1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
6#define V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
7
8#include "src/base/logging.h"
9#include "src/base/macros.h"
10#include "src/common/globals.h"
11
12// UNIMPLEMENTED_ macro for MIPS.
13#ifdef DEBUG
14#define UNIMPLEMENTED_MIPS()                                               \
15  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16                       __FILE__, __LINE__, __func__)
17#else
18#define UNIMPLEMENTED_MIPS()
19#endif
20
21#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22
23enum ArchVariants { kMips64r2, kMips64r6 };
24
25#ifdef _MIPS_ARCH_MIPS64R2
26static const ArchVariants kArchVariant = kMips64r2;
27#elif _MIPS_ARCH_MIPS64R6
28static const ArchVariants kArchVariant = kMips64r6;
29#else
30static const ArchVariants kArchVariant = kMips64r2;
31#endif
32
33enum Endianness { kLittle, kBig };
34
35#if defined(V8_TARGET_LITTLE_ENDIAN)
36static const Endianness kArchEndian = kLittle;
37#elif defined(V8_TARGET_BIG_ENDIAN)
38static const Endianness kArchEndian = kBig;
39#else
40#error Unknown endianness
41#endif
42
43// TODO(plind): consider renaming these ...
44#if defined(__mips_hard_float) && __mips_hard_float != 0
45// Use floating-point coprocessor instructions. This flag is raised when
46// -mhard-float is passed to the compiler.
47const bool IsMipsSoftFloatABI = false;
48#elif defined(__mips_soft_float) && __mips_soft_float != 0
49// This flag is raised when -msoft-float is passed to the compiler.
50// Although FPU is a base requirement for v8, soft-float ABI is used
51// on soft-float systems with FPU kernel emulation.
52const bool IsMipsSoftFloatABI = true;
53#else
54const bool IsMipsSoftFloatABI = true;
55#endif
56
57#if defined(V8_TARGET_LITTLE_ENDIAN)
58const uint32_t kMipsLwrOffset = 0;
59const uint32_t kMipsLwlOffset = 3;
60const uint32_t kMipsSwrOffset = 0;
61const uint32_t kMipsSwlOffset = 3;
62const uint32_t kMipsLdrOffset = 0;
63const uint32_t kMipsLdlOffset = 7;
64const uint32_t kMipsSdrOffset = 0;
65const uint32_t kMipsSdlOffset = 7;
66#elif defined(V8_TARGET_BIG_ENDIAN)
67const uint32_t kMipsLwrOffset = 3;
68const uint32_t kMipsLwlOffset = 0;
69const uint32_t kMipsSwrOffset = 3;
70const uint32_t kMipsSwlOffset = 0;
71const uint32_t kMipsLdrOffset = 7;
72const uint32_t kMipsLdlOffset = 0;
73const uint32_t kMipsSdrOffset = 7;
74const uint32_t kMipsSdlOffset = 0;
75#else
76#error Unknown endianness
77#endif
78
79#if defined(V8_TARGET_LITTLE_ENDIAN)
80const uint32_t kLeastSignificantByteInInt32Offset = 0;
81const uint32_t kLessSignificantWordInDoublewordOffset = 0;
82#elif defined(V8_TARGET_BIG_ENDIAN)
83const uint32_t kLeastSignificantByteInInt32Offset = 3;
84const uint32_t kLessSignificantWordInDoublewordOffset = 4;
85#else
86#error Unknown endianness
87#endif
88
89#ifndef __STDC_FORMAT_MACROS
90#define __STDC_FORMAT_MACROS
91#endif
92#include <inttypes.h>
93
94// Defines constants and accessor classes to assemble, disassemble and
95// simulate MIPS32 instructions.
96//
97// See: MIPS32 Architecture For Programmers
98//      Volume II: The MIPS32 Instruction Set
99// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
100
101namespace v8 {
102namespace internal {
103
104// TODO(sigurds): Change this value once we use relative jumps.
105constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
106
107// -----------------------------------------------------------------------------
108// Registers and FPURegisters.
109
110// Number of general purpose registers.
111const int kNumRegisters = 32;
112const int kInvalidRegister = -1;
113
114// Number of registers with HI, LO, and pc.
115const int kNumSimuRegisters = 35;
116
117// In the simulator, the PC register is simulated as the 34th register.
118const int kPCRegister = 34;
119
120// Number coprocessor registers.
121const int kNumFPURegisters = 32;
122const int kInvalidFPURegister = -1;
123
124// Number of MSA registers
125const int kNumMSARegisters = 32;
126const int kInvalidMSARegister = -1;
127
128const int kInvalidMSAControlRegister = -1;
129const int kMSAIRRegister = 0;
130const int kMSACSRRegister = 1;
131const int kMSARegSize = 128;
132const int kMSALanesByte = kMSARegSize / 8;
133const int kMSALanesHalf = kMSARegSize / 16;
134const int kMSALanesWord = kMSARegSize / 32;
135const int kMSALanesDword = kMSARegSize / 64;
136
137// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
138const int kFCSRRegister = 31;
139const int kInvalidFPUControlRegister = -1;
140const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
141const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
142const uint64_t kFPU64InvalidResult =
143    static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
144const int64_t kFPU64InvalidResultNegative =
145    static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
146
147// FCSR constants.
148const uint32_t kFCSRInexactFlagBit = 2;
149const uint32_t kFCSRUnderflowFlagBit = 3;
150const uint32_t kFCSROverflowFlagBit = 4;
151const uint32_t kFCSRDivideByZeroFlagBit = 5;
152const uint32_t kFCSRInvalidOpFlagBit = 6;
153const uint32_t kFCSRNaN2008FlagBit = 18;
154
155const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
156const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
157const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
158const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
159const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
160const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
161
162const uint32_t kFCSRFlagMask =
163    kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
164    kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
165
166const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
167
168const uint32_t kFCSRInexactCauseBit = 12;
169const uint32_t kFCSRUnderflowCauseBit = 13;
170const uint32_t kFCSROverflowCauseBit = 14;
171const uint32_t kFCSRDivideByZeroCauseBit = 15;
172const uint32_t kFCSRInvalidOpCauseBit = 16;
173const uint32_t kFCSRUnimplementedOpCauseBit = 17;
174
175const uint32_t kFCSRInexactCauseMask = 1 << kFCSRInexactCauseBit;
176const uint32_t kFCSRUnderflowCauseMask = 1 << kFCSRUnderflowCauseBit;
177const uint32_t kFCSROverflowCauseMask = 1 << kFCSROverflowCauseBit;
178const uint32_t kFCSRDivideByZeroCauseMask = 1 << kFCSRDivideByZeroCauseBit;
179const uint32_t kFCSRInvalidOpCauseMask = 1 << kFCSRInvalidOpCauseBit;
180const uint32_t kFCSRUnimplementedOpCauseMask = 1
181                                               << kFCSRUnimplementedOpCauseBit;
182
183const uint32_t kFCSRCauseMask =
184    kFCSRInexactCauseMask | kFCSRUnderflowCauseMask | kFCSROverflowCauseMask |
185    kFCSRDivideByZeroCauseMask | kFCSRInvalidOpCauseMask |
186    kFCSRUnimplementedOpCauseBit;
187
188// 'pref' instruction hints
189const int32_t kPrefHintLoad = 0;
190const int32_t kPrefHintStore = 1;
191const int32_t kPrefHintLoadStreamed = 4;
192const int32_t kPrefHintStoreStreamed = 5;
193const int32_t kPrefHintLoadRetained = 6;
194const int32_t kPrefHintStoreRetained = 7;
195const int32_t kPrefHintWritebackInvalidate = 25;
196const int32_t kPrefHintPrepareForStore = 30;
197
198// Actual value of root register is offset from the root array's start
199// to take advantage of negative displacement values.
200// TODO(sigurds): Choose best value.
201constexpr int kRootRegisterBias = 256;
202
203// Helper functions for converting between register numbers and names.
204class Registers {
205 public:
206  // Return the name of the register.
207  static const char* Name(int reg);
208
209  // Lookup the register number for the name provided.
210  static int Number(const char* name);
211
212  struct RegisterAlias {
213    int reg;
214    const char* name;
215  };
216
217  static const int64_t kMaxValue = 0x7fffffffffffffffl;
218  static const int64_t kMinValue = 0x8000000000000000l;
219
220 private:
221  static const char* names_[kNumSimuRegisters];
222  static const RegisterAlias aliases_[];
223};
224
225// Helper functions for converting between register numbers and names.
226class FPURegisters {
227 public:
228  // Return the name of the register.
229  static const char* Name(int reg);
230
231  // Lookup the register number for the name provided.
232  static int Number(const char* name);
233
234  struct RegisterAlias {
235    int creg;
236    const char* name;
237  };
238
239 private:
240  static const char* names_[kNumFPURegisters];
241  static const RegisterAlias aliases_[];
242};
243
244// Helper functions for converting between register numbers and names.
245class MSARegisters {
246 public:
247  // Return the name of the register.
248  static const char* Name(int reg);
249
250  // Lookup the register number for the name provided.
251  static int Number(const char* name);
252
253  struct RegisterAlias {
254    int creg;
255    const char* name;
256  };
257
258 private:
259  static const char* names_[kNumMSARegisters];
260  static const RegisterAlias aliases_[];
261};
262
263// MSA sizes.
264enum MSASize { MSA_B = 0x0, MSA_H = 0x1, MSA_W = 0x2, MSA_D = 0x3 };
265
266// MSA data type, top bit set for unsigned data types.
267enum MSADataType {
268  MSAS8 = 0,
269  MSAS16 = 1,
270  MSAS32 = 2,
271  MSAS64 = 3,
272  MSAU8 = 4,
273  MSAU16 = 5,
274  MSAU32 = 6,
275  MSAU64 = 7
276};
277
278// -----------------------------------------------------------------------------
279// Instructions encoding constants.
280
281// On MIPS all instructions are 32 bits.
282using Instr = int32_t;
283
284// Special Software Interrupt codes when used in the presence of the MIPS
285// simulator.
286enum SoftwareInterruptCodes {
287  // Transition to C code.
288  call_rt_redirected = 0xfffff
289};
290
291// On MIPS Simulator breakpoints can have different codes:
292// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
293//   the simulator will run through them and print the registers.
294// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
295//   instructions (see Assembler::stop()).
296// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
297//   debugger.
298const uint32_t kMaxWatchpointCode = 31;
299const uint32_t kMaxStopCode = 127;
300STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
301
302// ----- Fields offset and length.
303const int kOpcodeShift = 26;
304const int kOpcodeBits = 6;
305const int kRsShift = 21;
306const int kRsBits = 5;
307const int kRtShift = 16;
308const int kRtBits = 5;
309const int kRdShift = 11;
310const int kRdBits = 5;
311const int kSaShift = 6;
312const int kSaBits = 5;
313const int kLsaSaBits = 2;
314const int kFunctionShift = 0;
315const int kFunctionBits = 6;
316const int kLuiShift = 16;
317const int kBp2Shift = 6;
318const int kBp2Bits = 2;
319const int kBp3Shift = 6;
320const int kBp3Bits = 3;
321const int kBaseShift = 21;
322const int kBaseBits = 5;
323const int kBit6Shift = 6;
324const int kBit6Bits = 1;
325
326const int kImm9Shift = 7;
327const int kImm9Bits = 9;
328const int kImm16Shift = 0;
329const int kImm16Bits = 16;
330const int kImm18Shift = 0;
331const int kImm18Bits = 18;
332const int kImm19Shift = 0;
333const int kImm19Bits = 19;
334const int kImm21Shift = 0;
335const int kImm21Bits = 21;
336const int kImm26Shift = 0;
337const int kImm26Bits = 26;
338const int kImm28Shift = 0;
339const int kImm28Bits = 28;
340const int kImm32Shift = 0;
341const int kImm32Bits = 32;
342const int kMsaImm8Shift = 16;
343const int kMsaImm8Bits = 8;
344const int kMsaImm5Shift = 16;
345const int kMsaImm5Bits = 5;
346const int kMsaImm10Shift = 11;
347const int kMsaImm10Bits = 10;
348const int kMsaImmMI10Shift = 16;
349const int kMsaImmMI10Bits = 10;
350
351// In branches and jumps immediate fields point to words, not bytes,
352// and are therefore shifted by 2.
353const int kImmFieldShift = 2;
354
355const int kFrBits = 5;
356const int kFrShift = 21;
357const int kFsShift = 11;
358const int kFsBits = 5;
359const int kFtShift = 16;
360const int kFtBits = 5;
361const int kFdShift = 6;
362const int kFdBits = 5;
363const int kFCccShift = 8;
364const int kFCccBits = 3;
365const int kFBccShift = 18;
366const int kFBccBits = 3;
367const int kFBtrueShift = 16;
368const int kFBtrueBits = 1;
369const int kWtBits = 5;
370const int kWtShift = 16;
371const int kWsBits = 5;
372const int kWsShift = 11;
373const int kWdBits = 5;
374const int kWdShift = 6;
375
376// ----- Miscellaneous useful masks.
377// Instruction bit masks.
378const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
379const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
380const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
381const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
382const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
383const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
384const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
385const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
386const int kImm5Mask = ((1 << 5) - 1);
387const int kImm8Mask = ((1 << 8) - 1);
388const int kImm10Mask = ((1 << 10) - 1);
389const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
390const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
391const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
392const int kMsaMI10Mask = (15U << 2);
393const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
394const int kMsaELMMask = (15U << 22);
395const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
396const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
397const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
398const int kMsaVECMask = (23U << 21);
399const int kMsa2RMask = (7U << 18);
400const int kMsa2RFMask = (15U << 17);
401const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
402const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
403const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
404const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
405const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
406// Misc masks.
407const int kHiMaskOf32 = 0xffff << 16;  // Only to be used with 32-bit values
408const int kLoMaskOf32 = 0xffff;
409const int kSignMaskOf32 = 0x80000000;  // Only to be used with 32-bit values
410const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
411const int64_t kTop16MaskOf64 = (int64_t)0xffff << 48;
412const int64_t kHigher16MaskOf64 = (int64_t)0xffff << 32;
413const int64_t kUpper16MaskOf64 = (int64_t)0xffff << 16;
414const int32_t kJalRawMark = 0x00000000;
415const int32_t kJRawMark = 0xf0000000;
416const int32_t kJumpRawMask = 0xf0000000;
417
418// ----- MIPS Opcodes and Function Fields.
419// We use this presentation to stay close to the table representation in
420// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
421enum Opcode : uint32_t {
422  SPECIAL = 0U << kOpcodeShift,
423  REGIMM = 1U << kOpcodeShift,
424
425  J = ((0U << 3) + 2) << kOpcodeShift,
426  JAL = ((0U << 3) + 3) << kOpcodeShift,
427  BEQ = ((0U << 3) + 4) << kOpcodeShift,
428  BNE = ((0U << 3) + 5) << kOpcodeShift,
429  BLEZ = ((0U << 3) + 6) << kOpcodeShift,
430  BGTZ = ((0U << 3) + 7) << kOpcodeShift,
431
432  ADDI = ((1U << 3) + 0) << kOpcodeShift,
433  ADDIU = ((1U << 3) + 1) << kOpcodeShift,
434  SLTI = ((1U << 3) + 2) << kOpcodeShift,
435  SLTIU = ((1U << 3) + 3) << kOpcodeShift,
436  ANDI = ((1U << 3) + 4) << kOpcodeShift,
437  ORI = ((1U << 3) + 5) << kOpcodeShift,
438  XORI = ((1U << 3) + 6) << kOpcodeShift,
439  LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
440  DAUI = ((3U << 3) + 5) << kOpcodeShift,
441
442  BEQC = ((2U << 3) + 0) << kOpcodeShift,
443  COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
444  BEQL = ((2U << 3) + 4) << kOpcodeShift,
445  BNEL = ((2U << 3) + 5) << kOpcodeShift,
446  BLEZL = ((2U << 3) + 6) << kOpcodeShift,
447  BGTZL = ((2U << 3) + 7) << kOpcodeShift,
448
449  DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
450  DADDIU = ((3U << 3) + 1) << kOpcodeShift,
451  LDL = ((3U << 3) + 2) << kOpcodeShift,
452  LDR = ((3U << 3) + 3) << kOpcodeShift,
453  SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
454  MSA = ((3U << 3) + 6) << kOpcodeShift,
455  SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
456
457  LB = ((4U << 3) + 0) << kOpcodeShift,
458  LH = ((4U << 3) + 1) << kOpcodeShift,
459  LWL = ((4U << 3) + 2) << kOpcodeShift,
460  LW = ((4U << 3) + 3) << kOpcodeShift,
461  LBU = ((4U << 3) + 4) << kOpcodeShift,
462  LHU = ((4U << 3) + 5) << kOpcodeShift,
463  LWR = ((4U << 3) + 6) << kOpcodeShift,
464  LWU = ((4U << 3) + 7) << kOpcodeShift,
465
466  SB = ((5U << 3) + 0) << kOpcodeShift,
467  SH = ((5U << 3) + 1) << kOpcodeShift,
468  SWL = ((5U << 3) + 2) << kOpcodeShift,
469  SW = ((5U << 3) + 3) << kOpcodeShift,
470  SDL = ((5U << 3) + 4) << kOpcodeShift,
471  SDR = ((5U << 3) + 5) << kOpcodeShift,
472  SWR = ((5U << 3) + 6) << kOpcodeShift,
473
474  LL = ((6U << 3) + 0) << kOpcodeShift,
475  LWC1 = ((6U << 3) + 1) << kOpcodeShift,
476  BC = ((6U << 3) + 2) << kOpcodeShift,
477  LLD = ((6U << 3) + 4) << kOpcodeShift,
478  LDC1 = ((6U << 3) + 5) << kOpcodeShift,
479  POP66 = ((6U << 3) + 6) << kOpcodeShift,
480  LD = ((6U << 3) + 7) << kOpcodeShift,
481
482  PREF = ((6U << 3) + 3) << kOpcodeShift,
483
484  SC = ((7U << 3) + 0) << kOpcodeShift,
485  SWC1 = ((7U << 3) + 1) << kOpcodeShift,
486  BALC = ((7U << 3) + 2) << kOpcodeShift,
487  PCREL = ((7U << 3) + 3) << kOpcodeShift,
488  SCD = ((7U << 3) + 4) << kOpcodeShift,
489  SDC1 = ((7U << 3) + 5) << kOpcodeShift,
490  POP76 = ((7U << 3) + 6) << kOpcodeShift,
491  SD = ((7U << 3) + 7) << kOpcodeShift,
492
493  COP1X = ((1U << 4) + 3) << kOpcodeShift,
494
495  // New r6 instruction.
496  POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
497  POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
498  POP10 = ADDI,   // beqzalc, bovc, beqc
499  POP26 = BLEZL,  // bgezc, blezc, bgec/blec
500  POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
501  POP30 = DADDI,  // bnezalc, bnvc, bnec
502};
503
504enum SecondaryField : uint32_t {
505  // SPECIAL Encoding of Function Field.
506  SLL = ((0U << 3) + 0),
507  MOVCI = ((0U << 3) + 1),
508  SRL = ((0U << 3) + 2),
509  SRA = ((0U << 3) + 3),
510  SLLV = ((0U << 3) + 4),
511  LSA = ((0U << 3) + 5),
512  SRLV = ((0U << 3) + 6),
513  SRAV = ((0U << 3) + 7),
514
515  JR = ((1U << 3) + 0),
516  JALR = ((1U << 3) + 1),
517  MOVZ = ((1U << 3) + 2),
518  MOVN = ((1U << 3) + 3),
519  BREAK = ((1U << 3) + 5),
520  SYNC = ((1U << 3) + 7),
521
522  MFHI = ((2U << 3) + 0),
523  CLZ_R6 = ((2U << 3) + 0),
524  CLO_R6 = ((2U << 3) + 1),
525  MFLO = ((2U << 3) + 2),
526  DCLZ_R6 = ((2U << 3) + 2),
527  DCLO_R6 = ((2U << 3) + 3),
528  DSLLV = ((2U << 3) + 4),
529  DLSA = ((2U << 3) + 5),
530  DSRLV = ((2U << 3) + 6),
531  DSRAV = ((2U << 3) + 7),
532
533  MULT = ((3U << 3) + 0),
534  MULTU = ((3U << 3) + 1),
535  DIV = ((3U << 3) + 2),
536  DIVU = ((3U << 3) + 3),
537  DMULT = ((3U << 3) + 4),
538  DMULTU = ((3U << 3) + 5),
539  DDIV = ((3U << 3) + 6),
540  DDIVU = ((3U << 3) + 7),
541
542  ADD = ((4U << 3) + 0),
543  ADDU = ((4U << 3) + 1),
544  SUB = ((4U << 3) + 2),
545  SUBU = ((4U << 3) + 3),
546  AND = ((4U << 3) + 4),
547  OR = ((4U << 3) + 5),
548  XOR = ((4U << 3) + 6),
549  NOR = ((4U << 3) + 7),
550
551  SLT = ((5U << 3) + 2),
552  SLTU = ((5U << 3) + 3),
553  DADD = ((5U << 3) + 4),
554  DADDU = ((5U << 3) + 5),
555  DSUB = ((5U << 3) + 6),
556  DSUBU = ((5U << 3) + 7),
557
558  TGE = ((6U << 3) + 0),
559  TGEU = ((6U << 3) + 1),
560  TLT = ((6U << 3) + 2),
561  TLTU = ((6U << 3) + 3),
562  TEQ = ((6U << 3) + 4),
563  SELEQZ_S = ((6U << 3) + 5),
564  TNE = ((6U << 3) + 6),
565  SELNEZ_S = ((6U << 3) + 7),
566
567  DSLL = ((7U << 3) + 0),
568  DSRL = ((7U << 3) + 2),
569  DSRA = ((7U << 3) + 3),
570  DSLL32 = ((7U << 3) + 4),
571  DSRL32 = ((7U << 3) + 6),
572  DSRA32 = ((7U << 3) + 7),
573
574  // Multiply integers in r6.
575  MUL_MUH = ((3U << 3) + 0),      // MUL, MUH.
576  MUL_MUH_U = ((3U << 3) + 1),    // MUL_U, MUH_U.
577  D_MUL_MUH = ((7U << 2) + 0),    // DMUL, DMUH.
578  D_MUL_MUH_U = ((7U << 2) + 1),  // DMUL_U, DMUH_U.
579  RINT = ((3U << 3) + 2),
580
581  MUL_OP = ((0U << 3) + 2),
582  MUH_OP = ((0U << 3) + 3),
583  DIV_OP = ((0U << 3) + 2),
584  MOD_OP = ((0U << 3) + 3),
585
586  DIV_MOD = ((3U << 3) + 2),
587  DIV_MOD_U = ((3U << 3) + 3),
588  D_DIV_MOD = ((3U << 3) + 6),
589  D_DIV_MOD_U = ((3U << 3) + 7),
590
591  // drotr in special4?
592
593  // SPECIAL2 Encoding of Function Field.
594  MUL = ((0U << 3) + 2),
595  CLZ = ((4U << 3) + 0),
596  CLO = ((4U << 3) + 1),
597  DCLZ = ((4U << 3) + 4),
598  DCLO = ((4U << 3) + 5),
599
600  // SPECIAL3 Encoding of Function Field.
601  EXT = ((0U << 3) + 0),
602  DEXTM = ((0U << 3) + 1),
603  DEXTU = ((0U << 3) + 2),
604  DEXT = ((0U << 3) + 3),
605  INS = ((0U << 3) + 4),
606  DINSM = ((0U << 3) + 5),
607  DINSU = ((0U << 3) + 6),
608  DINS = ((0U << 3) + 7),
609
610  BSHFL = ((4U << 3) + 0),
611  DBSHFL = ((4U << 3) + 4),
612  SC_R6 = ((4U << 3) + 6),
613  SCD_R6 = ((4U << 3) + 7),
614  LL_R6 = ((6U << 3) + 6),
615  LLD_R6 = ((6U << 3) + 7),
616
617  // SPECIAL3 Encoding of sa Field.
618  BITSWAP = ((0U << 3) + 0),
619  ALIGN = ((0U << 3) + 2),
620  WSBH = ((0U << 3) + 2),
621  SEB = ((2U << 3) + 0),
622  SEH = ((3U << 3) + 0),
623
624  DBITSWAP = ((0U << 3) + 0),
625  DALIGN = ((0U << 3) + 1),
626  DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
627  DSBH = ((0U << 3) + 2),
628  DSHD = ((0U << 3) + 5),
629
630  // REGIMM  encoding of rt Field.
631  BLTZ = ((0U << 3) + 0) << 16,
632  BGEZ = ((0U << 3) + 1) << 16,
633  BLTZAL = ((2U << 3) + 0) << 16,
634  BGEZAL = ((2U << 3) + 1) << 16,
635  BGEZALL = ((2U << 3) + 3) << 16,
636  DAHI = ((0U << 3) + 6) << 16,
637  DATI = ((3U << 3) + 6) << 16,
638
639  // COP1 Encoding of rs Field.
640  MFC1 = ((0U << 3) + 0) << 21,
641  DMFC1 = ((0U << 3) + 1) << 21,
642  CFC1 = ((0U << 3) + 2) << 21,
643  MFHC1 = ((0U << 3) + 3) << 21,
644  MTC1 = ((0U << 3) + 4) << 21,
645  DMTC1 = ((0U << 3) + 5) << 21,
646  CTC1 = ((0U << 3) + 6) << 21,
647  MTHC1 = ((0U << 3) + 7) << 21,
648  BC1 = ((1U << 3) + 0) << 21,
649  S = ((2U << 3) + 0) << 21,
650  D = ((2U << 3) + 1) << 21,
651  W = ((2U << 3) + 4) << 21,
652  L = ((2U << 3) + 5) << 21,
653  PS = ((2U << 3) + 6) << 21,
654  // COP1 Encoding of Function Field When rs=S.
655
656  ADD_S = ((0U << 3) + 0),
657  SUB_S = ((0U << 3) + 1),
658  MUL_S = ((0U << 3) + 2),
659  DIV_S = ((0U << 3) + 3),
660  ABS_S = ((0U << 3) + 5),
661  SQRT_S = ((0U << 3) + 4),
662  MOV_S = ((0U << 3) + 6),
663  NEG_S = ((0U << 3) + 7),
664  ROUND_L_S = ((1U << 3) + 0),
665  TRUNC_L_S = ((1U << 3) + 1),
666  CEIL_L_S = ((1U << 3) + 2),
667  FLOOR_L_S = ((1U << 3) + 3),
668  ROUND_W_S = ((1U << 3) + 4),
669  TRUNC_W_S = ((1U << 3) + 5),
670  CEIL_W_S = ((1U << 3) + 6),
671  FLOOR_W_S = ((1U << 3) + 7),
672  RECIP_S = ((2U << 3) + 5),
673  RSQRT_S = ((2U << 3) + 6),
674  MADDF_S = ((3U << 3) + 0),
675  MSUBF_S = ((3U << 3) + 1),
676  CLASS_S = ((3U << 3) + 3),
677  CVT_D_S = ((4U << 3) + 1),
678  CVT_W_S = ((4U << 3) + 4),
679  CVT_L_S = ((4U << 3) + 5),
680  CVT_PS_S = ((4U << 3) + 6),
681  // COP1 Encoding of Function Field When rs=D.
682  ADD_D = ((0U << 3) + 0),
683  SUB_D = ((0U << 3) + 1),
684  MUL_D = ((0U << 3) + 2),
685  DIV_D = ((0U << 3) + 3),
686  SQRT_D = ((0U << 3) + 4),
687  ABS_D = ((0U << 3) + 5),
688  MOV_D = ((0U << 3) + 6),
689  NEG_D = ((0U << 3) + 7),
690  ROUND_L_D = ((1U << 3) + 0),
691  TRUNC_L_D = ((1U << 3) + 1),
692  CEIL_L_D = ((1U << 3) + 2),
693  FLOOR_L_D = ((1U << 3) + 3),
694  ROUND_W_D = ((1U << 3) + 4),
695  TRUNC_W_D = ((1U << 3) + 5),
696  CEIL_W_D = ((1U << 3) + 6),
697  FLOOR_W_D = ((1U << 3) + 7),
698  RECIP_D = ((2U << 3) + 5),
699  RSQRT_D = ((2U << 3) + 6),
700  MADDF_D = ((3U << 3) + 0),
701  MSUBF_D = ((3U << 3) + 1),
702  CLASS_D = ((3U << 3) + 3),
703  MIN = ((3U << 3) + 4),
704  MINA = ((3U << 3) + 5),
705  MAX = ((3U << 3) + 6),
706  MAXA = ((3U << 3) + 7),
707  CVT_S_D = ((4U << 3) + 0),
708  CVT_W_D = ((4U << 3) + 4),
709  CVT_L_D = ((4U << 3) + 5),
710  C_F_D = ((6U << 3) + 0),
711  C_UN_D = ((6U << 3) + 1),
712  C_EQ_D = ((6U << 3) + 2),
713  C_UEQ_D = ((6U << 3) + 3),
714  C_OLT_D = ((6U << 3) + 4),
715  C_ULT_D = ((6U << 3) + 5),
716  C_OLE_D = ((6U << 3) + 6),
717  C_ULE_D = ((6U << 3) + 7),
718
719  // COP1 Encoding of Function Field When rs=W or L.
720  CVT_S_W = ((4U << 3) + 0),
721  CVT_D_W = ((4U << 3) + 1),
722  CVT_S_L = ((4U << 3) + 0),
723  CVT_D_L = ((4U << 3) + 1),
724  BC1EQZ = ((2U << 2) + 1) << 21,
725  BC1NEZ = ((3U << 2) + 1) << 21,
726  // COP1 CMP positive predicates Bit 5..4 = 00.
727  CMP_AF = ((0U << 3) + 0),
728  CMP_UN = ((0U << 3) + 1),
729  CMP_EQ = ((0U << 3) + 2),
730  CMP_UEQ = ((0U << 3) + 3),
731  CMP_LT = ((0U << 3) + 4),
732  CMP_ULT = ((0U << 3) + 5),
733  CMP_LE = ((0U << 3) + 6),
734  CMP_ULE = ((0U << 3) + 7),
735  CMP_SAF = ((1U << 3) + 0),
736  CMP_SUN = ((1U << 3) + 1),
737  CMP_SEQ = ((1U << 3) + 2),
738  CMP_SUEQ = ((1U << 3) + 3),
739  CMP_SSLT = ((1U << 3) + 4),
740  CMP_SSULT = ((1U << 3) + 5),
741  CMP_SLE = ((1U << 3) + 6),
742  CMP_SULE = ((1U << 3) + 7),
743  // COP1 CMP negative predicates Bit 5..4 = 01.
744  CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
745  CMP_OR = ((2U << 3) + 1),
746  CMP_UNE = ((2U << 3) + 2),
747  CMP_NE = ((2U << 3) + 3),
748  CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
749  CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
750  CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
751  CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
752  CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
753  CMP_SOR = ((3U << 3) + 1),
754  CMP_SUNE = ((3U << 3) + 2),
755  CMP_SNE = ((3U << 3) + 3),
756  CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
757  CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
758  CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
759  CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.
760
761  SEL = ((2U << 3) + 0),
762  MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
763  MOVZ_C = ((2U << 3) + 2),    // COP1 on FPR registers.
764  MOVN_C = ((2U << 3) + 3),    // COP1 on FPR registers.
765  SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
766  SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
767
768  // COP1 Encoding of Function Field When rs=PS.
769
770  // COP1X Encoding of Function Field.
771  MADD_S = ((4U << 3) + 0),
772  MADD_D = ((4U << 3) + 1),
773  MSUB_S = ((5U << 3) + 0),
774  MSUB_D = ((5U << 3) + 1),
775
776  // PCREL Encoding of rt Field.
777  ADDIUPC = ((0U << 2) + 0),
778  LWPC = ((0U << 2) + 1),
779  LWUPC = ((0U << 2) + 2),
780  LDPC = ((0U << 3) + 6),
781  // reserved ((1U << 3) + 6),
782  AUIPC = ((3U << 3) + 6),
783  ALUIPC = ((3U << 3) + 7),
784
785  // POP66 Encoding of rs Field.
786  JIC = ((0U << 5) + 0),
787
788  // POP76 Encoding of rs Field.
789  JIALC = ((0U << 5) + 0),
790
791  // COP1 Encoding of rs Field for MSA Branch Instructions
792  BZ_V = (((1U << 3) + 3) << kRsShift),
793  BNZ_V = (((1U << 3) + 7) << kRsShift),
794  BZ_B = (((3U << 3) + 0) << kRsShift),
795  BZ_H = (((3U << 3) + 1) << kRsShift),
796  BZ_W = (((3U << 3) + 2) << kRsShift),
797  BZ_D = (((3U << 3) + 3) << kRsShift),
798  BNZ_B = (((3U << 3) + 4) << kRsShift),
799  BNZ_H = (((3U << 3) + 5) << kRsShift),
800  BNZ_W = (((3U << 3) + 6) << kRsShift),
801  BNZ_D = (((3U << 3) + 7) << kRsShift),
802
803  // MSA: Operation Field for MI10 Instruction Formats
804  MSA_LD = (8U << 2),
805  MSA_ST = (9U << 2),
806  LD_B = ((8U << 2) + 0),
807  LD_H = ((8U << 2) + 1),
808  LD_W = ((8U << 2) + 2),
809  LD_D = ((8U << 2) + 3),
810  ST_B = ((9U << 2) + 0),
811  ST_H = ((9U << 2) + 1),
812  ST_W = ((9U << 2) + 2),
813  ST_D = ((9U << 2) + 3),
814
815  // MSA: Operation Field for I5 Instruction Format
816  ADDVI = ((0U << 23) + 6),
817  SUBVI = ((1U << 23) + 6),
818  MAXI_S = ((2U << 23) + 6),
819  MAXI_U = ((3U << 23) + 6),
820  MINI_S = ((4U << 23) + 6),
821  MINI_U = ((5U << 23) + 6),
822  CEQI = ((0U << 23) + 7),
823  CLTI_S = ((2U << 23) + 7),
824  CLTI_U = ((3U << 23) + 7),
825  CLEI_S = ((4U << 23) + 7),
826  CLEI_U = ((5U << 23) + 7),
827  LDI = ((6U << 23) + 7),  // I10 instruction format
828  I5_DF_b = (0U << 21),
829  I5_DF_h = (1U << 21),
830  I5_DF_w = (2U << 21),
831  I5_DF_d = (3U << 21),
832
833  // MSA: Operation Field for I8 Instruction Format
834  ANDI_B = ((0U << 24) + 0),
835  ORI_B = ((1U << 24) + 0),
836  NORI_B = ((2U << 24) + 0),
837  XORI_B = ((3U << 24) + 0),
838  BMNZI_B = ((0U << 24) + 1),
839  BMZI_B = ((1U << 24) + 1),
840  BSELI_B = ((2U << 24) + 1),
841  SHF_B = ((0U << 24) + 2),
842  SHF_H = ((1U << 24) + 2),
843  SHF_W = ((2U << 24) + 2),
844
845  MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
846
847  // MSA: Operation Field for VEC Instruction Formats
848  AND_V = (((0U << 2) + 0) << 21),
849  OR_V = (((0U << 2) + 1) << 21),
850  NOR_V = (((0U << 2) + 2) << 21),
851  XOR_V = (((0U << 2) + 3) << 21),
852  BMNZ_V = (((1U << 2) + 0) << 21),
853  BMZ_V = (((1U << 2) + 1) << 21),
854  BSEL_V = (((1U << 2) + 2) << 21),
855
856  // MSA: Operation Field for 2R Instruction Formats
857  MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
858  FILL = (0U << 18),
859  PCNT = (1U << 18),
860  NLOC = (2U << 18),
861  NLZC = (3U << 18),
862  MSA_2R_DF_b = (0U << 16),
863  MSA_2R_DF_h = (1U << 16),
864  MSA_2R_DF_w = (2U << 16),
865  MSA_2R_DF_d = (3U << 16),
866
867  // MSA: Operation Field for 2RF Instruction Formats
868  MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
869  FCLASS = (0U << 17),
870  FTRUNC_S = (1U << 17),
871  FTRUNC_U = (2U << 17),
872  FSQRT = (3U << 17),
873  FRSQRT = (4U << 17),
874  FRCP = (5U << 17),
875  FRINT = (6U << 17),
876  FLOG2 = (7U << 17),
877  FEXUPL = (8U << 17),
878  FEXUPR = (9U << 17),
879  FFQL = (10U << 17),
880  FFQR = (11U << 17),
881  FTINT_S = (12U << 17),
882  FTINT_U = (13U << 17),
883  FFINT_S = (14U << 17),
884  FFINT_U = (15U << 17),
885  MSA_2RF_DF_w = (0U << 16),
886  MSA_2RF_DF_d = (1U << 16),
887
888  // MSA: Operation Field for 3R Instruction Format
889  SLL_MSA = ((0U << 23) + 13),
890  SRA_MSA = ((1U << 23) + 13),
891  SRL_MSA = ((2U << 23) + 13),
892  BCLR = ((3U << 23) + 13),
893  BSET = ((4U << 23) + 13),
894  BNEG = ((5U << 23) + 13),
895  BINSL = ((6U << 23) + 13),
896  BINSR = ((7U << 23) + 13),
897  ADDV = ((0U << 23) + 14),
898  SUBV = ((1U << 23) + 14),
899  MAX_S = ((2U << 23) + 14),
900  MAX_U = ((3U << 23) + 14),
901  MIN_S = ((4U << 23) + 14),
902  MIN_U = ((5U << 23) + 14),
903  MAX_A = ((6U << 23) + 14),
904  MIN_A = ((7U << 23) + 14),
905  CEQ = ((0U << 23) + 15),
906  CLT_S = ((2U << 23) + 15),
907  CLT_U = ((3U << 23) + 15),
908  CLE_S = ((4U << 23) + 15),
909  CLE_U = ((5U << 23) + 15),
910  ADD_A = ((0U << 23) + 16),
911  ADDS_A = ((1U << 23) + 16),
912  ADDS_S = ((2U << 23) + 16),
913  ADDS_U = ((3U << 23) + 16),
914  AVE_S = ((4U << 23) + 16),
915  AVE_U = ((5U << 23) + 16),
916  AVER_S = ((6U << 23) + 16),
917  AVER_U = ((7U << 23) + 16),
918  SUBS_S = ((0U << 23) + 17),
919  SUBS_U = ((1U << 23) + 17),
920  SUBSUS_U = ((2U << 23) + 17),
921  SUBSUU_S = ((3U << 23) + 17),
922  ASUB_S = ((4U << 23) + 17),
923  ASUB_U = ((5U << 23) + 17),
924  MULV = ((0U << 23) + 18),
925  MADDV = ((1U << 23) + 18),
926  MSUBV = ((2U << 23) + 18),
927  DIV_S_MSA = ((4U << 23) + 18),
928  DIV_U = ((5U << 23) + 18),
929  MOD_S = ((6U << 23) + 18),
930  MOD_U = ((7U << 23) + 18),
931  DOTP_S = ((0U << 23) + 19),
932  DOTP_U = ((1U << 23) + 19),
933  DPADD_S = ((2U << 23) + 19),
934  DPADD_U = ((3U << 23) + 19),
935  DPSUB_S = ((4U << 23) + 19),
936  DPSUB_U = ((5U << 23) + 19),
937  SLD = ((0U << 23) + 20),
938  SPLAT = ((1U << 23) + 20),
939  PCKEV = ((2U << 23) + 20),
940  PCKOD = ((3U << 23) + 20),
941  ILVL = ((4U << 23) + 20),
942  ILVR = ((5U << 23) + 20),
943  ILVEV = ((6U << 23) + 20),
944  ILVOD = ((7U << 23) + 20),
945  VSHF = ((0U << 23) + 21),
946  SRAR = ((1U << 23) + 21),
947  SRLR = ((2U << 23) + 21),
948  HADD_S = ((4U << 23) + 21),
949  HADD_U = ((5U << 23) + 21),
950  HSUB_S = ((6U << 23) + 21),
951  HSUB_U = ((7U << 23) + 21),
952  MSA_3R_DF_b = (0U << 21),
953  MSA_3R_DF_h = (1U << 21),
954  MSA_3R_DF_w = (2U << 21),
955  MSA_3R_DF_d = (3U << 21),
956
957  // MSA: Operation Field for 3RF Instruction Format
958  FCAF = ((0U << 22) + 26),
959  FCUN = ((1U << 22) + 26),
960  FCEQ = ((2U << 22) + 26),
961  FCUEQ = ((3U << 22) + 26),
962  FCLT = ((4U << 22) + 26),
963  FCULT = ((5U << 22) + 26),
964  FCLE = ((6U << 22) + 26),
965  FCULE = ((7U << 22) + 26),
966  FSAF = ((8U << 22) + 26),
967  FSUN = ((9U << 22) + 26),
968  FSEQ = ((10U << 22) + 26),
969  FSUEQ = ((11U << 22) + 26),
970  FSLT = ((12U << 22) + 26),
971  FSULT = ((13U << 22) + 26),
972  FSLE = ((14U << 22) + 26),
973  FSULE = ((15U << 22) + 26),
974  FADD = ((0U << 22) + 27),
975  FSUB = ((1U << 22) + 27),
976  FMUL = ((2U << 22) + 27),
977  FDIV = ((3U << 22) + 27),
978  FMADD = ((4U << 22) + 27),
979  FMSUB = ((5U << 22) + 27),
980  FEXP2 = ((7U << 22) + 27),
981  FEXDO = ((8U << 22) + 27),
982  FTQ = ((10U << 22) + 27),
983  FMIN = ((12U << 22) + 27),
984  FMIN_A = ((13U << 22) + 27),
985  FMAX = ((14U << 22) + 27),
986  FMAX_A = ((15U << 22) + 27),
987  FCOR = ((1U << 22) + 28),
988  FCUNE = ((2U << 22) + 28),
989  FCNE = ((3U << 22) + 28),
990  MUL_Q = ((4U << 22) + 28),
991  MADD_Q = ((5U << 22) + 28),
992  MSUB_Q = ((6U << 22) + 28),
993  FSOR = ((9U << 22) + 28),
994  FSUNE = ((10U << 22) + 28),
995  FSNE = ((11U << 22) + 28),
996  MULR_Q = ((12U << 22) + 28),
997  MADDR_Q = ((13U << 22) + 28),
998  MSUBR_Q = ((14U << 22) + 28),
999
1000  // MSA: Operation Field for ELM Instruction Format
1001  MSA_ELM_MINOR = ((3U << 3) + 1),
1002  SLDI = (0U << 22),
1003  CTCMSA = ((0U << 22) | (62U << 16)),
1004  SPLATI = (1U << 22),
1005  CFCMSA = ((1U << 22) | (62U << 16)),
1006  COPY_S = (2U << 22),
1007  MOVE_V = ((2U << 22) | (62U << 16)),
1008  COPY_U = (3U << 22),
1009  INSERT = (4U << 22),
1010  INSVE = (5U << 22),
1011  ELM_DF_B = ((0U << 4) << 16),
1012  ELM_DF_H = ((4U << 3) << 16),
1013  ELM_DF_W = ((12U << 2) << 16),
1014  ELM_DF_D = ((28U << 1) << 16),
1015
1016  // MSA: Operation Field for BIT Instruction Format
1017  SLLI = ((0U << 23) + 9),
1018  SRAI = ((1U << 23) + 9),
1019  SRLI = ((2U << 23) + 9),
1020  BCLRI = ((3U << 23) + 9),
1021  BSETI = ((4U << 23) + 9),
1022  BNEGI = ((5U << 23) + 9),
1023  BINSLI = ((6U << 23) + 9),
1024  BINSRI = ((7U << 23) + 9),
1025  SAT_S = ((0U << 23) + 10),
1026  SAT_U = ((1U << 23) + 10),
1027  SRARI = ((2U << 23) + 10),
1028  SRLRI = ((3U << 23) + 10),
1029  BIT_DF_b = ((14U << 3) << 16),
1030  BIT_DF_h = ((6U << 4) << 16),
1031  BIT_DF_w = ((2U << 5) << 16),
1032  BIT_DF_d = ((0U << 6) << 16),
1033
1034  nullptrSF = 0U
1035};
1036
1037enum MSAMinorOpcode : uint32_t {
1038  kMsaMinorUndefined = 0,
1039  kMsaMinorI8,
1040  kMsaMinorI5,
1041  kMsaMinorI10,
1042  kMsaMinorBIT,
1043  kMsaMinor3R,
1044  kMsaMinor3RF,
1045  kMsaMinorELM,
1046  kMsaMinorVEC,
1047  kMsaMinor2R,
1048  kMsaMinor2RF,
1049  kMsaMinorMI10
1050};
1051
1052// ----- Emulated conditions.
1053// On MIPS we use this enum to abstract from conditional branch instructions.
1054// The 'U' prefix is used to specify unsigned comparisons.
1055// Opposite conditions must be paired as odd/even numbers
1056// because 'NegateCondition' function flips LSB to negate condition.
1057enum Condition {
1058  // Any value < 0 is considered no_condition.
1059  kNoCondition = -1,
1060  overflow = 0,
1061  no_overflow = 1,
1062  Uless = 2,
1063  Ugreater_equal = 3,
1064  Uless_equal = 4,
1065  Ugreater = 5,
1066  equal = 6,
1067  not_equal = 7,  // Unordered or Not Equal.
1068  negative = 8,
1069  positive = 9,
1070  parity_even = 10,
1071  parity_odd = 11,
1072  less = 12,
1073  greater_equal = 13,
1074  less_equal = 14,
1075  greater = 15,
1076  ueq = 16,  // Unordered or Equal.
1077  ogl = 17,  // Ordered and Not Equal.
1078  cc_always = 18,
1079
1080  // Aliases.
1081  carry = Uless,
1082  not_carry = Ugreater_equal,
1083  zero = equal,
1084  eq = equal,
1085  not_zero = not_equal,
1086  ne = not_equal,
1087  nz = not_equal,
1088  sign = negative,
1089  not_sign = positive,
1090  mi = negative,
1091  pl = positive,
1092  hi = Ugreater,
1093  ls = Uless_equal,
1094  ge = greater_equal,
1095  lt = less,
1096  gt = greater,
1097  le = less_equal,
1098  hs = Ugreater_equal,
1099  lo = Uless,
1100  al = cc_always,
1101  ult = Uless,
1102  uge = Ugreater_equal,
1103  ule = Uless_equal,
1104  ugt = Ugreater,
1105  cc_default = kNoCondition
1106};
1107
1108// Returns the equivalent of !cc.
1109// Negation of the default kNoCondition (-1) results in a non-default
1110// no_condition value (-2). As long as tests for no_condition check
1111// for condition < 0, this will work as expected.
1112inline Condition NegateCondition(Condition cc) {
1113  DCHECK(cc != cc_always);
1114  return static_cast<Condition>(cc ^ 1);
1115}
1116
1117inline Condition NegateFpuCondition(Condition cc) {
1118  DCHECK(cc != cc_always);
1119  switch (cc) {
1120    case ult:
1121      return ge;
1122    case ugt:
1123      return le;
1124    case uge:
1125      return lt;
1126    case ule:
1127      return gt;
1128    case lt:
1129      return uge;
1130    case gt:
1131      return ule;
1132    case ge:
1133      return ult;
1134    case le:
1135      return ugt;
1136    case eq:
1137      return ne;
1138    case ne:
1139      return eq;
1140    case ueq:
1141      return ogl;
1142    case ogl:
1143      return ueq;
1144    default:
1145      return cc;
1146  }
1147}
1148
1149enum MSABranchCondition {
1150  all_not_zero = 0,   // Branch If All Elements Are Not Zero
1151  one_elem_not_zero,  // Branch If At Least One Element of Any Format Is Not
1152                      // Zero
1153  one_elem_zero,      // Branch If At Least One Element Is Zero
1154  all_zero            // Branch If All Elements of Any Format Are Zero
1155};
1156
1157inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1158  switch (cond) {
1159    case all_not_zero:
1160      return one_elem_zero;
1161    case one_elem_not_zero:
1162      return all_zero;
1163    case one_elem_zero:
1164      return all_not_zero;
1165    case all_zero:
1166      return one_elem_not_zero;
1167    default:
1168      return cond;
1169  }
1170}
1171
1172enum MSABranchDF {
1173  MSA_BRANCH_B = 0,
1174  MSA_BRANCH_H,
1175  MSA_BRANCH_W,
1176  MSA_BRANCH_D,
1177  MSA_BRANCH_V
1178};
1179
1180// ----- Coprocessor conditions.
1181enum FPUCondition {
1182  kNoFPUCondition = -1,
1183
1184  F = 0x00,    // False.
1185  UN = 0x01,   // Unordered.
1186  EQ = 0x02,   // Equal.
1187  UEQ = 0x03,  // Unordered or Equal.
1188  OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
1189  LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
1190  ULT = 0x05,  // Unordered or Less Than.
1191  OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
1192  LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
1193  ULE = 0x07,  // Unordered or Less Than or Equal.
1194
1195  // Following constants are available on Mips release >= 6 only.
1196  ORD = 0x11,  // Ordered, on Mips release >= 6.
1197  UNE = 0x12,  // Not equal, on Mips release >= 6.
1198  NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
1199};
1200
1201// FPU rounding modes.
1202enum FPURoundingMode {
1203  RN = 0 << 0,  // Round to Nearest.
1204  RZ = 1 << 0,  // Round towards zero.
1205  RP = 2 << 0,  // Round towards Plus Infinity.
1206  RM = 3 << 0,  // Round towards Minus Infinity.
1207
1208  // Aliases.
1209  kRoundToNearest = RN,
1210  kRoundToZero = RZ,
1211  kRoundToPlusInf = RP,
1212  kRoundToMinusInf = RM,
1213
1214  mode_round = RN,
1215  mode_ceil = RP,
1216  mode_floor = RM,
1217  mode_trunc = RZ
1218};
1219
1220const uint32_t kFPURoundingModeMask = 3 << 0;
1221
1222enum CheckForInexactConversion {
1223  kCheckForInexactConversion,
1224  kDontCheckForInexactConversion
1225};
1226
1227enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1228
1229// -----------------------------------------------------------------------------
1230// Hints.
1231
1232// Branch hints are not used on the MIPS.  They are defined so that they can
1233// appear in shared function signatures, but will be ignored in MIPS
1234// implementations.
1235enum Hint { no_hint = 0 };
1236
1237inline Hint NegateHint(Hint hint) { return no_hint; }
1238
1239// -----------------------------------------------------------------------------
1240// Specific instructions, constants, and masks.
1241// These constants are declared in assembler-mips.cc, as they use named
1242// registers and other constants.
1243
1244// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1245// operations as post-increment of sp.
1246extern const Instr kPopInstruction;
1247// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1248extern const Instr kPushInstruction;
1249// Sw(r, MemOperand(sp, 0))
1250extern const Instr kPushRegPattern;
1251// Lw(r, MemOperand(sp, 0))
1252extern const Instr kPopRegPattern;
1253extern const Instr kLwRegFpOffsetPattern;
1254extern const Instr kSwRegFpOffsetPattern;
1255extern const Instr kLwRegFpNegOffsetPattern;
1256extern const Instr kSwRegFpNegOffsetPattern;
1257// A mask for the Rt register for push, pop, lw, sw instructions.
1258extern const Instr kRtMask;
1259extern const Instr kLwSwInstrTypeMask;
1260extern const Instr kLwSwInstrArgumentMask;
1261extern const Instr kLwSwOffsetMask;
1262
1263// Break 0xfffff, reserved for redirected real time call.
1264const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1265// A nop instruction. (Encoding of sll 0 0 0).
1266const Instr nopInstr = 0;
1267
1268static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1269  return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1270}
1271
1272constexpr uint8_t kInstrSize = 4;
1273constexpr uint8_t kInstrSizeLog2 = 2;
1274
1275class InstructionBase {
1276 public:
1277  enum {
1278    // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1279    // always the value of the current instruction being executed.
1280    kPCReadOffset = 0
1281  };
1282
1283  // Instruction type.
1284  enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1285
1286  // Get the raw instruction bits.
1287  inline Instr InstructionBits() const {
1288    return *reinterpret_cast<const Instr*>(this);
1289  }
1290
1291  // Set the raw instruction bits to value.
1292  inline void SetInstructionBits(Instr value) {
1293    *reinterpret_cast<Instr*>(this) = value;
1294  }
1295
1296  // Read one particular bit out of the instruction bits.
1297  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1298
1299  // Read a bit field out of the instruction bits.
1300  inline int Bits(int hi, int lo) const {
1301    return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1302  }
1303
1304  static constexpr uint64_t kOpcodeImmediateTypeMask =
1305      OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1306      OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1307      OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1308      OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1309      OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
1310      OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
1311      OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
1312      OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
1313      OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
1314      OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
1315      OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
1316      OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
1317      OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1318      OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
1319      OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1320      OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
1321      OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
1322      OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1323      OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1324      OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
1325      OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
1326
1327#define FunctionFieldToBitNumber(function) (1ULL << function)
1328
1329  // On r6, DCLZ_R6 aliases to existing MFLO.
1330  static const uint64_t kFunctionFieldRegisterTypeMask =
1331      FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1332      FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1333      FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
1334      FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
1335      FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
1336      FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
1337      FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
1338      FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
1339      FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
1340      FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
1341      FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1342      FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
1343      FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
1344      FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
1345      FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
1346      FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
1347      FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
1348      FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
1349      FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
1350      FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1351      FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1352      FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1353      FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1354      FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1355      FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1356      FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1357      FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1358      FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1359
1360  // Accessors for the different named fields used in the MIPS encoding.
1361  inline Opcode OpcodeValue() const {
1362    return static_cast<Opcode>(
1363        Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1364  }
1365
1366  inline int FunctionFieldRaw() const {
1367    return InstructionBits() & kFunctionFieldMask;
1368  }
1369
1370  // Return the fields at their original place in the instruction encoding.
1371  inline Opcode OpcodeFieldRaw() const {
1372    return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1373  }
1374
1375  // Safe to call within InstructionType().
1376  inline int RsFieldRawNoAssert() const {
1377    return InstructionBits() & kRsFieldMask;
1378  }
1379
1380  inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1381
1382  // Get the encoding type of the instruction.
1383  inline Type InstructionType() const;
1384
1385  inline MSAMinorOpcode MSAMinorOpcodeField() const {
1386    int op = this->FunctionFieldRaw();
1387    switch (op) {
1388      case 0:
1389      case 1:
1390      case 2:
1391        return kMsaMinorI8;
1392      case 6:
1393        return kMsaMinorI5;
1394      case 7:
1395        return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1396                    ? kMsaMinorI10
1397                    : kMsaMinorI5);
1398      case 9:
1399      case 10:
1400        return kMsaMinorBIT;
1401      case 13:
1402      case 14:
1403      case 15:
1404      case 16:
1405      case 17:
1406      case 18:
1407      case 19:
1408      case 20:
1409      case 21:
1410        return kMsaMinor3R;
1411      case 25:
1412        return kMsaMinorELM;
1413      case 26:
1414      case 27:
1415      case 28:
1416        return kMsaMinor3RF;
1417      case 30:
1418        switch (this->RsFieldRawNoAssert()) {
1419          case MSA_2R_FORMAT:
1420            return kMsaMinor2R;
1421          case MSA_2RF_FORMAT:
1422            return kMsaMinor2RF;
1423          default:
1424            return kMsaMinorVEC;
1425        }
1426        break;
1427      case 32:
1428      case 33:
1429      case 34:
1430      case 35:
1431      case 36:
1432      case 37:
1433      case 38:
1434      case 39:
1435        return kMsaMinorMI10;
1436      default:
1437        return kMsaMinorUndefined;
1438    }
1439  }
1440
1441 protected:
1442  InstructionBase() {}
1443};
1444
1445template <class T>
1446class InstructionGetters : public T {
1447 public:
1448  inline int RsValue() const {
1449    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1450           this->InstructionType() == InstructionBase::kImmediateType);
1451    return this->Bits(kRsShift + kRsBits - 1, kRsShift);
1452  }
1453
1454  inline int RtValue() const {
1455    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1456           this->InstructionType() == InstructionBase::kImmediateType);
1457    return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1458  }
1459
1460  inline int RdValue() const {
1461    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1462    return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1463  }
1464
1465  inline int BaseValue() const {
1466    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1467    return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1468  }
1469
1470  inline int SaValue() const {
1471    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1472    return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1473  }
1474
1475  inline int LsaSaValue() const {
1476    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1477    return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1478  }
1479
1480  inline int FunctionValue() const {
1481    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1482           this->InstructionType() == InstructionBase::kImmediateType);
1483    return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1484  }
1485
1486  inline int FdValue() const {
1487    return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1488  }
1489
1490  inline int FsValue() const {
1491    return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1492  }
1493
1494  inline int FtValue() const {
1495    return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1496  }
1497
1498  inline int FrValue() const {
1499    return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1500  }
1501
1502  inline int WdValue() const {
1503    return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1504  }
1505
1506  inline int WsValue() const {
1507    return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1508  }
1509
1510  inline int WtValue() const {
1511    return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1512  }
1513
1514  inline int Bp2Value() const {
1515    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1516    return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1517  }
1518
1519  inline int Bp3Value() const {
1520    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1521    return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1522  }
1523
1524  // Float Compare condition code instruction bits.
1525  inline int FCccValue() const {
1526    return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1527  }
1528
1529  // Float Branch condition code instruction bits.
1530  inline int FBccValue() const {
1531    return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1532  }
1533
1534  // Float Branch true/false instruction bit.
1535  inline int FBtrueValue() const {
1536    return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1537  }
1538
1539  // Return the fields at their original place in the instruction encoding.
1540  inline Opcode OpcodeFieldRaw() const {
1541    return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1542  }
1543
1544  inline int RsFieldRaw() const {
1545    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1546           this->InstructionType() == InstructionBase::kImmediateType);
1547    return this->InstructionBits() & kRsFieldMask;
1548  }
1549
1550  // Same as above function, but safe to call within InstructionType().
1551  inline int RsFieldRawNoAssert() const {
1552    return this->InstructionBits() & kRsFieldMask;
1553  }
1554
1555  inline int RtFieldRaw() const {
1556    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1557           this->InstructionType() == InstructionBase::kImmediateType);
1558    return this->InstructionBits() & kRtFieldMask;
1559  }
1560
1561  inline int RdFieldRaw() const {
1562    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1563    return this->InstructionBits() & kRdFieldMask;
1564  }
1565
1566  inline int SaFieldRaw() const {
1567    return this->InstructionBits() & kSaFieldMask;
1568  }
1569
1570  inline int FunctionFieldRaw() const {
1571    return this->InstructionBits() & kFunctionFieldMask;
1572  }
1573
1574  // Get the secondary field according to the opcode.
1575  inline int SecondaryValue() const {
1576    Opcode op = this->OpcodeFieldRaw();
1577    switch (op) {
1578      case SPECIAL:
1579      case SPECIAL2:
1580        return FunctionValue();
1581      case COP1:
1582        return RsValue();
1583      case REGIMM:
1584        return RtValue();
1585      default:
1586        return nullptrSF;
1587    }
1588  }
1589
1590  inline int32_t ImmValue(int bits) const {
1591    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1592    return this->Bits(bits - 1, 0);
1593  }
1594
1595  inline int32_t Imm9Value() const {
1596    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1597    return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1598  }
1599
1600  inline int32_t Imm16Value() const {
1601    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1602    return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1603  }
1604
1605  inline int32_t Imm18Value() const {
1606    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1607    return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1608  }
1609
1610  inline int32_t Imm19Value() const {
1611    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1612    return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1613  }
1614
1615  inline int32_t Imm21Value() const {
1616    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1617    return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1618  }
1619
1620  inline int32_t Imm26Value() const {
1621    DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1622           (this->InstructionType() == InstructionBase::kImmediateType));
1623    return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1624  }
1625
1626  inline int32_t MsaImm8Value() const {
1627    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1628    return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1629  }
1630
1631  inline int32_t MsaImm5Value() const {
1632    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1633    return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1634  }
1635
1636  inline int32_t MsaImm10Value() const {
1637    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1638    return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1639  }
1640
1641  inline int32_t MsaImmMI10Value() const {
1642    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1643    return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1644  }
1645
1646  inline int32_t MsaBitDf() const {
1647    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1648    int32_t df_m = this->Bits(22, 16);
1649    if (((df_m >> 6) & 1U) == 0) {
1650      return 3;
1651    } else if (((df_m >> 5) & 3U) == 2) {
1652      return 2;
1653    } else if (((df_m >> 4) & 7U) == 6) {
1654      return 1;
1655    } else if (((df_m >> 3) & 15U) == 14) {
1656      return 0;
1657    } else {
1658      return -1;
1659    }
1660  }
1661
1662  inline int32_t MsaBitMValue() const {
1663    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1664    return this->Bits(16 + this->MsaBitDf() + 3, 16);
1665  }
1666
1667  inline int32_t MsaElmDf() const {
1668    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1669           this->InstructionType() == InstructionBase::kImmediateType);
1670    int32_t df_n = this->Bits(21, 16);
1671    if (((df_n >> 4) & 3U) == 0) {
1672      return 0;
1673    } else if (((df_n >> 3) & 7U) == 4) {
1674      return 1;
1675    } else if (((df_n >> 2) & 15U) == 12) {
1676      return 2;
1677    } else if (((df_n >> 1) & 31U) == 28) {
1678      return 3;
1679    } else {
1680      return -1;
1681    }
1682  }
1683
1684  inline int32_t MsaElmNValue() const {
1685    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1686           this->InstructionType() == InstructionBase::kImmediateType);
1687    return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1688  }
1689
1690  static bool IsForbiddenAfterBranchInstr(Instr instr);
1691
1692  // Say if the instruction should not be used in a branch delay slot or
1693  // immediately after a compact branch.
1694  inline bool IsForbiddenAfterBranch() const {
1695    return IsForbiddenAfterBranchInstr(this->InstructionBits());
1696  }
1697
1698  inline bool IsForbiddenInBranchDelay() const {
1699    return IsForbiddenAfterBranch();
1700  }
1701
1702  // Say if the instruction 'links'. e.g. jal, bal.
1703  bool IsLinkingInstruction() const;
1704  // Say if the instruction is a break or a trap.
1705  bool IsTrap() const;
1706
1707  inline bool IsMSABranchInstr() const {
1708    if (this->OpcodeFieldRaw() == COP1) {
1709      switch (this->RsFieldRaw()) {
1710        case BZ_V:
1711        case BZ_B:
1712        case BZ_H:
1713        case BZ_W:
1714        case BZ_D:
1715        case BNZ_V:
1716        case BNZ_B:
1717        case BNZ_H:
1718        case BNZ_W:
1719        case BNZ_D:
1720          return true;
1721        default:
1722          return false;
1723      }
1724    }
1725    return false;
1726  }
1727
1728  inline bool IsMSAInstr() const {
1729    if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1730      return true;
1731    return false;
1732  }
1733};
1734
1735class Instruction : public InstructionGetters<InstructionBase> {
1736 public:
1737  // Instructions are read of out a code stream. The only way to get a
1738  // reference to an instruction is to convert a pointer. There is no way
1739  // to allocate or create instances of class Instruction.
1740  // Use the At(pc) function to create references to Instruction.
1741  static Instruction* At(byte* pc) {
1742    return reinterpret_cast<Instruction*>(pc);
1743  }
1744
1745 private:
1746  // We need to prevent the creation of instances of class Instruction.
1747  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1748};
1749
1750// -----------------------------------------------------------------------------
1751// MIPS assembly various constants.
1752
1753// C/C++ argument slots size.
1754const int kCArgSlotCount = 0;
1755
1756// TODO(plind): below should be based on kPointerSize
1757// TODO(plind): find all usages and remove the needless instructions for n64.
1758const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2;
1759
1760const int kInvalidStackOffset = -1;
1761const int kBranchReturnOffset = 2 * kInstrSize;
1762
1763static const int kNegOffset = 0x00008000;
1764
1765InstructionBase::Type InstructionBase::InstructionType() const {
1766  switch (OpcodeFieldRaw()) {
1767    case SPECIAL:
1768      if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1769          kFunctionFieldRegisterTypeMask) {
1770        return kRegisterType;
1771      }
1772      return kUnsupported;
1773    case SPECIAL2:
1774      switch (FunctionFieldRaw()) {
1775        case MUL:
1776        case CLZ:
1777        case DCLZ:
1778          return kRegisterType;
1779        default:
1780          return kUnsupported;
1781      }
1782      break;
1783    case SPECIAL3:
1784      switch (FunctionFieldRaw()) {
1785        case INS:
1786        case DINS:
1787        case DINSM:
1788        case DINSU:
1789        case EXT:
1790        case DEXT:
1791        case DEXTM:
1792        case DEXTU:
1793          return kRegisterType;
1794        case BSHFL: {
1795          int sa = SaFieldRaw() >> kSaShift;
1796          switch (sa) {
1797            case BITSWAP:
1798            case WSBH:
1799            case SEB:
1800            case SEH:
1801              return kRegisterType;
1802          }
1803          sa >>= kBp2Bits;
1804          switch (sa) {
1805            case ALIGN:
1806              return kRegisterType;
1807            default:
1808              return kUnsupported;
1809          }
1810        }
1811        case LL_R6:
1812        case LLD_R6:
1813        case SC_R6:
1814        case SCD_R6: {
1815          DCHECK_EQ(kArchVariant, kMips64r6);
1816          return kImmediateType;
1817        }
1818        case DBSHFL: {
1819          int sa = SaFieldRaw() >> kSaShift;
1820          switch (sa) {
1821            case DBITSWAP:
1822            case DSBH:
1823            case DSHD:
1824              return kRegisterType;
1825          }
1826          sa = SaFieldRaw() >> kSaShift;
1827          sa >>= kBp3Bits;
1828          switch (sa) {
1829            case DALIGN:
1830              return kRegisterType;
1831            default:
1832              return kUnsupported;
1833          }
1834        }
1835        default:
1836          return kUnsupported;
1837      }
1838      break;
1839    case COP1:  // Coprocessor instructions.
1840      switch (RsFieldRawNoAssert()) {
1841        case BC1:  // Branch on coprocessor condition.
1842        case BC1EQZ:
1843        case BC1NEZ:
1844          return kImmediateType;
1845        // MSA Branch instructions
1846        case BZ_V:
1847        case BNZ_V:
1848        case BZ_B:
1849        case BZ_H:
1850        case BZ_W:
1851        case BZ_D:
1852        case BNZ_B:
1853        case BNZ_H:
1854        case BNZ_W:
1855        case BNZ_D:
1856          return kImmediateType;
1857        default:
1858          return kRegisterType;
1859      }
1860      break;
1861    case COP1X:
1862      return kRegisterType;
1863
1864    // 26 bits immediate type instructions. e.g.: j imm26.
1865    case J:
1866    case JAL:
1867      return kJumpType;
1868
1869    case MSA:
1870      switch (MSAMinorOpcodeField()) {
1871        case kMsaMinor3R:
1872        case kMsaMinor3RF:
1873        case kMsaMinorVEC:
1874        case kMsaMinor2R:
1875        case kMsaMinor2RF:
1876          return kRegisterType;
1877        case kMsaMinorELM:
1878          switch (InstructionBits() & kMsaLongerELMMask) {
1879            case CFCMSA:
1880            case CTCMSA:
1881            case MOVE_V:
1882              return kRegisterType;
1883            default:
1884              return kImmediateType;
1885          }
1886        default:
1887          return kImmediateType;
1888      }
1889
1890    default:
1891      return kImmediateType;
1892  }
1893  return kUnsupported;
1894}
1895#undef OpcodeToBitNumber
1896#undef FunctionFieldToBitNumber
1897
1898// -----------------------------------------------------------------------------
1899// Instructions.
1900
1901template <class P>
1902bool InstructionGetters<P>::IsLinkingInstruction() const {
1903  switch (OpcodeFieldRaw()) {
1904    case JAL:
1905      return true;
1906    case POP76:
1907      if (RsFieldRawNoAssert() == JIALC)
1908        return true;  // JIALC
1909      else
1910        return false;  // BNEZC
1911    case REGIMM:
1912      switch (RtFieldRaw()) {
1913        case BGEZAL:
1914        case BLTZAL:
1915          return true;
1916        default:
1917          return false;
1918      }
1919    case SPECIAL:
1920      switch (FunctionFieldRaw()) {
1921        case JALR:
1922          return true;
1923        default:
1924          return false;
1925      }
1926    default:
1927      return false;
1928  }
1929}
1930
1931template <class P>
1932bool InstructionGetters<P>::IsTrap() const {
1933  if (OpcodeFieldRaw() != SPECIAL) {
1934    return false;
1935  } else {
1936    switch (FunctionFieldRaw()) {
1937      case BREAK:
1938      case TGE:
1939      case TGEU:
1940      case TLT:
1941      case TLTU:
1942      case TEQ:
1943      case TNE:
1944        return true;
1945      default:
1946        return false;
1947    }
1948  }
1949}
1950
1951// static
1952template <class T>
1953bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1954  Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1955  switch (opcode) {
1956    case J:
1957    case JAL:
1958    case BEQ:
1959    case BNE:
1960    case BLEZ:  // POP06 bgeuc/bleuc, blezalc, bgezalc
1961    case BGTZ:  // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1962    case BEQL:
1963    case BNEL:
1964    case BLEZL:  // POP26 bgezc, blezc, bgec/blec
1965    case BGTZL:  // POP27 bgtzc, bltzc, bltc/bgtc
1966    case BC:
1967    case BALC:
1968    case POP10:  // beqzalc, bovc, beqc
1969    case POP30:  // bnezalc, bnvc, bnec
1970    case POP66:  // beqzc, jic
1971    case POP76:  // bnezc, jialc
1972      return true;
1973    case REGIMM:
1974      switch (instr & kRtFieldMask) {
1975        case BLTZ:
1976        case BGEZ:
1977        case BLTZAL:
1978        case BGEZAL:
1979          return true;
1980        default:
1981          return false;
1982      }
1983      break;
1984    case SPECIAL:
1985      switch (instr & kFunctionFieldMask) {
1986        case JR:
1987        case JALR:
1988          return true;
1989        default:
1990          return false;
1991      }
1992      break;
1993    case COP1:
1994      switch (instr & kRsFieldMask) {
1995        case BC1:
1996        case BC1EQZ:
1997        case BC1NEZ:
1998        case BZ_V:
1999        case BZ_B:
2000        case BZ_H:
2001        case BZ_W:
2002        case BZ_D:
2003        case BNZ_V:
2004        case BNZ_B:
2005        case BNZ_H:
2006        case BNZ_W:
2007        case BNZ_D:
2008          return true;
2009          break;
2010        default:
2011          return false;
2012      }
2013      break;
2014    default:
2015      return false;
2016  }
2017}
2018}  // namespace internal
2019}  // namespace v8
2020
2021#endif  // V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
2022