1// Copyright 2011 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#ifndef V8_CODEGEN_ARM_CONSTANTS_ARM_H_ 6#define V8_CODEGEN_ARM_CONSTANTS_ARM_H_ 7 8#include <stdint.h> 9 10#include "src/base/logging.h" 11#include "src/base/macros.h" 12#include "src/common/globals.h" 13#include "src/utils/boxed-float.h" 14#include "src/utils/utils.h" 15 16// ARM EABI is required. 17#if defined(__arm__) && !defined(__ARM_EABI__) 18#error ARM EABI support is required. 19#endif 20 21namespace v8 { 22namespace internal { 23 24// Constant pool marker. 25// Use UDF, the permanently undefined instruction. 26const int kConstantPoolMarkerMask = 0xfff000f0; 27const int kConstantPoolMarker = 0xe7f000f0; 28const int kConstantPoolLengthMaxMask = 0xffff; 29inline int EncodeConstantPoolLength(int length) { 30 DCHECK((length & kConstantPoolLengthMaxMask) == length); 31 return ((length & 0xfff0) << 4) | (length & 0xf); 32} 33inline int DecodeConstantPoolLength(int instr) { 34 DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker); 35 return ((instr >> 4) & 0xfff0) | (instr & 0xf); 36} 37 38// Number of registers in normal ARM mode. 39constexpr int kNumRegisters = 16; 40constexpr int kRegSizeInBitsLog2 = 5; 41 42// VFP support. 43constexpr int kNumVFPSingleRegisters = 32; 44constexpr int kNumVFPDoubleRegisters = 32; 45constexpr int kNumVFPRegisters = 46 kNumVFPSingleRegisters + kNumVFPDoubleRegisters; 47 48// PC is register 15. 49constexpr int kPCRegister = 15; 50constexpr int kNoRegister = -1; 51 52// Used in embedded constant pool builder - max reach in bits for 53// various load instructions (unsigned) 54constexpr int kLdrMaxReachBits = 12; 55constexpr int kVldrMaxReachBits = 10; 56 57// Actual value of root register is offset from the root array's start 58// to take advantage of negative displacement values. Loads allow a uint12 59// value with a separate sign bit (range [-4095, +4095]), so the first root 60// is still addressable with a single load instruction. 61constexpr int kRootRegisterBias = 4095; 62 63// ----------------------------------------------------------------------------- 64// Conditions. 65 66// Defines constants and accessor classes to assemble, disassemble and 67// simulate ARM instructions. 68// 69// Section references in the code refer to the "ARM Architecture Reference 70// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) 71// 72// Constants for specific fields are defined in their respective named enums. 73// General constants are in an anonymous enum in class Instr. 74 75// Values for the condition field as defined in section A3.2 76enum Condition { 77 kNoCondition = -1, 78 79 eq = 0 << 28, // Z set Equal. 80 ne = 1 << 28, // Z clear Not equal. 81 cs = 2 << 28, // C set Unsigned higher or same. 82 cc = 3 << 28, // C clear Unsigned lower. 83 mi = 4 << 28, // N set Negative. 84 pl = 5 << 28, // N clear Positive or zero. 85 vs = 6 << 28, // V set Overflow. 86 vc = 7 << 28, // V clear No overflow. 87 hi = 8 << 28, // C set, Z clear Unsigned higher. 88 ls = 9 << 28, // C clear or Z set Unsigned lower or same. 89 ge = 10 << 28, // N == V Greater or equal. 90 lt = 11 << 28, // N != V Less than. 91 gt = 12 << 28, // Z clear, N == V Greater than. 92 le = 13 << 28, // Z set or N != V Less then or equal 93 al = 14 << 28, // Always. 94 95 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1). 96 kNumberOfConditions = 16, 97 98 // Aliases. 99 hs = cs, // C set Unsigned higher or same. 100 lo = cc // C clear Unsigned lower. 101}; 102 103inline Condition NegateCondition(Condition cond) { 104 DCHECK(cond != al); 105 return static_cast<Condition>(cond ^ ne); 106} 107 108// ----------------------------------------------------------------------------- 109// Instructions encoding. 110 111// Instr is merely used by the Assembler to distinguish 32bit integers 112// representing instructions from usual 32 bit values. 113// Instruction objects are pointers to 32bit values, and provide methods to 114// access the various ISA fields. 115using Instr = int32_t; 116 117// Opcodes for Data-processing instructions (instructions with a type 0 and 1) 118// as defined in section A3.4 119enum Opcode { 120 AND = 0 << 21, // Logical AND. 121 EOR = 1 << 21, // Logical Exclusive OR. 122 SUB = 2 << 21, // Subtract. 123 RSB = 3 << 21, // Reverse Subtract. 124 ADD = 4 << 21, // Add. 125 ADC = 5 << 21, // Add with Carry. 126 SBC = 6 << 21, // Subtract with Carry. 127 RSC = 7 << 21, // Reverse Subtract with Carry. 128 TST = 8 << 21, // Test. 129 TEQ = 9 << 21, // Test Equivalence. 130 CMP = 10 << 21, // Compare. 131 CMN = 11 << 21, // Compare Negated. 132 ORR = 12 << 21, // Logical (inclusive) OR. 133 MOV = 13 << 21, // Move. 134 BIC = 14 << 21, // Bit Clear. 135 MVN = 15 << 21 // Move Not. 136}; 137 138// The bits for bit 7-4 for some type 0 miscellaneous instructions. 139enum MiscInstructionsBits74 { 140 // With bits 22-21 01. 141 BX = 1 << 4, 142 BXJ = 2 << 4, 143 BLX = 3 << 4, 144 BKPT = 7 << 4, 145 146 // With bits 22-21 11. 147 CLZ = 1 << 4 148}; 149 150// Instruction encoding bits and masks. 151enum { 152 H = 1 << 5, // Halfword (or byte). 153 S6 = 1 << 6, // Signed (or unsigned). 154 L = 1 << 20, // Load (or store). 155 S = 1 << 20, // Set condition code (or leave unchanged). 156 W = 1 << 21, // Writeback base register (or leave unchanged). 157 A = 1 << 21, // Accumulate in multiply instruction (or not). 158 B = 1 << 22, // Unsigned byte (or word). 159 N = 1 << 22, // Long (or short). 160 U = 1 << 23, // Positive (or negative) offset/index. 161 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing). 162 I = 1 << 25, // Immediate shifter operand (or not). 163 B0 = 1 << 0, 164 B4 = 1 << 4, 165 B5 = 1 << 5, 166 B6 = 1 << 6, 167 B7 = 1 << 7, 168 B8 = 1 << 8, 169 B9 = 1 << 9, 170 B10 = 1 << 10, 171 B12 = 1 << 12, 172 B16 = 1 << 16, 173 B17 = 1 << 17, 174 B18 = 1 << 18, 175 B19 = 1 << 19, 176 B20 = 1 << 20, 177 B21 = 1 << 21, 178 B22 = 1 << 22, 179 B23 = 1 << 23, 180 B24 = 1 << 24, 181 B25 = 1 << 25, 182 B26 = 1 << 26, 183 B27 = 1 << 27, 184 B28 = 1 << 28, 185 186 // Instruction bit masks. 187 kCondMask = 15 << 28, 188 kALUMask = 0x6f << 21, 189 kRdMask = 15 << 12, // In str instruction. 190 kCoprocessorMask = 15 << 8, 191 kOpCodeMask = 15 << 21, // In data-processing instructions. 192 kImm24Mask = (1 << 24) - 1, 193 kImm16Mask = (1 << 16) - 1, 194 kImm8Mask = (1 << 8) - 1, 195 kOff12Mask = (1 << 12) - 1, 196 kOff8Mask = (1 << 8) - 1 197}; 198 199enum BarrierOption { 200 OSHLD = 0x1, 201 OSHST = 0x2, 202 OSH = 0x3, 203 NSHLD = 0x5, 204 NSHST = 0x6, 205 NSH = 0x7, 206 ISHLD = 0x9, 207 ISHST = 0xa, 208 ISH = 0xb, 209 LD = 0xd, 210 ST = 0xe, 211 SY = 0xf, 212}; 213 214// ----------------------------------------------------------------------------- 215// Addressing modes and instruction variants. 216 217// Condition code updating mode. 218enum SBit { 219 SetCC = 1 << 20, // Set condition code. 220 LeaveCC = 0 << 20 // Leave condition code unchanged. 221}; 222 223// Status register selection. 224enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 }; 225 226// Shifter types for Data-processing operands as defined in section A5.1.2. 227enum ShiftOp { 228 LSL = 0 << 5, // Logical shift left. 229 LSR = 1 << 5, // Logical shift right. 230 ASR = 2 << 5, // Arithmetic shift right. 231 ROR = 3 << 5, // Rotate right. 232 233 // RRX is encoded as ROR with shift_imm == 0. 234 // Use a special code to make the distinction. The RRX ShiftOp is only used 235 // as an argument, and will never actually be encoded. The Assembler will 236 // detect it and emit the correct ROR shift operand with shift_imm == 0. 237 RRX = -1, 238 kNumberOfShifts = 4 239}; 240 241// Status register fields. 242enum SRegisterField { 243 CPSR_c = CPSR | 1 << 16, 244 CPSR_x = CPSR | 1 << 17, 245 CPSR_s = CPSR | 1 << 18, 246 CPSR_f = CPSR | 1 << 19, 247 SPSR_c = SPSR | 1 << 16, 248 SPSR_x = SPSR | 1 << 17, 249 SPSR_s = SPSR | 1 << 18, 250 SPSR_f = SPSR | 1 << 19 251}; 252 253// Status register field mask (or'ed SRegisterField enum values). 254using SRegisterFieldMask = uint32_t; 255 256// Memory operand addressing mode. 257enum AddrMode { 258 // Bit encoding P U W. 259 Offset = (8 | 4 | 0) << 21, // Offset (without writeback to base). 260 PreIndex = (8 | 4 | 1) << 21, // Pre-indexed addressing with writeback. 261 PostIndex = (0 | 4 | 0) << 21, // Post-indexed addressing with writeback. 262 NegOffset = 263 (8 | 0 | 0) << 21, // Negative offset (without writeback to base). 264 NegPreIndex = (8 | 0 | 1) << 21, // Negative pre-indexed with writeback. 265 NegPostIndex = (0 | 0 | 0) << 21 // Negative post-indexed with writeback. 266}; 267 268// Load/store multiple addressing mode. 269enum BlockAddrMode { 270 // Bit encoding P U W . 271 da = (0 | 0 | 0) << 21, // Decrement after. 272 ia = (0 | 4 | 0) << 21, // Increment after. 273 db = (8 | 0 | 0) << 21, // Decrement before. 274 ib = (8 | 4 | 0) << 21, // Increment before. 275 da_w = (0 | 0 | 1) << 21, // Decrement after with writeback to base. 276 ia_w = (0 | 4 | 1) << 21, // Increment after with writeback to base. 277 db_w = (8 | 0 | 1) << 21, // Decrement before with writeback to base. 278 ib_w = (8 | 4 | 1) << 21, // Increment before with writeback to base. 279 280 // Alias modes for comparison when writeback does not matter. 281 da_x = (0 | 0 | 0) << 21, // Decrement after. 282 ia_x = (0 | 4 | 0) << 21, // Increment after. 283 db_x = (8 | 0 | 0) << 21, // Decrement before. 284 ib_x = (8 | 4 | 0) << 21, // Increment before. 285 286 kBlockAddrModeMask = (8 | 4 | 1) << 21 287}; 288 289// Coprocessor load/store operand size. 290enum LFlag { 291 Long = 1 << 22, // Long load/store coprocessor. 292 Short = 0 << 22 // Short load/store coprocessor. 293}; 294 295// Neon sizes. 296enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 }; 297 298// NEON data type, top bit set for unsigned data types. 299enum NeonDataType { 300 NeonS8 = 0, 301 NeonS16 = 1, 302 NeonS32 = 2, 303 NeonS64 = 3, 304 NeonU8 = 4, 305 NeonU16 = 5, 306 NeonU32 = 6, 307 NeonU64 = 7 308}; 309 310inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; } 311inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; } 312 313// Convert sizes to data types (U bit is clear). 314inline NeonDataType NeonSizeToDataType(NeonSize size) { 315 DCHECK_NE(Neon64, size); 316 return static_cast<NeonDataType>(size); 317} 318 319inline NeonSize NeonDataTypeToSize(NeonDataType dt) { 320 return static_cast<NeonSize>(NeonSz(dt)); 321} 322 323enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; 324 325// ----------------------------------------------------------------------------- 326// Supervisor Call (svc) specific support. 327 328// Special Software Interrupt codes when used in the presence of the ARM 329// simulator. 330// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for 331// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. 332enum SoftwareInterruptCodes { 333 // transition to C code 334 kCallRtRedirected = 0x10, 335 // break point 336 kBreakpoint = 0x20, 337 // stop 338 kStopCode = 1 << 23 339}; 340const uint32_t kStopCodeMask = kStopCode - 1; 341const uint32_t kMaxStopCode = kStopCode - 1; 342const int32_t kDefaultStopCode = -1; 343 344// Type of VFP register. Determines register encoding. 345enum VFPRegPrecision { 346 kSinglePrecision = 0, 347 kDoublePrecision = 1, 348 kSimd128Precision = 2 349}; 350 351// VFP FPSCR constants. 352enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 }; 353 354// This mask does not include the "inexact" or "input denormal" cumulative 355// exceptions flags, because we usually don't want to check for it. 356const uint32_t kVFPExceptionMask = 0xf; 357const uint32_t kVFPInvalidOpExceptionBit = 1 << 0; 358const uint32_t kVFPOverflowExceptionBit = 1 << 2; 359const uint32_t kVFPUnderflowExceptionBit = 1 << 3; 360const uint32_t kVFPInexactExceptionBit = 1 << 4; 361const uint32_t kVFPFlushToZeroMask = 1 << 24; 362const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; 363 364const uint32_t kVFPNConditionFlagBit = 1 << 31; 365const uint32_t kVFPZConditionFlagBit = 1 << 30; 366const uint32_t kVFPCConditionFlagBit = 1 << 29; 367const uint32_t kVFPVConditionFlagBit = 1 << 28; 368 369// VFP rounding modes. See ARM DDI 0406B Page A2-29. 370enum VFPRoundingMode { 371 RN = 0 << 22, // Round to Nearest. 372 RP = 1 << 22, // Round towards Plus Infinity. 373 RM = 2 << 22, // Round towards Minus Infinity. 374 RZ = 3 << 22, // Round towards zero. 375 376 // Aliases. 377 kRoundToNearest = RN, 378 kRoundToPlusInf = RP, 379 kRoundToMinusInf = RM, 380 kRoundToZero = RZ 381}; 382 383const uint32_t kVFPRoundingModeMask = 3 << 22; 384 385enum CheckForInexactConversion { 386 kCheckForInexactConversion, 387 kDontCheckForInexactConversion 388}; 389 390// ----------------------------------------------------------------------------- 391// Hints. 392 393// Branch hints are not used on the ARM. They are defined so that they can 394// appear in shared function signatures, but will be ignored in ARM 395// implementations. 396enum Hint { no_hint }; 397 398// Hints are not used on the arm. Negating is trivial. 399inline Hint NegateHint(Hint ignored) { return no_hint; } 400 401// ----------------------------------------------------------------------------- 402// Instruction abstraction. 403 404// The class Instruction enables access to individual fields defined in the ARM 405// architecture instruction set encoding as described in figure A3-1. 406// Note that the Assembler uses typedef int32_t Instr. 407// 408// Example: Test whether the instruction at ptr does set the condition code 409// bits. 410// 411// bool InstructionSetsConditionCodes(byte* ptr) { 412// Instruction* instr = Instruction::At(ptr); 413// int type = instr->TypeValue(); 414// return ((type == 0) || (type == 1)) && instr->HasS(); 415// } 416// 417 418constexpr uint8_t kInstrSize = 4; 419constexpr uint8_t kInstrSizeLog2 = 2; 420 421class Instruction { 422 public: 423 // Difference between address of current opcode and value read from pc 424 // register. 425 static constexpr int kPcLoadDelta = 8; 426 427// Helper macro to define static accessors. 428// We use the cast to char* trick to bypass the strict anti-aliasing rules. 429#define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ 430 static inline return_type Name(Instr instr) { \ 431 char* temp = reinterpret_cast<char*>(&instr); \ 432 return reinterpret_cast<Instruction*>(temp)->Name(); \ 433 } 434 435#define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) 436 437 // Get the raw instruction bits. 438 inline Instr InstructionBits() const { 439 return *reinterpret_cast<const Instr*>(this); 440 } 441 442 // Set the raw instruction bits to value. 443 inline void SetInstructionBits(Instr value) { 444 *reinterpret_cast<Instr*>(this) = value; 445 } 446 447 // Extract a single bit from the instruction bits and return it as bit 0 in 448 // the result. 449 inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } 450 451 // Extract a bit field <hi:lo> from the instruction bits and return it in the 452 // least-significant bits of the result. 453 inline int Bits(int hi, int lo) const { 454 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); 455 } 456 457 // Read a bit field <hi:lo>, leaving its position unchanged in the result. 458 inline int BitField(int hi, int lo) const { 459 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); 460 } 461 462 // Accessors for the different named fields used in the ARM encoding. 463 // The naming of these accessor corresponds to figure A3-1. 464 // 465 // Two kind of accessors are declared: 466 // - <Name>Field() will return the raw field, i.e. the field's bits at their 467 // original place in the instruction encoding. 468 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as 469 // 0xC0810002 ConditionField(instr) will return 0xC0000000. 470 // - <Name>Value() will return the field value, shifted back to bit 0. 471 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as 472 // 0xC0810002 ConditionField(instr) will return 0xC. 473 474 // Generally applicable fields 475 inline int ConditionValue() const { return Bits(31, 28); } 476 inline Condition ConditionField() const { 477 return static_cast<Condition>(BitField(31, 28)); 478 } 479 DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue) 480 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField) 481 482 inline int TypeValue() const { return Bits(27, 25); } 483 inline int SpecialValue() const { return Bits(27, 23); } 484 485 inline int RnValue() const { return Bits(19, 16); } 486 DECLARE_STATIC_ACCESSOR(RnValue) 487 inline int RdValue() const { return Bits(15, 12); } 488 DECLARE_STATIC_ACCESSOR(RdValue) 489 490 inline int CoprocessorValue() const { return Bits(11, 8); } 491 // Support for VFP. 492 // Vn(19-16) | Vd(15-12) | Vm(3-0) 493 inline int VnValue() const { return Bits(19, 16); } 494 inline int VmValue() const { return Bits(3, 0); } 495 inline int VdValue() const { return Bits(15, 12); } 496 inline int NValue() const { return Bit(7); } 497 inline int MValue() const { return Bit(5); } 498 inline int DValue() const { return Bit(22); } 499 inline int RtValue() const { return Bits(15, 12); } 500 inline int PValue() const { return Bit(24); } 501 inline int UValue() const { return Bit(23); } 502 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } 503 inline int Opc2Value() const { return Bits(19, 16); } 504 inline int Opc3Value() const { return Bits(7, 6); } 505 inline int SzValue() const { return Bit(8); } 506 inline int VLValue() const { return Bit(20); } 507 inline int VCValue() const { return Bit(8); } 508 inline int VAValue() const { return Bits(23, 21); } 509 inline int VBValue() const { return Bits(6, 5); } 510 inline int VFPNRegValue(VFPRegPrecision pre) { 511 return VFPGlueRegValue(pre, 16, 7); 512 } 513 inline int VFPMRegValue(VFPRegPrecision pre) { 514 return VFPGlueRegValue(pre, 0, 5); 515 } 516 inline int VFPDRegValue(VFPRegPrecision pre) { 517 return VFPGlueRegValue(pre, 12, 22); 518 } 519 520 // Fields used in Data processing instructions 521 inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } 522 inline Opcode OpcodeField() const { 523 return static_cast<Opcode>(BitField(24, 21)); 524 } 525 inline int SValue() const { return Bit(20); } 526 // with register 527 inline int RmValue() const { return Bits(3, 0); } 528 DECLARE_STATIC_ACCESSOR(RmValue) 529 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } 530 inline ShiftOp ShiftField() const { 531 return static_cast<ShiftOp>(BitField(6, 5)); 532 } 533 inline int RegShiftValue() const { return Bit(4); } 534 inline int RsValue() const { return Bits(11, 8); } 535 inline int ShiftAmountValue() const { return Bits(11, 7); } 536 // with immediate 537 inline int RotateValue() const { return Bits(11, 8); } 538 DECLARE_STATIC_ACCESSOR(RotateValue) 539 inline int Immed8Value() const { return Bits(7, 0); } 540 DECLARE_STATIC_ACCESSOR(Immed8Value) 541 inline int Immed4Value() const { return Bits(19, 16); } 542 inline int ImmedMovwMovtValue() const { 543 return Immed4Value() << 12 | Offset12Value(); 544 } 545 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue) 546 547 // Fields used in Load/Store instructions 548 inline int PUValue() const { return Bits(24, 23); } 549 inline int PUField() const { return BitField(24, 23); } 550 inline int BValue() const { return Bit(22); } 551 inline int WValue() const { return Bit(21); } 552 inline int LValue() const { return Bit(20); } 553 // with register uses same fields as Data processing instructions above 554 // with immediate 555 inline int Offset12Value() const { return Bits(11, 0); } 556 // multiple 557 inline int RlistValue() const { return Bits(15, 0); } 558 // extra loads and stores 559 inline int SignValue() const { return Bit(6); } 560 inline int HValue() const { return Bit(5); } 561 inline int ImmedHValue() const { return Bits(11, 8); } 562 inline int ImmedLValue() const { return Bits(3, 0); } 563 564 // Fields used in Branch instructions 565 inline int LinkValue() const { return Bit(24); } 566 inline int SImmed24Value() const { 567 return signed_bitextract_32(23, 0, InstructionBits()); 568 } 569 570 bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; } 571 572 int GetBranchOffset() { 573 DCHECK(IsBranch()); 574 return SImmed24Value() * kInstrSize; 575 } 576 577 void SetBranchOffset(int32_t branch_offset) { 578 DCHECK(IsBranch()); 579 DCHECK_EQ(branch_offset % kInstrSize, 0); 580 int32_t new_imm24 = branch_offset / kInstrSize; 581 CHECK(is_int24(new_imm24)); 582 SetInstructionBits((InstructionBits() & ~(kImm24Mask)) | 583 (new_imm24 & kImm24Mask)); 584 } 585 586 // Fields used in Software interrupt instructions 587 inline SoftwareInterruptCodes SvcValue() const { 588 return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); 589 } 590 591 // Test for special encodings of type 0 instructions (extra loads and stores, 592 // as well as multiplications). 593 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } 594 595 // Test for miscellaneous instructions encodings of type 0 instructions. 596 inline bool IsMiscType0() const { 597 return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && 598 ((Bit(7) == 0)); 599 } 600 601 // Test for nop-like instructions which fall under type 1. 602 inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; } 603 604 // Test for a stop instruction. 605 inline bool IsStop() const { 606 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); 607 } 608 609 // Special accessors that test for existence of a value. 610 inline bool HasS() const { return SValue() == 1; } 611 inline bool HasB() const { return BValue() == 1; } 612 inline bool HasW() const { return WValue() == 1; } 613 inline bool HasL() const { return LValue() == 1; } 614 inline bool HasU() const { return UValue() == 1; } 615 inline bool HasSign() const { return SignValue() == 1; } 616 inline bool HasH() const { return HValue() == 1; } 617 inline bool HasLink() const { return LinkValue() == 1; } 618 619 // Decode the double immediate from a vmov instruction. 620 Float64 DoubleImmedVmov() const; 621 622 // Instructions are read of out a code stream. The only way to get a 623 // reference to an instruction is to convert a pointer. There is no way 624 // to allocate or create instances of class Instruction. 625 // Use the At(pc) function to create references to Instruction. 626 static Instruction* At(Address pc) { 627 return reinterpret_cast<Instruction*>(pc); 628 } 629 630 private: 631 // Join split register codes, depending on register precision. 632 // four_bit is the position of the least-significant bit of the four 633 // bit specifier. one_bit is the position of the additional single bit 634 // specifier. 635 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { 636 if (pre == kSinglePrecision) { 637 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); 638 } else { 639 int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); 640 if (pre == kDoublePrecision) { 641 return reg_num; 642 } 643 DCHECK_EQ(kSimd128Precision, pre); 644 DCHECK_EQ(reg_num & 1, 0); 645 return reg_num / 2; 646 } 647 } 648 649 // We need to prevent the creation of instances of class Instruction. 650 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); 651}; 652 653// Helper functions for converting between register numbers and names. 654class Registers { 655 public: 656 // Return the name of the register. 657 static const char* Name(int reg); 658 659 // Lookup the register number for the name provided. 660 static int Number(const char* name); 661 662 struct RegisterAlias { 663 int reg; 664 const char* name; 665 }; 666 667 private: 668 static const char* names_[kNumRegisters]; 669 static const RegisterAlias aliases_[]; 670}; 671 672// Helper functions for converting between VFP register numbers and names. 673class VFPRegisters { 674 public: 675 // Return the name of the register. 676 static const char* Name(int reg, bool is_double); 677 678 // Lookup the register number for the name provided. 679 // Set flag pointed by is_double to true if register 680 // is double-precision. 681 static int Number(const char* name, bool* is_double); 682 683 private: 684 static const char* names_[kNumVFPRegisters]; 685}; 686 687// Relative jumps on ARM can address ±32 MB. 688constexpr size_t kMaxPCRelativeCodeRangeInMB = 32; 689 690} // namespace internal 691} // namespace v8 692 693#endif // V8_CODEGEN_ARM_CONSTANTS_ARM_H_ 694