1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_CODEGEN_ARM_CONSTANTS_ARM_H_
6#define V8_CODEGEN_ARM_CONSTANTS_ARM_H_
7
8#include <stdint.h>
9
10#include "src/base/logging.h"
11#include "src/base/macros.h"
12#include "src/common/globals.h"
13#include "src/utils/boxed-float.h"
14#include "src/utils/utils.h"
15
16// ARM EABI is required.
17#if defined(__arm__) && !defined(__ARM_EABI__)
18#error ARM EABI support is required.
19#endif
20
21namespace v8 {
22namespace internal {
23
24// Constant pool marker.
25// Use UDF, the permanently undefined instruction.
26const int kConstantPoolMarkerMask = 0xfff000f0;
27const int kConstantPoolMarker = 0xe7f000f0;
28const int kConstantPoolLengthMaxMask = 0xffff;
29inline int EncodeConstantPoolLength(int length) {
30  DCHECK((length & kConstantPoolLengthMaxMask) == length);
31  return ((length & 0xfff0) << 4) | (length & 0xf);
32}
33inline int DecodeConstantPoolLength(int instr) {
34  DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker);
35  return ((instr >> 4) & 0xfff0) | (instr & 0xf);
36}
37
38// Number of registers in normal ARM mode.
39constexpr int kNumRegisters = 16;
40constexpr int kRegSizeInBitsLog2 = 5;
41
42// VFP support.
43constexpr int kNumVFPSingleRegisters = 32;
44constexpr int kNumVFPDoubleRegisters = 32;
45constexpr int kNumVFPRegisters =
46    kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
47
48// PC is register 15.
49constexpr int kPCRegister = 15;
50constexpr int kNoRegister = -1;
51
52// Used in embedded constant pool builder - max reach in bits for
53// various load instructions (unsigned)
54constexpr int kLdrMaxReachBits = 12;
55constexpr int kVldrMaxReachBits = 10;
56
57// Actual value of root register is offset from the root array's start
58// to take advantage of negative displacement values. Loads allow a uint12
59// value with a separate sign bit (range [-4095, +4095]), so the first root
60// is still addressable with a single load instruction.
61constexpr int kRootRegisterBias = 4095;
62
63// -----------------------------------------------------------------------------
64// Conditions.
65
66// Defines constants and accessor classes to assemble, disassemble and
67// simulate ARM instructions.
68//
69// Section references in the code refer to the "ARM Architecture Reference
70// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
71//
72// Constants for specific fields are defined in their respective named enums.
73// General constants are in an anonymous enum in class Instr.
74
75// Values for the condition field as defined in section A3.2
76enum Condition {
77  kNoCondition = -1,
78
79  eq = 0 << 28,   // Z set            Equal.
80  ne = 1 << 28,   // Z clear          Not equal.
81  cs = 2 << 28,   // C set            Unsigned higher or same.
82  cc = 3 << 28,   // C clear          Unsigned lower.
83  mi = 4 << 28,   // N set            Negative.
84  pl = 5 << 28,   // N clear          Positive or zero.
85  vs = 6 << 28,   // V set            Overflow.
86  vc = 7 << 28,   // V clear          No overflow.
87  hi = 8 << 28,   // C set, Z clear   Unsigned higher.
88  ls = 9 << 28,   // C clear or Z set Unsigned lower or same.
89  ge = 10 << 28,  // N == V           Greater or equal.
90  lt = 11 << 28,  // N != V           Less than.
91  gt = 12 << 28,  // Z clear, N == V  Greater than.
92  le = 13 << 28,  // Z set or N != V  Less then or equal
93  al = 14 << 28,  //                  Always.
94
95  kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
96  kNumberOfConditions = 16,
97
98  // Aliases.
99  hs = cs,  // C set            Unsigned higher or same.
100  lo = cc   // C clear          Unsigned lower.
101};
102
103inline Condition NegateCondition(Condition cond) {
104  DCHECK(cond != al);
105  return static_cast<Condition>(cond ^ ne);
106}
107
108// -----------------------------------------------------------------------------
109// Instructions encoding.
110
111// Instr is merely used by the Assembler to distinguish 32bit integers
112// representing instructions from usual 32 bit values.
113// Instruction objects are pointers to 32bit values, and provide methods to
114// access the various ISA fields.
115using Instr = int32_t;
116
117// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
118// as defined in section A3.4
119enum Opcode {
120  AND = 0 << 21,   // Logical AND.
121  EOR = 1 << 21,   // Logical Exclusive OR.
122  SUB = 2 << 21,   // Subtract.
123  RSB = 3 << 21,   // Reverse Subtract.
124  ADD = 4 << 21,   // Add.
125  ADC = 5 << 21,   // Add with Carry.
126  SBC = 6 << 21,   // Subtract with Carry.
127  RSC = 7 << 21,   // Reverse Subtract with Carry.
128  TST = 8 << 21,   // Test.
129  TEQ = 9 << 21,   // Test Equivalence.
130  CMP = 10 << 21,  // Compare.
131  CMN = 11 << 21,  // Compare Negated.
132  ORR = 12 << 21,  // Logical (inclusive) OR.
133  MOV = 13 << 21,  // Move.
134  BIC = 14 << 21,  // Bit Clear.
135  MVN = 15 << 21   // Move Not.
136};
137
138// The bits for bit 7-4 for some type 0 miscellaneous instructions.
139enum MiscInstructionsBits74 {
140  // With bits 22-21 01.
141  BX = 1 << 4,
142  BXJ = 2 << 4,
143  BLX = 3 << 4,
144  BKPT = 7 << 4,
145
146  // With bits 22-21 11.
147  CLZ = 1 << 4
148};
149
150// Instruction encoding bits and masks.
151enum {
152  H = 1 << 5,   // Halfword (or byte).
153  S6 = 1 << 6,  // Signed (or unsigned).
154  L = 1 << 20,  // Load (or store).
155  S = 1 << 20,  // Set condition code (or leave unchanged).
156  W = 1 << 21,  // Writeback base register (or leave unchanged).
157  A = 1 << 21,  // Accumulate in multiply instruction (or not).
158  B = 1 << 22,  // Unsigned byte (or word).
159  N = 1 << 22,  // Long (or short).
160  U = 1 << 23,  // Positive (or negative) offset/index.
161  P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
162  I = 1 << 25,  // Immediate shifter operand (or not).
163  B0 = 1 << 0,
164  B4 = 1 << 4,
165  B5 = 1 << 5,
166  B6 = 1 << 6,
167  B7 = 1 << 7,
168  B8 = 1 << 8,
169  B9 = 1 << 9,
170  B10 = 1 << 10,
171  B12 = 1 << 12,
172  B16 = 1 << 16,
173  B17 = 1 << 17,
174  B18 = 1 << 18,
175  B19 = 1 << 19,
176  B20 = 1 << 20,
177  B21 = 1 << 21,
178  B22 = 1 << 22,
179  B23 = 1 << 23,
180  B24 = 1 << 24,
181  B25 = 1 << 25,
182  B26 = 1 << 26,
183  B27 = 1 << 27,
184  B28 = 1 << 28,
185
186  // Instruction bit masks.
187  kCondMask = 15 << 28,
188  kALUMask = 0x6f << 21,
189  kRdMask = 15 << 12,  // In str instruction.
190  kCoprocessorMask = 15 << 8,
191  kOpCodeMask = 15 << 21,  // In data-processing instructions.
192  kImm24Mask = (1 << 24) - 1,
193  kImm16Mask = (1 << 16) - 1,
194  kImm8Mask = (1 << 8) - 1,
195  kOff12Mask = (1 << 12) - 1,
196  kOff8Mask = (1 << 8) - 1
197};
198
199enum BarrierOption {
200  OSHLD = 0x1,
201  OSHST = 0x2,
202  OSH = 0x3,
203  NSHLD = 0x5,
204  NSHST = 0x6,
205  NSH = 0x7,
206  ISHLD = 0x9,
207  ISHST = 0xa,
208  ISH = 0xb,
209  LD = 0xd,
210  ST = 0xe,
211  SY = 0xf,
212};
213
214// -----------------------------------------------------------------------------
215// Addressing modes and instruction variants.
216
217// Condition code updating mode.
218enum SBit {
219  SetCC = 1 << 20,   // Set condition code.
220  LeaveCC = 0 << 20  // Leave condition code unchanged.
221};
222
223// Status register selection.
224enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 };
225
226// Shifter types for Data-processing operands as defined in section A5.1.2.
227enum ShiftOp {
228  LSL = 0 << 5,  // Logical shift left.
229  LSR = 1 << 5,  // Logical shift right.
230  ASR = 2 << 5,  // Arithmetic shift right.
231  ROR = 3 << 5,  // Rotate right.
232
233  // RRX is encoded as ROR with shift_imm == 0.
234  // Use a special code to make the distinction. The RRX ShiftOp is only used
235  // as an argument, and will never actually be encoded. The Assembler will
236  // detect it and emit the correct ROR shift operand with shift_imm == 0.
237  RRX = -1,
238  kNumberOfShifts = 4
239};
240
241// Status register fields.
242enum SRegisterField {
243  CPSR_c = CPSR | 1 << 16,
244  CPSR_x = CPSR | 1 << 17,
245  CPSR_s = CPSR | 1 << 18,
246  CPSR_f = CPSR | 1 << 19,
247  SPSR_c = SPSR | 1 << 16,
248  SPSR_x = SPSR | 1 << 17,
249  SPSR_s = SPSR | 1 << 18,
250  SPSR_f = SPSR | 1 << 19
251};
252
253// Status register field mask (or'ed SRegisterField enum values).
254using SRegisterFieldMask = uint32_t;
255
256// Memory operand addressing mode.
257enum AddrMode {
258  // Bit encoding P U W.
259  Offset = (8 | 4 | 0) << 21,     // Offset (without writeback to base).
260  PreIndex = (8 | 4 | 1) << 21,   // Pre-indexed addressing with writeback.
261  PostIndex = (0 | 4 | 0) << 21,  // Post-indexed addressing with writeback.
262  NegOffset =
263      (8 | 0 | 0) << 21,  // Negative offset (without writeback to base).
264  NegPreIndex = (8 | 0 | 1) << 21,  // Negative pre-indexed with writeback.
265  NegPostIndex = (0 | 0 | 0) << 21  // Negative post-indexed with writeback.
266};
267
268// Load/store multiple addressing mode.
269enum BlockAddrMode {
270  // Bit encoding P U W .
271  da = (0 | 0 | 0) << 21,    // Decrement after.
272  ia = (0 | 4 | 0) << 21,    // Increment after.
273  db = (8 | 0 | 0) << 21,    // Decrement before.
274  ib = (8 | 4 | 0) << 21,    // Increment before.
275  da_w = (0 | 0 | 1) << 21,  // Decrement after with writeback to base.
276  ia_w = (0 | 4 | 1) << 21,  // Increment after with writeback to base.
277  db_w = (8 | 0 | 1) << 21,  // Decrement before with writeback to base.
278  ib_w = (8 | 4 | 1) << 21,  // Increment before with writeback to base.
279
280  // Alias modes for comparison when writeback does not matter.
281  da_x = (0 | 0 | 0) << 21,  // Decrement after.
282  ia_x = (0 | 4 | 0) << 21,  // Increment after.
283  db_x = (8 | 0 | 0) << 21,  // Decrement before.
284  ib_x = (8 | 4 | 0) << 21,  // Increment before.
285
286  kBlockAddrModeMask = (8 | 4 | 1) << 21
287};
288
289// Coprocessor load/store operand size.
290enum LFlag {
291  Long = 1 << 22,  // Long load/store coprocessor.
292  Short = 0 << 22  // Short load/store coprocessor.
293};
294
295// Neon sizes.
296enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
297
298// NEON data type, top bit set for unsigned data types.
299enum NeonDataType {
300  NeonS8 = 0,
301  NeonS16 = 1,
302  NeonS32 = 2,
303  NeonS64 = 3,
304  NeonU8 = 4,
305  NeonU16 = 5,
306  NeonU32 = 6,
307  NeonU64 = 7
308};
309
310inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
311inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
312
313// Convert sizes to data types (U bit is clear).
314inline NeonDataType NeonSizeToDataType(NeonSize size) {
315  DCHECK_NE(Neon64, size);
316  return static_cast<NeonDataType>(size);
317}
318
319inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
320  return static_cast<NeonSize>(NeonSz(dt));
321}
322
323enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 };
324
325// -----------------------------------------------------------------------------
326// Supervisor Call (svc) specific support.
327
328// Special Software Interrupt codes when used in the presence of the ARM
329// simulator.
330// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
331// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
332enum SoftwareInterruptCodes {
333  // transition to C code
334  kCallRtRedirected = 0x10,
335  // break point
336  kBreakpoint = 0x20,
337  // stop
338  kStopCode = 1 << 23
339};
340const uint32_t kStopCodeMask = kStopCode - 1;
341const uint32_t kMaxStopCode = kStopCode - 1;
342const int32_t kDefaultStopCode = -1;
343
344// Type of VFP register. Determines register encoding.
345enum VFPRegPrecision {
346  kSinglePrecision = 0,
347  kDoublePrecision = 1,
348  kSimd128Precision = 2
349};
350
351// VFP FPSCR constants.
352enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 };
353
354// This mask does not include the "inexact" or "input denormal" cumulative
355// exceptions flags, because we usually don't want to check for it.
356const uint32_t kVFPExceptionMask = 0xf;
357const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
358const uint32_t kVFPOverflowExceptionBit = 1 << 2;
359const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
360const uint32_t kVFPInexactExceptionBit = 1 << 4;
361const uint32_t kVFPFlushToZeroMask = 1 << 24;
362const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
363
364const uint32_t kVFPNConditionFlagBit = 1 << 31;
365const uint32_t kVFPZConditionFlagBit = 1 << 30;
366const uint32_t kVFPCConditionFlagBit = 1 << 29;
367const uint32_t kVFPVConditionFlagBit = 1 << 28;
368
369// VFP rounding modes. See ARM DDI 0406B Page A2-29.
370enum VFPRoundingMode {
371  RN = 0 << 22,  // Round to Nearest.
372  RP = 1 << 22,  // Round towards Plus Infinity.
373  RM = 2 << 22,  // Round towards Minus Infinity.
374  RZ = 3 << 22,  // Round towards zero.
375
376  // Aliases.
377  kRoundToNearest = RN,
378  kRoundToPlusInf = RP,
379  kRoundToMinusInf = RM,
380  kRoundToZero = RZ
381};
382
383const uint32_t kVFPRoundingModeMask = 3 << 22;
384
385enum CheckForInexactConversion {
386  kCheckForInexactConversion,
387  kDontCheckForInexactConversion
388};
389
390// -----------------------------------------------------------------------------
391// Hints.
392
393// Branch hints are not used on the ARM.  They are defined so that they can
394// appear in shared function signatures, but will be ignored in ARM
395// implementations.
396enum Hint { no_hint };
397
398// Hints are not used on the arm.  Negating is trivial.
399inline Hint NegateHint(Hint ignored) { return no_hint; }
400
401// -----------------------------------------------------------------------------
402// Instruction abstraction.
403
404// The class Instruction enables access to individual fields defined in the ARM
405// architecture instruction set encoding as described in figure A3-1.
406// Note that the Assembler uses typedef int32_t Instr.
407//
408// Example: Test whether the instruction at ptr does set the condition code
409// bits.
410//
411// bool InstructionSetsConditionCodes(byte* ptr) {
412//   Instruction* instr = Instruction::At(ptr);
413//   int type = instr->TypeValue();
414//   return ((type == 0) || (type == 1)) && instr->HasS();
415// }
416//
417
418constexpr uint8_t kInstrSize = 4;
419constexpr uint8_t kInstrSizeLog2 = 2;
420
421class Instruction {
422 public:
423  // Difference between address of current opcode and value read from pc
424  // register.
425  static constexpr int kPcLoadDelta = 8;
426
427// Helper macro to define static accessors.
428// We use the cast to char* trick to bypass the strict anti-aliasing rules.
429#define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
430  static inline return_type Name(Instr instr) {          \
431    char* temp = reinterpret_cast<char*>(&instr);        \
432    return reinterpret_cast<Instruction*>(temp)->Name(); \
433  }
434
435#define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
436
437  // Get the raw instruction bits.
438  inline Instr InstructionBits() const {
439    return *reinterpret_cast<const Instr*>(this);
440  }
441
442  // Set the raw instruction bits to value.
443  inline void SetInstructionBits(Instr value) {
444    *reinterpret_cast<Instr*>(this) = value;
445  }
446
447  // Extract a single bit from the instruction bits and return it as bit 0 in
448  // the result.
449  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
450
451  // Extract a bit field <hi:lo> from the instruction bits and return it in the
452  // least-significant bits of the result.
453  inline int Bits(int hi, int lo) const {
454    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
455  }
456
457  // Read a bit field <hi:lo>, leaving its position unchanged in the result.
458  inline int BitField(int hi, int lo) const {
459    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
460  }
461
462  // Accessors for the different named fields used in the ARM encoding.
463  // The naming of these accessor corresponds to figure A3-1.
464  //
465  // Two kind of accessors are declared:
466  // - <Name>Field() will return the raw field, i.e. the field's bits at their
467  //   original place in the instruction encoding.
468  //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
469  //   0xC0810002 ConditionField(instr) will return 0xC0000000.
470  // - <Name>Value() will return the field value, shifted back to bit 0.
471  //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
472  //   0xC0810002 ConditionField(instr) will return 0xC.
473
474  // Generally applicable fields
475  inline int ConditionValue() const { return Bits(31, 28); }
476  inline Condition ConditionField() const {
477    return static_cast<Condition>(BitField(31, 28));
478  }
479  DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue)
480  DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField)
481
482  inline int TypeValue() const { return Bits(27, 25); }
483  inline int SpecialValue() const { return Bits(27, 23); }
484
485  inline int RnValue() const { return Bits(19, 16); }
486  DECLARE_STATIC_ACCESSOR(RnValue)
487  inline int RdValue() const { return Bits(15, 12); }
488  DECLARE_STATIC_ACCESSOR(RdValue)
489
490  inline int CoprocessorValue() const { return Bits(11, 8); }
491  // Support for VFP.
492  // Vn(19-16) | Vd(15-12) |  Vm(3-0)
493  inline int VnValue() const { return Bits(19, 16); }
494  inline int VmValue() const { return Bits(3, 0); }
495  inline int VdValue() const { return Bits(15, 12); }
496  inline int NValue() const { return Bit(7); }
497  inline int MValue() const { return Bit(5); }
498  inline int DValue() const { return Bit(22); }
499  inline int RtValue() const { return Bits(15, 12); }
500  inline int PValue() const { return Bit(24); }
501  inline int UValue() const { return Bit(23); }
502  inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
503  inline int Opc2Value() const { return Bits(19, 16); }
504  inline int Opc3Value() const { return Bits(7, 6); }
505  inline int SzValue() const { return Bit(8); }
506  inline int VLValue() const { return Bit(20); }
507  inline int VCValue() const { return Bit(8); }
508  inline int VAValue() const { return Bits(23, 21); }
509  inline int VBValue() const { return Bits(6, 5); }
510  inline int VFPNRegValue(VFPRegPrecision pre) {
511    return VFPGlueRegValue(pre, 16, 7);
512  }
513  inline int VFPMRegValue(VFPRegPrecision pre) {
514    return VFPGlueRegValue(pre, 0, 5);
515  }
516  inline int VFPDRegValue(VFPRegPrecision pre) {
517    return VFPGlueRegValue(pre, 12, 22);
518  }
519
520  // Fields used in Data processing instructions
521  inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); }
522  inline Opcode OpcodeField() const {
523    return static_cast<Opcode>(BitField(24, 21));
524  }
525  inline int SValue() const { return Bit(20); }
526  // with register
527  inline int RmValue() const { return Bits(3, 0); }
528  DECLARE_STATIC_ACCESSOR(RmValue)
529  inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
530  inline ShiftOp ShiftField() const {
531    return static_cast<ShiftOp>(BitField(6, 5));
532  }
533  inline int RegShiftValue() const { return Bit(4); }
534  inline int RsValue() const { return Bits(11, 8); }
535  inline int ShiftAmountValue() const { return Bits(11, 7); }
536  // with immediate
537  inline int RotateValue() const { return Bits(11, 8); }
538  DECLARE_STATIC_ACCESSOR(RotateValue)
539  inline int Immed8Value() const { return Bits(7, 0); }
540  DECLARE_STATIC_ACCESSOR(Immed8Value)
541  inline int Immed4Value() const { return Bits(19, 16); }
542  inline int ImmedMovwMovtValue() const {
543    return Immed4Value() << 12 | Offset12Value();
544  }
545  DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue)
546
547  // Fields used in Load/Store instructions
548  inline int PUValue() const { return Bits(24, 23); }
549  inline int PUField() const { return BitField(24, 23); }
550  inline int BValue() const { return Bit(22); }
551  inline int WValue() const { return Bit(21); }
552  inline int LValue() const { return Bit(20); }
553  // with register uses same fields as Data processing instructions above
554  // with immediate
555  inline int Offset12Value() const { return Bits(11, 0); }
556  // multiple
557  inline int RlistValue() const { return Bits(15, 0); }
558  // extra loads and stores
559  inline int SignValue() const { return Bit(6); }
560  inline int HValue() const { return Bit(5); }
561  inline int ImmedHValue() const { return Bits(11, 8); }
562  inline int ImmedLValue() const { return Bits(3, 0); }
563
564  // Fields used in Branch instructions
565  inline int LinkValue() const { return Bit(24); }
566  inline int SImmed24Value() const {
567    return signed_bitextract_32(23, 0, InstructionBits());
568  }
569
570  bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; }
571
572  int GetBranchOffset() {
573    DCHECK(IsBranch());
574    return SImmed24Value() * kInstrSize;
575  }
576
577  void SetBranchOffset(int32_t branch_offset) {
578    DCHECK(IsBranch());
579    DCHECK_EQ(branch_offset % kInstrSize, 0);
580    int32_t new_imm24 = branch_offset / kInstrSize;
581    CHECK(is_int24(new_imm24));
582    SetInstructionBits((InstructionBits() & ~(kImm24Mask)) |
583                       (new_imm24 & kImm24Mask));
584  }
585
586  // Fields used in Software interrupt instructions
587  inline SoftwareInterruptCodes SvcValue() const {
588    return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
589  }
590
591  // Test for special encodings of type 0 instructions (extra loads and stores,
592  // as well as multiplications).
593  inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
594
595  // Test for miscellaneous instructions encodings of type 0 instructions.
596  inline bool IsMiscType0() const {
597    return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) &&
598           ((Bit(7) == 0));
599  }
600
601  // Test for nop-like instructions which fall under type 1.
602  inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; }
603
604  // Test for a stop instruction.
605  inline bool IsStop() const {
606    return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
607  }
608
609  // Special accessors that test for existence of a value.
610  inline bool HasS() const { return SValue() == 1; }
611  inline bool HasB() const { return BValue() == 1; }
612  inline bool HasW() const { return WValue() == 1; }
613  inline bool HasL() const { return LValue() == 1; }
614  inline bool HasU() const { return UValue() == 1; }
615  inline bool HasSign() const { return SignValue() == 1; }
616  inline bool HasH() const { return HValue() == 1; }
617  inline bool HasLink() const { return LinkValue() == 1; }
618
619  // Decode the double immediate from a vmov instruction.
620  Float64 DoubleImmedVmov() const;
621
622  // Instructions are read of out a code stream. The only way to get a
623  // reference to an instruction is to convert a pointer. There is no way
624  // to allocate or create instances of class Instruction.
625  // Use the At(pc) function to create references to Instruction.
626  static Instruction* At(Address pc) {
627    return reinterpret_cast<Instruction*>(pc);
628  }
629
630 private:
631  // Join split register codes, depending on register precision.
632  // four_bit is the position of the least-significant bit of the four
633  // bit specifier. one_bit is the position of the additional single bit
634  // specifier.
635  inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
636    if (pre == kSinglePrecision) {
637      return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
638    } else {
639      int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
640      if (pre == kDoublePrecision) {
641        return reg_num;
642      }
643      DCHECK_EQ(kSimd128Precision, pre);
644      DCHECK_EQ(reg_num & 1, 0);
645      return reg_num / 2;
646    }
647  }
648
649  // We need to prevent the creation of instances of class Instruction.
650  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
651};
652
653// Helper functions for converting between register numbers and names.
654class Registers {
655 public:
656  // Return the name of the register.
657  static const char* Name(int reg);
658
659  // Lookup the register number for the name provided.
660  static int Number(const char* name);
661
662  struct RegisterAlias {
663    int reg;
664    const char* name;
665  };
666
667 private:
668  static const char* names_[kNumRegisters];
669  static const RegisterAlias aliases_[];
670};
671
672// Helper functions for converting between VFP register numbers and names.
673class VFPRegisters {
674 public:
675  // Return the name of the register.
676  static const char* Name(int reg, bool is_double);
677
678  // Lookup the register number for the name provided.
679  // Set flag pointed by is_double to true if register
680  // is double-precision.
681  static int Number(const char* name, bool* is_double);
682
683 private:
684  static const char* names_[kNumVFPRegisters];
685};
686
687// Relative jumps on ARM can address ±32 MB.
688constexpr size_t kMaxPCRelativeCodeRangeInMB = 32;
689
690}  // namespace internal
691}  // namespace v8
692
693#endif  // V8_CODEGEN_ARM_CONSTANTS_ARM_H_
694