1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
6#define V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
7#include "src/codegen/cpu-features.h"
8// UNIMPLEMENTED_ macro for MIPS.
9#ifdef DEBUG
10#define UNIMPLEMENTED_MIPS()                                               \
11  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
12                       __FILE__, __LINE__, __func__)
13#else
14#define UNIMPLEMENTED_MIPS()
15#endif
16
17#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
18
19enum ArchVariants {
20  kMips32r1 = v8::internal::MIPSr1,
21  kMips32r2 = v8::internal::MIPSr2,
22  kMips32r6 = v8::internal::MIPSr6,
23  kLoongson
24};
25
26#ifdef _MIPS_ARCH_MIPS32R2
27static const ArchVariants kArchVariant = kMips32r2;
28#elif _MIPS_ARCH_MIPS32R6
29static const ArchVariants kArchVariant = kMips32r6;
30#elif _MIPS_ARCH_LOONGSON
31// The loongson flag refers to the LOONGSON architectures based on MIPS-III,
32// which predates (and is a subset of) the mips32r2 and r1 architectures.
33static const ArchVariants kArchVariant = kLoongson;
34#elif _MIPS_ARCH_MIPS32RX
35// This flags referred to compatibility mode that creates universal code that
36// can run on any MIPS32 architecture revision. The dynamically generated code
37// by v8 is specialized for the MIPS host detected in runtime probing.
38static const ArchVariants kArchVariant = kMips32r1;
39#else
40static const ArchVariants kArchVariant = kMips32r1;
41#endif
42
43enum Endianness { kLittle, kBig };
44
45#if defined(V8_TARGET_LITTLE_ENDIAN)
46static const Endianness kArchEndian = kLittle;
47#elif defined(V8_TARGET_BIG_ENDIAN)
48static const Endianness kArchEndian = kBig;
49#else
50#error Unknown endianness
51#endif
52
53enum FpuMode { kFP32, kFP64, kFPXX };
54
55#if defined(FPU_MODE_FP32)
56static const FpuMode kFpuMode = kFP32;
57#elif defined(FPU_MODE_FP64)
58static const FpuMode kFpuMode = kFP64;
59#elif defined(FPU_MODE_FPXX)
60#if defined(_MIPS_ARCH_MIPS32R2) || defined(_MIPS_ARCH_MIPS32R6)
61static const FpuMode kFpuMode = kFPXX;
62#else
63#error "FPXX is supported only on Mips32R2 and Mips32R6"
64#endif
65#else
66static const FpuMode kFpuMode = kFP32;
67#endif
68
69#if defined(__mips_hard_float) && __mips_hard_float != 0
70// Use floating-point coprocessor instructions. This flag is raised when
71// -mhard-float is passed to the compiler.
72const bool IsMipsSoftFloatABI = false;
73#elif defined(__mips_soft_float) && __mips_soft_float != 0
74// This flag is raised when -msoft-float is passed to the compiler.
75// Although FPU is a base requirement for v8, soft-float ABI is used
76// on soft-float systems with FPU kernel emulation.
77const bool IsMipsSoftFloatABI = true;
78#else
79const bool IsMipsSoftFloatABI = true;
80#endif
81
82#if defined(V8_TARGET_LITTLE_ENDIAN)
83const uint32_t kHoleNanUpper32Offset = 4;
84const uint32_t kHoleNanLower32Offset = 0;
85#elif defined(V8_TARGET_BIG_ENDIAN)
86const uint32_t kHoleNanUpper32Offset = 0;
87const uint32_t kHoleNanLower32Offset = 4;
88#else
89#error Unknown endianness
90#endif
91
92constexpr bool IsFp64Mode() { return kFpuMode == kFP64; }
93constexpr bool IsFp32Mode() { return kFpuMode == kFP32; }
94constexpr bool IsFpxxMode() { return kFpuMode == kFPXX; }
95
96#ifndef _MIPS_ARCH_MIPS32RX
97constexpr bool IsMipsArchVariant(const ArchVariants check) {
98  return kArchVariant == check;
99}
100#else
101bool IsMipsArchVariant(const ArchVariants check) {
102  return CpuFeatures::IsSupported(static_cast<CpuFeature>(check));
103}
104#endif
105
106#if defined(V8_TARGET_LITTLE_ENDIAN)
107const uint32_t kMipsLwrOffset = 0;
108const uint32_t kMipsLwlOffset = 3;
109const uint32_t kMipsSwrOffset = 0;
110const uint32_t kMipsSwlOffset = 3;
111#elif defined(V8_TARGET_BIG_ENDIAN)
112const uint32_t kMipsLwrOffset = 3;
113const uint32_t kMipsLwlOffset = 0;
114const uint32_t kMipsSwrOffset = 3;
115const uint32_t kMipsSwlOffset = 0;
116#else
117#error Unknown endianness
118#endif
119
120#if defined(V8_TARGET_LITTLE_ENDIAN)
121const uint32_t kLeastSignificantByteInInt32Offset = 0;
122#elif defined(V8_TARGET_BIG_ENDIAN)
123const uint32_t kLeastSignificantByteInInt32Offset = 3;
124#else
125#error Unknown endianness
126#endif
127
128#ifndef __STDC_FORMAT_MACROS
129#define __STDC_FORMAT_MACROS
130#endif
131#include <inttypes.h>
132
133// Defines constants and accessor classes to assemble, disassemble and
134// simulate MIPS32 instructions.
135//
136// See: MIPS32 Architecture For Programmers
137//      Volume II: The MIPS32 Instruction Set
138// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
139
140namespace v8 {
141namespace internal {
142
143constexpr size_t kMaxPCRelativeCodeRangeInMB = 4096;
144
145// -----------------------------------------------------------------------------
146// Registers and FPURegisters.
147
148// Number of general purpose registers.
149const int kNumRegisters = 32;
150const int kInvalidRegister = -1;
151
152// Number of registers with HI, LO, and pc.
153const int kNumSimuRegisters = 35;
154
155// In the simulator, the PC register is simulated as the 34th register.
156const int kPCRegister = 34;
157
158// Number coprocessor registers.
159const int kNumFPURegisters = 32;
160const int kInvalidFPURegister = -1;
161
162// Number of MSA registers
163const int kNumMSARegisters = 32;
164const int kInvalidMSARegister = -1;
165
166const int kInvalidMSAControlRegister = -1;
167const int kMSAIRRegister = 0;
168const int kMSACSRRegister = 1;
169const int kMSARegSize = 128;
170const int kMSALanesByte = kMSARegSize / 8;
171const int kMSALanesHalf = kMSARegSize / 16;
172const int kMSALanesWord = kMSARegSize / 32;
173const int kMSALanesDword = kMSARegSize / 64;
174
175// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
176const int kFCSRRegister = 31;
177const int kInvalidFPUControlRegister = -1;
178const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
179const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
180const uint64_t kFPU64InvalidResult =
181    static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
182const int64_t kFPU64InvalidResultNegative =
183    static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
184
185// FCSR constants.
186const uint32_t kFCSRInexactFlagBit = 2;
187const uint32_t kFCSRUnderflowFlagBit = 3;
188const uint32_t kFCSROverflowFlagBit = 4;
189const uint32_t kFCSRDivideByZeroFlagBit = 5;
190const uint32_t kFCSRInvalidOpFlagBit = 6;
191const uint32_t kFCSRNaN2008FlagBit = 18;
192
193const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
194const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
195const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
196const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
197const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
198const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
199
200const uint32_t kFCSRFlagMask =
201    kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
202    kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
203
204const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
205
206const uint32_t kFCSRInexactCauseBit = 12;
207const uint32_t kFCSRUnderflowCauseBit = 13;
208const uint32_t kFCSROverflowCauseBit = 14;
209const uint32_t kFCSRDivideByZeroCauseBit = 15;
210const uint32_t kFCSRInvalidOpCauseBit = 16;
211const uint32_t kFCSRUnimplementedOpCauseBit = 17;
212
213const uint32_t kFCSRInexactCauseMask = 1 << kFCSRInexactCauseBit;
214const uint32_t kFCSRUnderflowCauseMask = 1 << kFCSRUnderflowCauseBit;
215const uint32_t kFCSROverflowCauseMask = 1 << kFCSROverflowCauseBit;
216const uint32_t kFCSRDivideByZeroCauseMask = 1 << kFCSRDivideByZeroCauseBit;
217const uint32_t kFCSRInvalidOpCauseMask = 1 << kFCSRInvalidOpCauseBit;
218const uint32_t kFCSRUnimplementedOpCauseMask = 1
219                                               << kFCSRUnimplementedOpCauseBit;
220
221const uint32_t kFCSRCauseMask =
222    kFCSRInexactCauseMask | kFCSRUnderflowCauseMask | kFCSROverflowCauseMask |
223    kFCSRDivideByZeroCauseMask | kFCSRInvalidOpCauseMask |
224    kFCSRUnimplementedOpCauseBit;
225
226// 'pref' instruction hints
227const int32_t kPrefHintLoad = 0;
228const int32_t kPrefHintStore = 1;
229const int32_t kPrefHintLoadStreamed = 4;
230const int32_t kPrefHintStoreStreamed = 5;
231const int32_t kPrefHintLoadRetained = 6;
232const int32_t kPrefHintStoreRetained = 7;
233const int32_t kPrefHintWritebackInvalidate = 25;
234const int32_t kPrefHintPrepareForStore = 30;
235
236// Actual value of root register is offset from the root array's start
237// to take advantage of negative displacement values.
238// TODO(sigurds): Choose best value.
239constexpr int kRootRegisterBias = 256;
240
241// Helper functions for converting between register numbers and names.
242class Registers {
243 public:
244  // Return the name of the register.
245  static const char* Name(int reg);
246
247  // Lookup the register number for the name provided.
248  static int Number(const char* name);
249
250  struct RegisterAlias {
251    int reg;
252    const char* name;
253  };
254
255  static const int32_t kMaxValue = 0x7fffffff;
256  static const int32_t kMinValue = 0x80000000;
257
258 private:
259  static const char* names_[kNumSimuRegisters];
260  static const RegisterAlias aliases_[];
261};
262
263// Helper functions for converting between register numbers and names.
264class FPURegisters {
265 public:
266  // Return the name of the register.
267  static const char* Name(int reg);
268
269  // Lookup the register number for the name provided.
270  static int Number(const char* name);
271
272  struct RegisterAlias {
273    int creg;
274    const char* name;
275  };
276
277 private:
278  static const char* names_[kNumFPURegisters];
279  static const RegisterAlias aliases_[];
280};
281
282// Helper functions for converting between register numbers and names.
283class MSARegisters {
284 public:
285  // Return the name of the register.
286  static const char* Name(int reg);
287
288  // Lookup the register number for the name provided.
289  static int Number(const char* name);
290
291  struct RegisterAlias {
292    int creg;
293    const char* name;
294  };
295
296 private:
297  static const char* names_[kNumMSARegisters];
298  static const RegisterAlias aliases_[];
299};
300
301// -----------------------------------------------------------------------------
302// Instructions encoding constants.
303
304// On MIPS all instructions are 32 bits.
305using Instr = int32_t;
306
307// Special Software Interrupt codes when used in the presence of the MIPS
308// simulator.
309enum SoftwareInterruptCodes {
310  // Transition to C code.
311  call_rt_redirected = 0xfffff
312};
313
314// On MIPS Simulator breakpoints can have different codes:
315// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
316//   the simulator will run through them and print the registers.
317// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
318//   instructions (see Assembler::stop()).
319// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
320//   debugger.
321const uint32_t kMaxWatchpointCode = 31;
322const uint32_t kMaxStopCode = 127;
323STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
324
325// ----- Fields offset and length.
326const int kOpcodeShift = 26;
327const int kOpcodeBits = 6;
328const int kRsShift = 21;
329const int kRsBits = 5;
330const int kRtShift = 16;
331const int kRtBits = 5;
332const int kRdShift = 11;
333const int kRdBits = 5;
334const int kSaShift = 6;
335const int kSaBits = 5;
336const int kLsaSaBits = 2;
337const int kFunctionShift = 0;
338const int kFunctionBits = 6;
339const int kLuiShift = 16;
340const int kBp2Shift = 6;
341const int kBp2Bits = 2;
342const int kBaseShift = 21;
343const int kBaseBits = 5;
344const int kBit6Shift = 6;
345const int kBit6Bits = 1;
346
347const int kImm9Shift = 7;
348const int kImm9Bits = 9;
349const int kImm16Shift = 0;
350const int kImm16Bits = 16;
351const int kImm18Shift = 0;
352const int kImm18Bits = 18;
353const int kImm19Shift = 0;
354const int kImm19Bits = 19;
355const int kImm21Shift = 0;
356const int kImm21Bits = 21;
357const int kImm26Shift = 0;
358const int kImm26Bits = 26;
359const int kImm28Shift = 0;
360const int kImm28Bits = 28;
361const int kImm32Shift = 0;
362const int kImm32Bits = 32;
363const int kMsaImm8Shift = 16;
364const int kMsaImm8Bits = 8;
365const int kMsaImm5Shift = 16;
366const int kMsaImm5Bits = 5;
367const int kMsaImm10Shift = 11;
368const int kMsaImm10Bits = 10;
369const int kMsaImmMI10Shift = 16;
370const int kMsaImmMI10Bits = 10;
371
372// In branches and jumps immediate fields point to words, not bytes,
373// and are therefore shifted by 2.
374const int kImmFieldShift = 2;
375
376const int kFrBits = 5;
377const int kFrShift = 21;
378const int kFsShift = 11;
379const int kFsBits = 5;
380const int kFtShift = 16;
381const int kFtBits = 5;
382const int kFdShift = 6;
383const int kFdBits = 5;
384const int kFCccShift = 8;
385const int kFCccBits = 3;
386const int kFBccShift = 18;
387const int kFBccBits = 3;
388const int kFBtrueShift = 16;
389const int kFBtrueBits = 1;
390const int kWtBits = 5;
391const int kWtShift = 16;
392const int kWsBits = 5;
393const int kWsShift = 11;
394const int kWdBits = 5;
395const int kWdShift = 6;
396
397// ----- Miscellaneous useful masks.
398// Instruction bit masks.
399const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
400const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
401const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
402const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
403const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
404const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
405const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
406const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
407const int kImm5Mask = ((1 << 5) - 1);
408const int kImm8Mask = ((1 << 8) - 1);
409const int kImm10Mask = ((1 << 10) - 1);
410const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
411const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
412const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
413const int kMsaMI10Mask = (15U << 2);
414const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
415const int kMsaELMMask = (15U << 22);
416const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
417const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
418const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
419const int kMsaVECMask = (23U << 21);
420const int kMsa2RMask = (7U << 18);
421const int kMsa2RFMask = (15U << 17);
422const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
423const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
424const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
425const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
426const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
427// Misc masks.
428const int kHiMask = 0xffff << 16;
429const int kLoMask = 0xffff;
430const int kSignMask = 0x80000000;
431const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
432
433// ----- MIPS Opcodes and Function Fields.
434// We use this presentation to stay close to the table representation in
435// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
436enum Opcode : uint32_t {
437  SPECIAL = 0U << kOpcodeShift,
438  REGIMM = 1U << kOpcodeShift,
439
440  J = ((0U << 3) + 2) << kOpcodeShift,
441  JAL = ((0U << 3) + 3) << kOpcodeShift,
442  BEQ = ((0U << 3) + 4) << kOpcodeShift,
443  BNE = ((0U << 3) + 5) << kOpcodeShift,
444  BLEZ = ((0U << 3) + 6) << kOpcodeShift,
445  BGTZ = ((0U << 3) + 7) << kOpcodeShift,
446
447  ADDI = ((1U << 3) + 0) << kOpcodeShift,
448  ADDIU = ((1U << 3) + 1) << kOpcodeShift,
449  SLTI = ((1U << 3) + 2) << kOpcodeShift,
450  SLTIU = ((1U << 3) + 3) << kOpcodeShift,
451  ANDI = ((1U << 3) + 4) << kOpcodeShift,
452  ORI = ((1U << 3) + 5) << kOpcodeShift,
453  XORI = ((1U << 3) + 6) << kOpcodeShift,
454  LUI = ((1U << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
455
456  BEQC = ((2U << 3) + 0) << kOpcodeShift,
457  COP1 = ((2U << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
458  BEQL = ((2U << 3) + 4) << kOpcodeShift,
459  BNEL = ((2U << 3) + 5) << kOpcodeShift,
460  BLEZL = ((2U << 3) + 6) << kOpcodeShift,
461  BGTZL = ((2U << 3) + 7) << kOpcodeShift,
462
463  DADDI = ((3U << 3) + 0) << kOpcodeShift,  // This is also BNEC.
464  SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
465  MSA = ((3U << 3) + 6) << kOpcodeShift,
466  SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
467
468  LB = ((4U << 3) + 0) << kOpcodeShift,
469  LH = ((4U << 3) + 1) << kOpcodeShift,
470  LWL = ((4U << 3) + 2) << kOpcodeShift,
471  LW = ((4U << 3) + 3) << kOpcodeShift,
472  LBU = ((4U << 3) + 4) << kOpcodeShift,
473  LHU = ((4U << 3) + 5) << kOpcodeShift,
474  LWR = ((4U << 3) + 6) << kOpcodeShift,
475  SB = ((5U << 3) + 0) << kOpcodeShift,
476  SH = ((5U << 3) + 1) << kOpcodeShift,
477  SWL = ((5U << 3) + 2) << kOpcodeShift,
478  SW = ((5U << 3) + 3) << kOpcodeShift,
479  SWR = ((5U << 3) + 6) << kOpcodeShift,
480
481  LL = ((6U << 3) + 0) << kOpcodeShift,
482  LWC1 = ((6U << 3) + 1) << kOpcodeShift,
483  BC = ((6U << 3) + 2) << kOpcodeShift,
484  LDC1 = ((6U << 3) + 5) << kOpcodeShift,
485  POP66 = ((6U << 3) + 6) << kOpcodeShift,  // beqzc, jic
486
487  PREF = ((6U << 3) + 3) << kOpcodeShift,
488
489  SC = ((7U << 3) + 0) << kOpcodeShift,
490  SWC1 = ((7U << 3) + 1) << kOpcodeShift,
491  BALC = ((7U << 3) + 2) << kOpcodeShift,
492  PCREL = ((7U << 3) + 3) << kOpcodeShift,
493  SDC1 = ((7U << 3) + 5) << kOpcodeShift,
494  POP76 = ((7U << 3) + 6) << kOpcodeShift,  // bnezc, jialc
495
496  COP1X = ((1U << 4) + 3) << kOpcodeShift,
497
498  // New r6 instruction.
499  POP06 = BLEZ,   // bgeuc/bleuc, blezalc, bgezalc
500  POP07 = BGTZ,   // bltuc/bgtuc, bgtzalc, bltzalc
501  POP10 = ADDI,   // beqzalc, bovc, beqc
502  POP26 = BLEZL,  // bgezc, blezc, bgec/blec
503  POP27 = BGTZL,  // bgtzc, bltzc, bltc/bgtc
504  POP30 = DADDI,  // bnezalc, bnvc, bnec
505};
506
507enum SecondaryField : uint32_t {
508  // SPECIAL Encoding of Function Field.
509  SLL = ((0U << 3) + 0),
510  MOVCI = ((0U << 3) + 1),
511  SRL = ((0U << 3) + 2),
512  SRA = ((0U << 3) + 3),
513  SLLV = ((0U << 3) + 4),
514  LSA = ((0U << 3) + 5),
515  SRLV = ((0U << 3) + 6),
516  SRAV = ((0U << 3) + 7),
517
518  JR = ((1U << 3) + 0),
519  JALR = ((1U << 3) + 1),
520  MOVZ = ((1U << 3) + 2),
521  MOVN = ((1U << 3) + 3),
522  BREAK = ((1U << 3) + 5),
523  SYNC = ((1U << 3) + 7),
524
525  MFHI = ((2U << 3) + 0),
526  CLZ_R6 = ((2U << 3) + 0),
527  CLO_R6 = ((2U << 3) + 1),
528  MFLO = ((2U << 3) + 2),
529
530  MULT = ((3U << 3) + 0),
531  MULTU = ((3U << 3) + 1),
532  DIV = ((3U << 3) + 2),
533  DIVU = ((3U << 3) + 3),
534
535  ADD = ((4U << 3) + 0),
536  ADDU = ((4U << 3) + 1),
537  SUB = ((4U << 3) + 2),
538  SUBU = ((4U << 3) + 3),
539  AND = ((4U << 3) + 4),
540  OR = ((4U << 3) + 5),
541  XOR = ((4U << 3) + 6),
542  NOR = ((4U << 3) + 7),
543
544  SLT = ((5U << 3) + 2),
545  SLTU = ((5U << 3) + 3),
546
547  TGE = ((6U << 3) + 0),
548  TGEU = ((6U << 3) + 1),
549  TLT = ((6U << 3) + 2),
550  TLTU = ((6U << 3) + 3),
551  TEQ = ((6U << 3) + 4),
552  SELEQZ_S = ((6U << 3) + 5),
553  TNE = ((6U << 3) + 6),
554  SELNEZ_S = ((6U << 3) + 7),
555
556  // Multiply integers in r6.
557  MUL_MUH = ((3U << 3) + 0),    // MUL, MUH.
558  MUL_MUH_U = ((3U << 3) + 1),  // MUL_U, MUH_U.
559  RINT = ((3U << 3) + 2),
560
561  MUL_OP = ((0U << 3) + 2),
562  MUH_OP = ((0U << 3) + 3),
563  DIV_OP = ((0U << 3) + 2),
564  MOD_OP = ((0U << 3) + 3),
565
566  DIV_MOD = ((3U << 3) + 2),
567  DIV_MOD_U = ((3U << 3) + 3),
568
569  // SPECIAL2 Encoding of Function Field.
570  MUL = ((0U << 3) + 2),
571  CLZ = ((4U << 3) + 0),
572  CLO = ((4U << 3) + 1),
573
574  // SPECIAL3 Encoding of Function Field.
575  EXT = ((0U << 3) + 0),
576  INS = ((0U << 3) + 4),
577  BSHFL = ((4U << 3) + 0),
578  SC_R6 = ((4U << 3) + 6),
579  LL_R6 = ((6U << 3) + 6),
580
581  // SPECIAL3 Encoding of sa Field.
582  BITSWAP = ((0U << 3) + 0),
583  ALIGN = ((0U << 3) + 2),
584  WSBH = ((0U << 3) + 2),
585  SEB = ((2U << 3) + 0),
586  SEH = ((3U << 3) + 0),
587
588  // REGIMM  encoding of rt Field.
589  BLTZ = ((0U << 3) + 0) << 16,
590  BGEZ = ((0U << 3) + 1) << 16,
591  BLTZAL = ((2U << 3) + 0) << 16,
592  BGEZAL = ((2U << 3) + 1) << 16,
593  BGEZALL = ((2U << 3) + 3) << 16,
594
595  // COP1 Encoding of rs Field.
596  MFC1 = ((0U << 3) + 0) << 21,
597  CFC1 = ((0U << 3) + 2) << 21,
598  MFHC1 = ((0U << 3) + 3) << 21,
599  MTC1 = ((0U << 3) + 4) << 21,
600  CTC1 = ((0U << 3) + 6) << 21,
601  MTHC1 = ((0U << 3) + 7) << 21,
602  BC1 = ((1U << 3) + 0) << 21,
603  S = ((2U << 3) + 0) << 21,
604  D = ((2U << 3) + 1) << 21,
605  W = ((2U << 3) + 4) << 21,
606  L = ((2U << 3) + 5) << 21,
607  PS = ((2U << 3) + 6) << 21,
608  // COP1 Encoding of Function Field When rs=S.
609
610  ADD_S = ((0U << 3) + 0),
611  SUB_S = ((0U << 3) + 1),
612  MUL_S = ((0U << 3) + 2),
613  DIV_S = ((0U << 3) + 3),
614  ABS_S = ((0U << 3) + 5),
615  SQRT_S = ((0U << 3) + 4),
616  MOV_S = ((0U << 3) + 6),
617  NEG_S = ((0U << 3) + 7),
618  ROUND_L_S = ((1U << 3) + 0),
619  TRUNC_L_S = ((1U << 3) + 1),
620  CEIL_L_S = ((1U << 3) + 2),
621  FLOOR_L_S = ((1U << 3) + 3),
622  ROUND_W_S = ((1U << 3) + 4),
623  TRUNC_W_S = ((1U << 3) + 5),
624  CEIL_W_S = ((1U << 3) + 6),
625  FLOOR_W_S = ((1U << 3) + 7),
626  RECIP_S = ((2U << 3) + 5),
627  RSQRT_S = ((2U << 3) + 6),
628  MADDF_S = ((3U << 3) + 0),
629  MSUBF_S = ((3U << 3) + 1),
630  CLASS_S = ((3U << 3) + 3),
631  CVT_D_S = ((4U << 3) + 1),
632  CVT_W_S = ((4U << 3) + 4),
633  CVT_L_S = ((4U << 3) + 5),
634  CVT_PS_S = ((4U << 3) + 6),
635
636  // COP1 Encoding of Function Field When rs=D.
637  ADD_D = ((0U << 3) + 0),
638  SUB_D = ((0U << 3) + 1),
639  MUL_D = ((0U << 3) + 2),
640  DIV_D = ((0U << 3) + 3),
641  SQRT_D = ((0U << 3) + 4),
642  ABS_D = ((0U << 3) + 5),
643  MOV_D = ((0U << 3) + 6),
644  NEG_D = ((0U << 3) + 7),
645  ROUND_L_D = ((1U << 3) + 0),
646  TRUNC_L_D = ((1U << 3) + 1),
647  CEIL_L_D = ((1U << 3) + 2),
648  FLOOR_L_D = ((1U << 3) + 3),
649  ROUND_W_D = ((1U << 3) + 4),
650  TRUNC_W_D = ((1U << 3) + 5),
651  CEIL_W_D = ((1U << 3) + 6),
652  FLOOR_W_D = ((1U << 3) + 7),
653  RECIP_D = ((2U << 3) + 5),
654  RSQRT_D = ((2U << 3) + 6),
655  MADDF_D = ((3U << 3) + 0),
656  MSUBF_D = ((3U << 3) + 1),
657  CLASS_D = ((3U << 3) + 3),
658  MIN = ((3U << 3) + 4),
659  MINA = ((3U << 3) + 5),
660  MAX = ((3U << 3) + 6),
661  MAXA = ((3U << 3) + 7),
662  CVT_S_D = ((4U << 3) + 0),
663  CVT_W_D = ((4U << 3) + 4),
664  CVT_L_D = ((4U << 3) + 5),
665  C_F_D = ((6U << 3) + 0),
666  C_UN_D = ((6U << 3) + 1),
667  C_EQ_D = ((6U << 3) + 2),
668  C_UEQ_D = ((6U << 3) + 3),
669  C_OLT_D = ((6U << 3) + 4),
670  C_ULT_D = ((6U << 3) + 5),
671  C_OLE_D = ((6U << 3) + 6),
672  C_ULE_D = ((6U << 3) + 7),
673
674  // COP1 Encoding of Function Field When rs=W or L.
675  CVT_S_W = ((4U << 3) + 0),
676  CVT_D_W = ((4U << 3) + 1),
677  CVT_S_L = ((4U << 3) + 0),
678  CVT_D_L = ((4U << 3) + 1),
679  BC1EQZ = ((2U << 2) + 1) << 21,
680  BC1NEZ = ((3U << 2) + 1) << 21,
681  // COP1 CMP positive predicates Bit 5..4 = 00.
682  CMP_AF = ((0U << 3) + 0),
683  CMP_UN = ((0U << 3) + 1),
684  CMP_EQ = ((0U << 3) + 2),
685  CMP_UEQ = ((0U << 3) + 3),
686  CMP_LT = ((0U << 3) + 4),
687  CMP_ULT = ((0U << 3) + 5),
688  CMP_LE = ((0U << 3) + 6),
689  CMP_ULE = ((0U << 3) + 7),
690  CMP_SAF = ((1U << 3) + 0),
691  CMP_SUN = ((1U << 3) + 1),
692  CMP_SEQ = ((1U << 3) + 2),
693  CMP_SUEQ = ((1U << 3) + 3),
694  CMP_SSLT = ((1U << 3) + 4),
695  CMP_SSULT = ((1U << 3) + 5),
696  CMP_SLE = ((1U << 3) + 6),
697  CMP_SULE = ((1U << 3) + 7),
698  // COP1 CMP negative predicates Bit 5..4 = 01.
699  CMP_AT = ((2U << 3) + 0),  // Reserved, not implemented.
700  CMP_OR = ((2U << 3) + 1),
701  CMP_UNE = ((2U << 3) + 2),
702  CMP_NE = ((2U << 3) + 3),
703  CMP_UGE = ((2U << 3) + 4),  // Reserved, not implemented.
704  CMP_OGE = ((2U << 3) + 5),  // Reserved, not implemented.
705  CMP_UGT = ((2U << 3) + 6),  // Reserved, not implemented.
706  CMP_OGT = ((2U << 3) + 7),  // Reserved, not implemented.
707  CMP_SAT = ((3U << 3) + 0),  // Reserved, not implemented.
708  CMP_SOR = ((3U << 3) + 1),
709  CMP_SUNE = ((3U << 3) + 2),
710  CMP_SNE = ((3U << 3) + 3),
711  CMP_SUGE = ((3U << 3) + 4),  // Reserved, not implemented.
712  CMP_SOGE = ((3U << 3) + 5),  // Reserved, not implemented.
713  CMP_SUGT = ((3U << 3) + 6),  // Reserved, not implemented.
714  CMP_SOGT = ((3U << 3) + 7),  // Reserved, not implemented.
715
716  SEL = ((2U << 3) + 0),
717  MOVZ_C = ((2U << 3) + 2),
718  MOVN_C = ((2U << 3) + 3),
719  SELEQZ_C = ((2U << 3) + 4),  // COP1 on FPR registers.
720  MOVF = ((2U << 3) + 1),      // Function field for MOVT.fmt and MOVF.fmt
721  SELNEZ_C = ((2U << 3) + 7),  // COP1 on FPR registers.
722                               // COP1 Encoding of Function Field When rs=PS.
723
724  // COP1X Encoding of Function Field.
725  MADD_S = ((4U << 3) + 0),
726  MADD_D = ((4U << 3) + 1),
727  MSUB_S = ((5U << 3) + 0),
728  MSUB_D = ((5U << 3) + 1),
729
730  // PCREL Encoding of rt Field.
731  ADDIUPC = ((0U << 2) + 0),
732  LWPC = ((0U << 2) + 1),
733  AUIPC = ((3U << 3) + 6),
734  ALUIPC = ((3U << 3) + 7),
735
736  // POP66 Encoding of rs Field.
737  JIC = ((0U << 5) + 0),
738
739  // POP76 Encoding of rs Field.
740  JIALC = ((0U << 5) + 0),
741
742  // COP1 Encoding of rs Field for MSA Branch Instructions
743  BZ_V = (((1U << 3) + 3) << kRsShift),
744  BNZ_V = (((1U << 3) + 7) << kRsShift),
745  BZ_B = (((3U << 3) + 0) << kRsShift),
746  BZ_H = (((3U << 3) + 1) << kRsShift),
747  BZ_W = (((3U << 3) + 2) << kRsShift),
748  BZ_D = (((3U << 3) + 3) << kRsShift),
749  BNZ_B = (((3U << 3) + 4) << kRsShift),
750  BNZ_H = (((3U << 3) + 5) << kRsShift),
751  BNZ_W = (((3U << 3) + 6) << kRsShift),
752  BNZ_D = (((3U << 3) + 7) << kRsShift),
753
754  // MSA: Operation Field for MI10 Instruction Formats
755  MSA_LD = (8U << 2),
756  MSA_ST = (9U << 2),
757  LD_B = ((8U << 2) + 0),
758  LD_H = ((8U << 2) + 1),
759  LD_W = ((8U << 2) + 2),
760  LD_D = ((8U << 2) + 3),
761  ST_B = ((9U << 2) + 0),
762  ST_H = ((9U << 2) + 1),
763  ST_W = ((9U << 2) + 2),
764  ST_D = ((9U << 2) + 3),
765
766  // MSA: Operation Field for I5 Instruction Format
767  ADDVI = ((0U << 23) + 6),
768  SUBVI = ((1U << 23) + 6),
769  MAXI_S = ((2U << 23) + 6),
770  MAXI_U = ((3U << 23) + 6),
771  MINI_S = ((4U << 23) + 6),
772  MINI_U = ((5U << 23) + 6),
773  CEQI = ((0U << 23) + 7),
774  CLTI_S = ((2U << 23) + 7),
775  CLTI_U = ((3U << 23) + 7),
776  CLEI_S = ((4U << 23) + 7),
777  CLEI_U = ((5U << 23) + 7),
778  LDI = ((6U << 23) + 7),  // I10 instruction format
779  I5_DF_b = (0U << 21),
780  I5_DF_h = (1U << 21),
781  I5_DF_w = (2U << 21),
782  I5_DF_d = (3U << 21),
783
784  // MSA: Operation Field for I8 Instruction Format
785  ANDI_B = ((0U << 24) + 0),
786  ORI_B = ((1U << 24) + 0),
787  NORI_B = ((2U << 24) + 0),
788  XORI_B = ((3U << 24) + 0),
789  BMNZI_B = ((0U << 24) + 1),
790  BMZI_B = ((1U << 24) + 1),
791  BSELI_B = ((2U << 24) + 1),
792  SHF_B = ((0U << 24) + 2),
793  SHF_H = ((1U << 24) + 2),
794  SHF_W = ((2U << 24) + 2),
795
796  MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
797
798  // MSA: Operation Field for VEC Instruction Formats
799  AND_V = (((0U << 2) + 0) << 21),
800  OR_V = (((0U << 2) + 1) << 21),
801  NOR_V = (((0U << 2) + 2) << 21),
802  XOR_V = (((0U << 2) + 3) << 21),
803  BMNZ_V = (((1U << 2) + 0) << 21),
804  BMZ_V = (((1U << 2) + 1) << 21),
805  BSEL_V = (((1U << 2) + 2) << 21),
806
807  // MSA: Operation Field for 2R Instruction Formats
808  MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
809  FILL = (0U << 18),
810  PCNT = (1U << 18),
811  NLOC = (2U << 18),
812  NLZC = (3U << 18),
813  MSA_2R_DF_b = (0U << 16),
814  MSA_2R_DF_h = (1U << 16),
815  MSA_2R_DF_w = (2U << 16),
816  MSA_2R_DF_d = (3U << 16),
817
818  // MSA: Operation Field for 2RF Instruction Formats
819  MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
820  FCLASS = (0U << 17),
821  FTRUNC_S = (1U << 17),
822  FTRUNC_U = (2U << 17),
823  FSQRT = (3U << 17),
824  FRSQRT = (4U << 17),
825  FRCP = (5U << 17),
826  FRINT = (6U << 17),
827  FLOG2 = (7U << 17),
828  FEXUPL = (8U << 17),
829  FEXUPR = (9U << 17),
830  FFQL = (10U << 17),
831  FFQR = (11U << 17),
832  FTINT_S = (12U << 17),
833  FTINT_U = (13U << 17),
834  FFINT_S = (14U << 17),
835  FFINT_U = (15U << 17),
836  MSA_2RF_DF_w = (0U << 16),
837  MSA_2RF_DF_d = (1U << 16),
838
839  // MSA: Operation Field for 3R Instruction Format
840  SLL_MSA = ((0U << 23) + 13),
841  SRA_MSA = ((1U << 23) + 13),
842  SRL_MSA = ((2U << 23) + 13),
843  BCLR = ((3U << 23) + 13),
844  BSET = ((4U << 23) + 13),
845  BNEG = ((5U << 23) + 13),
846  BINSL = ((6U << 23) + 13),
847  BINSR = ((7U << 23) + 13),
848  ADDV = ((0U << 23) + 14),
849  SUBV = ((1U << 23) + 14),
850  MAX_S = ((2U << 23) + 14),
851  MAX_U = ((3U << 23) + 14),
852  MIN_S = ((4U << 23) + 14),
853  MIN_U = ((5U << 23) + 14),
854  MAX_A = ((6U << 23) + 14),
855  MIN_A = ((7U << 23) + 14),
856  CEQ = ((0U << 23) + 15),
857  CLT_S = ((2U << 23) + 15),
858  CLT_U = ((3U << 23) + 15),
859  CLE_S = ((4U << 23) + 15),
860  CLE_U = ((5U << 23) + 15),
861  ADD_A = ((0U << 23) + 16),
862  ADDS_A = ((1U << 23) + 16),
863  ADDS_S = ((2U << 23) + 16),
864  ADDS_U = ((3U << 23) + 16),
865  AVE_S = ((4U << 23) + 16),
866  AVE_U = ((5U << 23) + 16),
867  AVER_S = ((6U << 23) + 16),
868  AVER_U = ((7U << 23) + 16),
869  SUBS_S = ((0U << 23) + 17),
870  SUBS_U = ((1U << 23) + 17),
871  SUBSUS_U = ((2U << 23) + 17),
872  SUBSUU_S = ((3U << 23) + 17),
873  ASUB_S = ((4U << 23) + 17),
874  ASUB_U = ((5U << 23) + 17),
875  MULV = ((0U << 23) + 18),
876  MADDV = ((1U << 23) + 18),
877  MSUBV = ((2U << 23) + 18),
878  DIV_S_MSA = ((4U << 23) + 18),
879  DIV_U = ((5U << 23) + 18),
880  MOD_S = ((6U << 23) + 18),
881  MOD_U = ((7U << 23) + 18),
882  DOTP_S = ((0U << 23) + 19),
883  DOTP_U = ((1U << 23) + 19),
884  DPADD_S = ((2U << 23) + 19),
885  DPADD_U = ((3U << 23) + 19),
886  DPSUB_S = ((4U << 23) + 19),
887  DPSUB_U = ((5U << 23) + 19),
888  SLD = ((0U << 23) + 20),
889  SPLAT = ((1U << 23) + 20),
890  PCKEV = ((2U << 23) + 20),
891  PCKOD = ((3U << 23) + 20),
892  ILVL = ((4U << 23) + 20),
893  ILVR = ((5U << 23) + 20),
894  ILVEV = ((6U << 23) + 20),
895  ILVOD = ((7U << 23) + 20),
896  VSHF = ((0U << 23) + 21),
897  SRAR = ((1U << 23) + 21),
898  SRLR = ((2U << 23) + 21),
899  HADD_S = ((4U << 23) + 21),
900  HADD_U = ((5U << 23) + 21),
901  HSUB_S = ((6U << 23) + 21),
902  HSUB_U = ((7U << 23) + 21),
903  MSA_3R_DF_b = (0U << 21),
904  MSA_3R_DF_h = (1U << 21),
905  MSA_3R_DF_w = (2U << 21),
906  MSA_3R_DF_d = (3U << 21),
907
908  // MSA: Operation Field for 3RF Instruction Format
909  FCAF = ((0U << 22) + 26),
910  FCUN = ((1U << 22) + 26),
911  FCEQ = ((2U << 22) + 26),
912  FCUEQ = ((3U << 22) + 26),
913  FCLT = ((4U << 22) + 26),
914  FCULT = ((5U << 22) + 26),
915  FCLE = ((6U << 22) + 26),
916  FCULE = ((7U << 22) + 26),
917  FSAF = ((8U << 22) + 26),
918  FSUN = ((9U << 22) + 26),
919  FSEQ = ((10U << 22) + 26),
920  FSUEQ = ((11U << 22) + 26),
921  FSLT = ((12U << 22) + 26),
922  FSULT = ((13U << 22) + 26),
923  FSLE = ((14U << 22) + 26),
924  FSULE = ((15U << 22) + 26),
925  FADD = ((0U << 22) + 27),
926  FSUB = ((1U << 22) + 27),
927  FMUL = ((2U << 22) + 27),
928  FDIV = ((3U << 22) + 27),
929  FMADD = ((4U << 22) + 27),
930  FMSUB = ((5U << 22) + 27),
931  FEXP2 = ((7U << 22) + 27),
932  FEXDO = ((8U << 22) + 27),
933  FTQ = ((10U << 22) + 27),
934  FMIN = ((12U << 22) + 27),
935  FMIN_A = ((13U << 22) + 27),
936  FMAX = ((14U << 22) + 27),
937  FMAX_A = ((15U << 22) + 27),
938  FCOR = ((1U << 22) + 28),
939  FCUNE = ((2U << 22) + 28),
940  FCNE = ((3U << 22) + 28),
941  MUL_Q = ((4U << 22) + 28),
942  MADD_Q = ((5U << 22) + 28),
943  MSUB_Q = ((6U << 22) + 28),
944  FSOR = ((9U << 22) + 28),
945  FSUNE = ((10U << 22) + 28),
946  FSNE = ((11U << 22) + 28),
947  MULR_Q = ((12U << 22) + 28),
948  MADDR_Q = ((13U << 22) + 28),
949  MSUBR_Q = ((14U << 22) + 28),
950
951  // MSA: Operation Field for ELM Instruction Format
952  MSA_ELM_MINOR = ((3U << 3) + 1),
953  SLDI = (0U << 22),
954  CTCMSA = ((0U << 22) | (62U << 16)),
955  SPLATI = (1U << 22),
956  CFCMSA = ((1U << 22) | (62U << 16)),
957  COPY_S = (2U << 22),
958  MOVE_V = ((2U << 22) | (62U << 16)),
959  COPY_U = (3U << 22),
960  INSERT = (4U << 22),
961  INSVE = (5U << 22),
962  ELM_DF_B = ((0U << 4) << 16),
963  ELM_DF_H = ((4U << 3) << 16),
964  ELM_DF_W = ((12U << 2) << 16),
965  ELM_DF_D = ((28U << 1) << 16),
966
967  // MSA: Operation Field for BIT Instruction Format
968  SLLI = ((0U << 23) + 9),
969  SRAI = ((1U << 23) + 9),
970  SRLI = ((2U << 23) + 9),
971  BCLRI = ((3U << 23) + 9),
972  BSETI = ((4U << 23) + 9),
973  BNEGI = ((5U << 23) + 9),
974  BINSLI = ((6U << 23) + 9),
975  BINSRI = ((7U << 23) + 9),
976  SAT_S = ((0U << 23) + 10),
977  SAT_U = ((1U << 23) + 10),
978  SRARI = ((2U << 23) + 10),
979  SRLRI = ((3U << 23) + 10),
980  BIT_DF_b = ((14U << 3) << 16),
981  BIT_DF_h = ((6U << 4) << 16),
982  BIT_DF_w = ((2U << 5) << 16),
983  BIT_DF_d = ((0U << 6) << 16),
984
985  nullptrSF = 0U
986};
987
988enum MSAMinorOpcode : uint32_t {
989  kMsaMinorUndefined = 0,
990  kMsaMinorI8,
991  kMsaMinorI5,
992  kMsaMinorI10,
993  kMsaMinorBIT,
994  kMsaMinor3R,
995  kMsaMinor3RF,
996  kMsaMinorELM,
997  kMsaMinorVEC,
998  kMsaMinor2R,
999  kMsaMinor2RF,
1000  kMsaMinorMI10
1001};
1002
1003// ----- Emulated conditions.
1004// On MIPS we use this enum to abstract from conditional branch instructions.
1005// The 'U' prefix is used to specify unsigned comparisons.
1006// Opposite conditions must be paired as odd/even numbers
1007// because 'NegateCondition' function flips LSB to negate condition.
1008enum Condition {
1009  // Any value < 0 is considered no_condition.
1010  kNoCondition = -1,
1011  overflow = 0,
1012  no_overflow = 1,
1013  Uless = 2,
1014  Ugreater_equal = 3,
1015  Uless_equal = 4,
1016  Ugreater = 5,
1017  equal = 6,
1018  not_equal = 7,  // Unordered or Not Equal.
1019  negative = 8,
1020  positive = 9,
1021  parity_even = 10,
1022  parity_odd = 11,
1023  less = 12,
1024  greater_equal = 13,
1025  less_equal = 14,
1026  greater = 15,
1027  ueq = 16,  // Unordered or Equal.
1028  ogl = 17,  // Ordered and Not Equal.
1029  cc_always = 18,
1030
1031  // Aliases.
1032  carry = Uless,
1033  not_carry = Ugreater_equal,
1034  zero = equal,
1035  eq = equal,
1036  not_zero = not_equal,
1037  ne = not_equal,
1038  nz = not_equal,
1039  sign = negative,
1040  not_sign = positive,
1041  mi = negative,
1042  pl = positive,
1043  hi = Ugreater,
1044  ls = Uless_equal,
1045  ge = greater_equal,
1046  lt = less,
1047  gt = greater,
1048  le = less_equal,
1049  hs = Ugreater_equal,
1050  lo = Uless,
1051  al = cc_always,
1052  ult = Uless,
1053  uge = Ugreater_equal,
1054  ule = Uless_equal,
1055  ugt = Ugreater,
1056  cc_default = kNoCondition
1057};
1058
1059// Returns the equivalent of !cc.
1060// Negation of the default kNoCondition (-1) results in a non-default
1061// no_condition value (-2). As long as tests for no_condition check
1062// for condition < 0, this will work as expected.
1063inline Condition NegateCondition(Condition cc) {
1064  DCHECK(cc != cc_always);
1065  return static_cast<Condition>(cc ^ 1);
1066}
1067
1068inline Condition NegateFpuCondition(Condition cc) {
1069  DCHECK(cc != cc_always);
1070  switch (cc) {
1071    case ult:
1072      return ge;
1073    case ugt:
1074      return le;
1075    case uge:
1076      return lt;
1077    case ule:
1078      return gt;
1079    case lt:
1080      return uge;
1081    case gt:
1082      return ule;
1083    case ge:
1084      return ult;
1085    case le:
1086      return ugt;
1087    case eq:
1088      return ne;
1089    case ne:
1090      return eq;
1091    case ueq:
1092      return ogl;
1093    case ogl:
1094      return ueq;
1095    default:
1096      return cc;
1097  }
1098}
1099
1100enum MSABranchCondition {
1101  all_not_zero = 0,   // Branch If All Elements Are Not Zero
1102  one_elem_not_zero,  // Branch If At Least One Element of Any Format Is Not
1103                      // Zero
1104  one_elem_zero,      // Branch If At Least One Element Is Zero
1105  all_zero            // Branch If All Elements of Any Format Are Zero
1106};
1107
1108inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1109  switch (cond) {
1110    case all_not_zero:
1111      return one_elem_zero;
1112    case one_elem_not_zero:
1113      return all_zero;
1114    case one_elem_zero:
1115      return all_not_zero;
1116    case all_zero:
1117      return one_elem_not_zero;
1118    default:
1119      return cond;
1120  }
1121}
1122
1123enum MSABranchDF {
1124  MSA_BRANCH_B = 0,
1125  MSA_BRANCH_H,
1126  MSA_BRANCH_W,
1127  MSA_BRANCH_D,
1128  MSA_BRANCH_V
1129};
1130
1131// ----- Coprocessor conditions.
1132enum FPUCondition {
1133  kNoFPUCondition = -1,
1134
1135  F = 0x00,    // False.
1136  UN = 0x01,   // Unordered.
1137  EQ = 0x02,   // Equal.
1138  UEQ = 0x03,  // Unordered or Equal.
1139  OLT = 0x04,  // Ordered or Less Than, on Mips release < 6.
1140  LT = 0x04,   // Ordered or Less Than, on Mips release >= 6.
1141  ULT = 0x05,  // Unordered or Less Than.
1142  OLE = 0x06,  // Ordered or Less Than or Equal, on Mips release < 6.
1143  LE = 0x06,   // Ordered or Less Than or Equal, on Mips release >= 6.
1144  ULE = 0x07,  // Unordered or Less Than or Equal.
1145
1146  // Following constants are available on Mips release >= 6 only.
1147  ORD = 0x11,  // Ordered, on Mips release >= 6.
1148  UNE = 0x12,  // Not equal, on Mips release >= 6.
1149  NE = 0x13,   // Ordered Greater Than or Less Than. on Mips >= 6 only.
1150};
1151
1152// FPU rounding modes.
1153enum FPURoundingMode {
1154  RN = 0 << 0,  // Round to Nearest.
1155  RZ = 1 << 0,  // Round towards zero.
1156  RP = 2 << 0,  // Round towards Plus Infinity.
1157  RM = 3 << 0,  // Round towards Minus Infinity.
1158
1159  // Aliases.
1160  kRoundToNearest = RN,
1161  kRoundToZero = RZ,
1162  kRoundToPlusInf = RP,
1163  kRoundToMinusInf = RM,
1164
1165  mode_round = RN,
1166  mode_ceil = RP,
1167  mode_floor = RM,
1168  mode_trunc = RZ
1169};
1170
1171const uint32_t kFPURoundingModeMask = 3 << 0;
1172
1173enum CheckForInexactConversion {
1174  kCheckForInexactConversion,
1175  kDontCheckForInexactConversion
1176};
1177
1178enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1179
1180// -----------------------------------------------------------------------------
1181// Hints.
1182
1183// Branch hints are not used on the MIPS.  They are defined so that they can
1184// appear in shared function signatures, but will be ignored in MIPS
1185// implementations.
1186enum Hint { no_hint = 0 };
1187
1188inline Hint NegateHint(Hint hint) { return no_hint; }
1189
1190// -----------------------------------------------------------------------------
1191// Specific instructions, constants, and masks.
1192// These constants are declared in assembler-mips.cc, as they use named
1193// registers and other constants.
1194
1195// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1196// operations as post-increment of sp.
1197extern const Instr kPopInstruction;
1198// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1199extern const Instr kPushInstruction;
1200// sw(r, MemOperand(sp, 0))
1201extern const Instr kPushRegPattern;
1202// lw(r, MemOperand(sp, 0))
1203extern const Instr kPopRegPattern;
1204extern const Instr kLwRegFpOffsetPattern;
1205extern const Instr kSwRegFpOffsetPattern;
1206extern const Instr kLwRegFpNegOffsetPattern;
1207extern const Instr kSwRegFpNegOffsetPattern;
1208// A mask for the Rt register for push, pop, lw, sw instructions.
1209extern const Instr kRtMask;
1210extern const Instr kLwSwInstrTypeMask;
1211extern const Instr kLwSwInstrArgumentMask;
1212extern const Instr kLwSwOffsetMask;
1213
1214// Break 0xfffff, reserved for redirected real time call.
1215const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1216// A nop instruction. (Encoding of sll 0 0 0).
1217const Instr nopInstr = 0;
1218
1219static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1220  return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1221}
1222
1223constexpr uint8_t kInstrSize = 4;
1224constexpr uint8_t kInstrSizeLog2 = 2;
1225
1226class InstructionBase {
1227 public:
1228  enum {
1229    // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1230    // always the value of the current instruction being executed.
1231    kPCReadOffset = 0
1232  };
1233
1234  // Instruction type.
1235  enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1236
1237  // Get the raw instruction bits.
1238  inline Instr InstructionBits() const {
1239    return *reinterpret_cast<const Instr*>(this);
1240  }
1241
1242  // Set the raw instruction bits to value.
1243  inline void SetInstructionBits(Instr value) {
1244    *reinterpret_cast<Instr*>(this) = value;
1245  }
1246
1247  // Read one particular bit out of the instruction bits.
1248  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1249
1250  // Read a bit field out of the instruction bits.
1251  inline int Bits(int hi, int lo) const {
1252    return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1253  }
1254
1255  static constexpr uint64_t kOpcodeImmediateTypeMask =
1256      OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1257      OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1258      OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1259      OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1260      OpcodeToBitNumber(SLTI) | OpcodeToBitNumber(SLTIU) |
1261      OpcodeToBitNumber(ANDI) | OpcodeToBitNumber(ORI) |
1262      OpcodeToBitNumber(XORI) | OpcodeToBitNumber(LUI) |
1263      OpcodeToBitNumber(BEQL) | OpcodeToBitNumber(BNEL) |
1264      OpcodeToBitNumber(BLEZL) | OpcodeToBitNumber(BGTZL) |
1265      OpcodeToBitNumber(POP66) | OpcodeToBitNumber(POP76) |
1266      OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) | OpcodeToBitNumber(LWL) |
1267      OpcodeToBitNumber(LW) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1268      OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1269      OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SWR) |
1270      OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1271      OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1272      OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(BC) |
1273      OpcodeToBitNumber(BALC);
1274
1275#define FunctionFieldToBitNumber(function) (1ULL << function)
1276
1277  static const uint64_t kFunctionFieldRegisterTypeMask =
1278      FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1279      FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1280      FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(SRA) |
1281      FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(SRLV) |
1282      FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(LSA) |
1283      FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1284      FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(MULTU) |
1285      FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DIVU) |
1286      FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(ADDU) |
1287      FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(SUBU) |
1288      FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1289      FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1290      FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1291      FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1292      FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1293      FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1294      FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1295      FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1296      FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1297
1298  // Accessors for the different named fields used in the MIPS encoding.
1299  inline Opcode OpcodeValue() const {
1300    return static_cast<Opcode>(
1301        Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1302  }
1303
1304  inline int FunctionFieldRaw() const {
1305    return InstructionBits() & kFunctionFieldMask;
1306  }
1307
1308  // Return the fields at their original place in the instruction encoding.
1309  inline Opcode OpcodeFieldRaw() const {
1310    return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1311  }
1312
1313  // Safe to call within InstructionType().
1314  inline int RsFieldRawNoAssert() const {
1315    return InstructionBits() & kRsFieldMask;
1316  }
1317
1318  inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1319
1320  // Get the encoding type of the instruction.
1321  inline Type InstructionType() const;
1322
1323  inline MSAMinorOpcode MSAMinorOpcodeField() const {
1324    int op = this->FunctionFieldRaw();
1325    switch (op) {
1326      case 0:
1327      case 1:
1328      case 2:
1329        return kMsaMinorI8;
1330      case 6:
1331        return kMsaMinorI5;
1332      case 7:
1333        return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1334                    ? kMsaMinorI10
1335                    : kMsaMinorI5);
1336      case 9:
1337      case 10:
1338        return kMsaMinorBIT;
1339      case 13:
1340      case 14:
1341      case 15:
1342      case 16:
1343      case 17:
1344      case 18:
1345      case 19:
1346      case 20:
1347      case 21:
1348        return kMsaMinor3R;
1349      case 25:
1350        return kMsaMinorELM;
1351      case 26:
1352      case 27:
1353      case 28:
1354        return kMsaMinor3RF;
1355      case 30:
1356        switch (this->RsFieldRawNoAssert()) {
1357          case MSA_2R_FORMAT:
1358            return kMsaMinor2R;
1359          case MSA_2RF_FORMAT:
1360            return kMsaMinor2RF;
1361          default:
1362            return kMsaMinorVEC;
1363        }
1364        break;
1365      case 32:
1366      case 33:
1367      case 34:
1368      case 35:
1369      case 36:
1370      case 37:
1371      case 38:
1372      case 39:
1373        return kMsaMinorMI10;
1374      default:
1375        return kMsaMinorUndefined;
1376    }
1377  }
1378
1379 protected:
1380  InstructionBase() {}
1381};
1382
1383template <class T>
1384class InstructionGetters : public T {
1385 public:
1386  inline int RsValue() const {
1387    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1388           this->InstructionType() == InstructionBase::kImmediateType);
1389    return InstructionBase::Bits(kRsShift + kRsBits - 1, kRsShift);
1390  }
1391
1392  inline int RtValue() const {
1393    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1394           this->InstructionType() == InstructionBase::kImmediateType);
1395    return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1396  }
1397
1398  inline int RdValue() const {
1399    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1400    return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1401  }
1402
1403  inline int BaseValue() const {
1404    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1405    return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1406  }
1407
1408  inline int SaValue() const {
1409    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1410    return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1411  }
1412
1413  inline int LsaSaValue() const {
1414    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1415    return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1416  }
1417
1418  inline int FunctionValue() const {
1419    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1420           this->InstructionType() == InstructionBase::kImmediateType);
1421    return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1422  }
1423
1424  inline int FdValue() const {
1425    return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1426  }
1427
1428  inline int FsValue() const {
1429    return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1430  }
1431
1432  inline int FtValue() const {
1433    return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1434  }
1435
1436  inline int FrValue() const {
1437    return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1438  }
1439
1440  inline int WdValue() const {
1441    return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1442  }
1443
1444  inline int WsValue() const {
1445    return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1446  }
1447
1448  inline int WtValue() const {
1449    return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1450  }
1451
1452  inline int Bp2Value() const {
1453    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1454    return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1455  }
1456
1457  // Float Compare condition code instruction bits.
1458  inline int FCccValue() const {
1459    return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1460  }
1461
1462  // Float Branch condition code instruction bits.
1463  inline int FBccValue() const {
1464    return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1465  }
1466
1467  // Float Branch true/false instruction bit.
1468  inline int FBtrueValue() const {
1469    return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1470  }
1471
1472  // Return the fields at their original place in the instruction encoding.
1473  inline Opcode OpcodeFieldRaw() const {
1474    return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1475  }
1476
1477  inline int RsFieldRaw() const {
1478    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1479           this->InstructionType() == InstructionBase::kImmediateType);
1480    return this->InstructionBits() & kRsFieldMask;
1481  }
1482
1483  inline int RtFieldRaw() const {
1484    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1485           this->InstructionType() == InstructionBase::kImmediateType);
1486    return this->InstructionBits() & kRtFieldMask;
1487  }
1488
1489  inline int RdFieldRaw() const {
1490    DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1491    return this->InstructionBits() & kRdFieldMask;
1492  }
1493
1494  inline int SaFieldRaw() const {
1495    return this->InstructionBits() & kSaFieldMask;
1496  }
1497
1498  inline int FunctionFieldRaw() const {
1499    return this->InstructionBits() & kFunctionFieldMask;
1500  }
1501
1502  // Get the secondary field according to the opcode.
1503  inline int SecondaryValue() const {
1504    Opcode op = this->OpcodeFieldRaw();
1505    switch (op) {
1506      case SPECIAL:
1507      case SPECIAL2:
1508        return FunctionValue();
1509      case COP1:
1510        return RsValue();
1511      case REGIMM:
1512        return RtValue();
1513      default:
1514        return nullptrSF;
1515    }
1516  }
1517
1518  inline int32_t ImmValue(int bits) const {
1519    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1520    return this->Bits(bits - 1, 0);
1521  }
1522
1523  inline int32_t Imm9Value() const {
1524    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1525    return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1526  }
1527
1528  inline int32_t Imm16Value() const {
1529    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1530    return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1531  }
1532
1533  inline int32_t Imm18Value() const {
1534    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1535    return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1536  }
1537
1538  inline int32_t Imm19Value() const {
1539    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1540    return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1541  }
1542
1543  inline int32_t Imm21Value() const {
1544    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1545    return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1546  }
1547
1548  inline int32_t Imm26Value() const {
1549    DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1550           (this->InstructionType() == InstructionBase::kImmediateType));
1551    return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1552  }
1553
1554  inline int32_t MsaImm8Value() const {
1555    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1556    return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1557  }
1558
1559  inline int32_t MsaImm5Value() const {
1560    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1561    return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1562  }
1563
1564  inline int32_t MsaImm10Value() const {
1565    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1566    return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1567  }
1568
1569  inline int32_t MsaImmMI10Value() const {
1570    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1571    return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1572  }
1573
1574  inline int32_t MsaBitDf() const {
1575    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1576    int32_t df_m = this->Bits(22, 16);
1577    if (((df_m >> 6) & 1U) == 0) {
1578      return 3;
1579    } else if (((df_m >> 5) & 3U) == 2) {
1580      return 2;
1581    } else if (((df_m >> 4) & 7U) == 6) {
1582      return 1;
1583    } else if (((df_m >> 3) & 15U) == 14) {
1584      return 0;
1585    } else {
1586      return -1;
1587    }
1588  }
1589
1590  inline int32_t MsaBitMValue() const {
1591    DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1592    return this->Bits(16 + this->MsaBitDf() + 3, 16);
1593  }
1594
1595  inline int32_t MsaElmDf() const {
1596    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1597           this->InstructionType() == InstructionBase::kImmediateType);
1598    int32_t df_n = this->Bits(21, 16);
1599    if (((df_n >> 4) & 3U) == 0) {
1600      return 0;
1601    } else if (((df_n >> 3) & 7U) == 4) {
1602      return 1;
1603    } else if (((df_n >> 2) & 15U) == 12) {
1604      return 2;
1605    } else if (((df_n >> 1) & 31U) == 28) {
1606      return 3;
1607    } else {
1608      return -1;
1609    }
1610  }
1611
1612  inline int32_t MsaElmNValue() const {
1613    DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1614           this->InstructionType() == InstructionBase::kImmediateType);
1615    return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1616  }
1617
1618  static bool IsForbiddenAfterBranchInstr(Instr instr);
1619
1620  // Say if the instruction should not be used in a branch delay slot or
1621  // immediately after a compact branch.
1622  inline bool IsForbiddenAfterBranch() const {
1623    return IsForbiddenAfterBranchInstr(this->InstructionBits());
1624  }
1625
1626  inline bool IsForbiddenInBranchDelay() const {
1627    return IsForbiddenAfterBranch();
1628  }
1629
1630  // Say if the instruction 'links'. e.g. jal, bal.
1631  bool IsLinkingInstruction() const;
1632  // Say if the instruction is a break or a trap.
1633  bool IsTrap() const;
1634
1635  inline bool IsMSABranchInstr() const {
1636    if (this->OpcodeFieldRaw() == COP1) {
1637      switch (this->RsFieldRaw()) {
1638        case BZ_V:
1639        case BZ_B:
1640        case BZ_H:
1641        case BZ_W:
1642        case BZ_D:
1643        case BNZ_V:
1644        case BNZ_B:
1645        case BNZ_H:
1646        case BNZ_W:
1647        case BNZ_D:
1648          return true;
1649        default:
1650          return false;
1651      }
1652    }
1653    return false;
1654  }
1655
1656  inline bool IsMSAInstr() const {
1657    if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1658      return true;
1659    return false;
1660  }
1661};
1662
1663class Instruction : public InstructionGetters<InstructionBase> {
1664 public:
1665  // Instructions are read of out a code stream. The only way to get a
1666  // reference to an instruction is to convert a pointer. There is no way
1667  // to allocate or create instances of class Instruction.
1668  // Use the At(pc) function to create references to Instruction.
1669  static Instruction* At(byte* pc) {
1670    return reinterpret_cast<Instruction*>(pc);
1671  }
1672
1673 private:
1674  // We need to prevent the creation of instances of class Instruction.
1675  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1676};
1677
1678// -----------------------------------------------------------------------------
1679// MIPS assembly various constants.
1680
1681// C/C++ argument slots size.
1682const int kCArgSlotCount = 4;
1683const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize;
1684
1685// JS argument slots size.
1686const int kJSArgsSlotsSize = 0 * kInstrSize;
1687
1688// Assembly builtins argument slots size.
1689const int kBArgsSlotsSize = 0 * kInstrSize;
1690
1691const int kBranchReturnOffset = 2 * kInstrSize;
1692
1693InstructionBase::Type InstructionBase::InstructionType() const {
1694  switch (OpcodeFieldRaw()) {
1695    case SPECIAL:
1696      if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1697          kFunctionFieldRegisterTypeMask) {
1698        return kRegisterType;
1699      }
1700      return kUnsupported;
1701    case SPECIAL2:
1702      switch (FunctionFieldRaw()) {
1703        case MUL:
1704        case CLZ:
1705          return kRegisterType;
1706        default:
1707          return kUnsupported;
1708      }
1709      break;
1710    case SPECIAL3:
1711      switch (FunctionFieldRaw()) {
1712        case INS:
1713        case EXT:
1714          return kRegisterType;
1715        case BSHFL: {
1716          int sa = SaFieldRaw() >> kSaShift;
1717          switch (sa) {
1718            case BITSWAP:
1719            case WSBH:
1720            case SEB:
1721            case SEH:
1722              return kRegisterType;
1723          }
1724          sa >>= kBp2Bits;
1725          switch (sa) {
1726            case ALIGN:
1727              return kRegisterType;
1728            default:
1729              return kUnsupported;
1730          }
1731        }
1732        case LL_R6:
1733        case SC_R6: {
1734          DCHECK(IsMipsArchVariant(kMips32r6));
1735          return kImmediateType;
1736        }
1737        default:
1738          return kUnsupported;
1739      }
1740      break;
1741    case COP1:  // Coprocessor instructions.
1742      switch (RsFieldRawNoAssert()) {
1743        case BC1:  // Branch on coprocessor condition.
1744        case BC1EQZ:
1745        case BC1NEZ:
1746          return kImmediateType;
1747        // MSA Branch instructions
1748        case BZ_V:
1749        case BNZ_V:
1750        case BZ_B:
1751        case BZ_H:
1752        case BZ_W:
1753        case BZ_D:
1754        case BNZ_B:
1755        case BNZ_H:
1756        case BNZ_W:
1757        case BNZ_D:
1758          return kImmediateType;
1759        default:
1760          return kRegisterType;
1761      }
1762      break;
1763    case COP1X:
1764      return kRegisterType;
1765
1766    // 26 bits immediate type instructions. e.g.: j imm26.
1767    case J:
1768    case JAL:
1769      return kJumpType;
1770
1771    case MSA:
1772      switch (MSAMinorOpcodeField()) {
1773        case kMsaMinor3R:
1774        case kMsaMinor3RF:
1775        case kMsaMinorVEC:
1776        case kMsaMinor2R:
1777        case kMsaMinor2RF:
1778          return kRegisterType;
1779        case kMsaMinorELM:
1780          switch (InstructionBits() & kMsaLongerELMMask) {
1781            case CFCMSA:
1782            case CTCMSA:
1783            case MOVE_V:
1784              return kRegisterType;
1785            default:
1786              return kImmediateType;
1787          }
1788        default:
1789          return kImmediateType;
1790      }
1791
1792    default:
1793      return kImmediateType;
1794  }
1795}
1796
1797#undef OpcodeToBitNumber
1798#undef FunctionFieldToBitNumber
1799
1800// -----------------------------------------------------------------------------
1801// Instructions.
1802
1803template <class P>
1804bool InstructionGetters<P>::IsLinkingInstruction() const {
1805  uint32_t op = this->OpcodeFieldRaw();
1806  switch (op) {
1807    case JAL:
1808      return true;
1809    case POP76:
1810      if (this->RsFieldRawNoAssert() == JIALC)
1811        return true;  // JIALC
1812      else
1813        return false;  // BNEZC
1814    case REGIMM:
1815      switch (this->RtFieldRaw()) {
1816        case BGEZAL:
1817        case BLTZAL:
1818          return true;
1819        default:
1820          return false;
1821      }
1822    case SPECIAL:
1823      switch (this->FunctionFieldRaw()) {
1824        case JALR:
1825          return true;
1826        default:
1827          return false;
1828      }
1829    default:
1830      return false;
1831  }
1832}
1833
1834template <class P>
1835bool InstructionGetters<P>::IsTrap() const {
1836  if (this->OpcodeFieldRaw() != SPECIAL) {
1837    return false;
1838  } else {
1839    switch (this->FunctionFieldRaw()) {
1840      case BREAK:
1841      case TGE:
1842      case TGEU:
1843      case TLT:
1844      case TLTU:
1845      case TEQ:
1846      case TNE:
1847        return true;
1848      default:
1849        return false;
1850    }
1851  }
1852}
1853
1854// static
1855template <class T>
1856bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1857  Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1858  switch (opcode) {
1859    case J:
1860    case JAL:
1861    case BEQ:
1862    case BNE:
1863    case BLEZ:  // POP06 bgeuc/bleuc, blezalc, bgezalc
1864    case BGTZ:  // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1865    case BEQL:
1866    case BNEL:
1867    case BLEZL:  // POP26 bgezc, blezc, bgec/blec
1868    case BGTZL:  // POP27 bgtzc, bltzc, bltc/bgtc
1869    case BC:
1870    case BALC:
1871    case POP10:  // beqzalc, bovc, beqc
1872    case POP30:  // bnezalc, bnvc, bnec
1873    case POP66:  // beqzc, jic
1874    case POP76:  // bnezc, jialc
1875      return true;
1876    case REGIMM:
1877      switch (instr & kRtFieldMask) {
1878        case BLTZ:
1879        case BGEZ:
1880        case BLTZAL:
1881        case BGEZAL:
1882          return true;
1883        default:
1884          return false;
1885      }
1886      break;
1887    case SPECIAL:
1888      switch (instr & kFunctionFieldMask) {
1889        case JR:
1890        case JALR:
1891          return true;
1892        default:
1893          return false;
1894      }
1895      break;
1896    case COP1:
1897      switch (instr & kRsFieldMask) {
1898        case BC1:
1899        case BC1EQZ:
1900        case BC1NEZ:
1901        case BZ_V:
1902        case BZ_B:
1903        case BZ_H:
1904        case BZ_W:
1905        case BZ_D:
1906        case BNZ_V:
1907        case BNZ_B:
1908        case BNZ_H:
1909        case BNZ_W:
1910        case BNZ_D:
1911          return true;
1912          break;
1913        default:
1914          return false;
1915      }
1916      break;
1917    default:
1918      return false;
1919  }
1920}
1921}  // namespace internal
1922}  // namespace v8
1923
1924#endif  // V8_CODEGEN_MIPS_CONSTANTS_MIPS_H_
1925