
273  if (IsInternalReference(rmode_)) {
274    Memory<Address>(pc_) = kNullAddress;
275  } else if (IsInternalReferenceEncoded(rmode_)) {
276    Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
277  } else {
278    Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
279  }
280}
281
282// -----------------------------------------------------------------------------
283// Assembler.
284
285void Assembler::CheckBuffer() {
286  if (buffer_space() <= kGap) {
287    GrowBuffer();
288  }
289}
290
291template <typename T>
292void Assembler::EmitHelper(T x) {
293  *reinterpret_cast<T*>(pc_) = x;
294  pc_ += sizeof(x);
295}
296
297void Assembler::emit(Instr x) {
298  if (!is_buffer_growth_blocked()) {
299    CheckBuffer();
300  }
301  DEBUG_PRINTF("%p: ", pc_);
302  disassembleInstr(x);
303  EmitHelper(x);
304  CheckTrampolinePoolQuick();
305}
306
307void Assembler::emit(ShortInstr x) {
308  if (!is_buffer_growth_blocked()) {
309    CheckBuffer();
310  }
311  DEBUG_PRINTF("%p: ", pc_);
312  disassembleInstr(x);
313  EmitHelper(x);
314  CheckTrampolinePoolQuick();
315}
316
317void Assembler::emit(uint64_t data) {
318  if (!is_buffer_growth_blocked()) CheckBuffer();
319  EmitHelper(data);
320}
321
322EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
323
324}  // namespace internal
325}  // namespace v8
326
327#endif  // V8_CODEGEN_RISCV64_ASSEMBLER_RISCV64_INL_H_
328