1// Copyright 2011 the V8 project authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5#include "src/base/numbers/bignum-dtoa.h" 6 7#include <cmath> 8 9#include "src/base/logging.h" 10#include "src/base/numbers/bignum.h" 11#include "src/base/numbers/double.h" 12 13namespace v8 { 14namespace base { 15 16static int NormalizedExponent(uint64_t significand, int exponent) { 17 DCHECK_NE(significand, 0); 18 while ((significand & Double::kHiddenBit) == 0) { 19 significand = significand << 1; 20 exponent = exponent - 1; 21 } 22 return exponent; 23} 24 25// Forward declarations: 26// Returns an estimation of k such that 10^(k-1) <= v < 10^k. 27static int EstimatePower(int exponent); 28// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 29// and denominator. 30static void InitialScaledStartValues(double v, int estimated_power, 31 bool need_boundary_deltas, 32 Bignum* numerator, Bignum* denominator, 33 Bignum* delta_minus, Bignum* delta_plus); 34// Multiplies numerator/denominator so that its values lies in the range 1-10. 35// Returns decimal_point s.t. 36// v = numerator'/denominator' * 10^(decimal_point-1) 37// where numerator' and denominator' are the values of numerator and 38// denominator after the call to this function. 39static void FixupMultiply10(int estimated_power, bool is_even, 40 int* decimal_point, Bignum* numerator, 41 Bignum* denominator, Bignum* delta_minus, 42 Bignum* delta_plus); 43// Generates digits from the left to the right and stops when the generated 44// digits yield the shortest decimal representation of v. 45static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 46 Bignum* delta_minus, Bignum* delta_plus, 47 bool is_even, Vector<char> buffer, 48 int* length); 49// Generates 'requested_digits' after the decimal point. 50static void BignumToFixed(int requested_digits, int* decimal_point, 51 Bignum* numerator, Bignum* denominator, 52 Vector<char>(buffer), int* length); 53// Generates 'count' digits of numerator/denominator. 54// Once 'count' digits have been produced rounds the result depending on the 55// remainder (remainders of exactly .5 round upwards). Might update the 56// decimal_point when rounding up (for example for 0.9999). 57static void GenerateCountedDigits(int count, int* decimal_point, 58 Bignum* numerator, Bignum* denominator, 59 Vector<char>(buffer), int* length); 60 61void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, 62 Vector<char> buffer, int* length, int* decimal_point) { 63 DCHECK_GT(v, 0); 64 DCHECK(!Double(v).IsSpecial()); 65 uint64_t significand = Double(v).Significand(); 66 bool is_even = (significand & 1) == 0; 67 int exponent = Double(v).Exponent(); 68 int normalized_exponent = NormalizedExponent(significand, exponent); 69 // estimated_power might be too low by 1. 70 int estimated_power = EstimatePower(normalized_exponent); 71 72 // Shortcut for Fixed. 73 // The requested digits correspond to the digits after the point. If the 74 // number is much too small, then there is no need in trying to get any 75 // digits. 76 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { 77 buffer[0] = '\0'; 78 *length = 0; 79 // Set decimal-point to -requested_digits. This is what Gay does. 80 // Note that it should not have any effect anyways since the string is 81 // empty. 82 *decimal_point = -requested_digits; 83 return; 84 } 85 86 Bignum numerator; 87 Bignum denominator; 88 Bignum delta_minus; 89 Bignum delta_plus; 90 // Make sure the bignum can grow large enough. The smallest double equals 91 // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. 92 // The maximum double is 1.7976931348623157e308 which needs fewer than 93 // 308*4 binary digits. 94 DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4); 95 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); 96 InitialScaledStartValues(v, estimated_power, need_boundary_deltas, &numerator, 97 &denominator, &delta_minus, &delta_plus); 98 // We now have v = (numerator / denominator) * 10^estimated_power. 99 FixupMultiply10(estimated_power, is_even, decimal_point, &numerator, 100 &denominator, &delta_minus, &delta_plus); 101 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and 102 // 1 <= (numerator + delta_plus) / denominator < 10 103 switch (mode) { 104 case BIGNUM_DTOA_SHORTEST: 105 GenerateShortestDigits(&numerator, &denominator, &delta_minus, 106 &delta_plus, is_even, buffer, length); 107 break; 108 case BIGNUM_DTOA_FIXED: 109 BignumToFixed(requested_digits, decimal_point, &numerator, &denominator, 110 buffer, length); 111 break; 112 case BIGNUM_DTOA_PRECISION: 113 GenerateCountedDigits(requested_digits, decimal_point, &numerator, 114 &denominator, buffer, length); 115 break; 116 default: 117 UNREACHABLE(); 118 } 119 buffer[*length] = '\0'; 120} 121 122// The procedure starts generating digits from the left to the right and stops 123// when the generated digits yield the shortest decimal representation of v. A 124// decimal representation of v is a number lying closer to v than to any other 125// double, so it converts to v when read. 126// 127// This is true if d, the decimal representation, is between m- and m+, the 128// upper and lower boundaries. d must be strictly between them if !is_even. 129// m- := (numerator - delta_minus) / denominator 130// m+ := (numerator + delta_plus) / denominator 131// 132// Precondition: 0 <= (numerator+delta_plus) / denominator < 10. 133// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit 134// will be produced. This should be the standard precondition. 135static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, 136 Bignum* delta_minus, Bignum* delta_plus, 137 bool is_even, Vector<char> buffer, 138 int* length) { 139 // Small optimization: if delta_minus and delta_plus are the same just reuse 140 // one of the two bignums. 141 if (Bignum::Equal(*delta_minus, *delta_plus)) { 142 delta_plus = delta_minus; 143 } 144 *length = 0; 145 while (true) { 146 uint16_t digit; 147 digit = numerator->DivideModuloIntBignum(*denominator); 148 DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive. 149 // digit = numerator / denominator (integer division). 150 // numerator = numerator % denominator. 151 buffer[(*length)++] = digit + '0'; 152 153 // Can we stop already? 154 // If the remainder of the division is less than the distance to the lower 155 // boundary we can stop. In this case we simply round down (discarding the 156 // remainder). 157 // Similarly we test if we can round up (using the upper boundary). 158 bool in_delta_room_minus; 159 bool in_delta_room_plus; 160 if (is_even) { 161 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); 162 } else { 163 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); 164 } 165 if (is_even) { 166 in_delta_room_plus = 167 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 168 } else { 169 in_delta_room_plus = 170 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 171 } 172 if (!in_delta_room_minus && !in_delta_room_plus) { 173 // Prepare for next iteration. 174 numerator->Times10(); 175 delta_minus->Times10(); 176 // We optimized delta_plus to be equal to delta_minus (if they share the 177 // same value). So don't multiply delta_plus if they point to the same 178 // object. 179 if (delta_minus != delta_plus) { 180 delta_plus->Times10(); 181 } 182 } else if (in_delta_room_minus && in_delta_room_plus) { 183 // Let's see if 2*numerator < denominator. 184 // If yes, then the next digit would be < 5 and we can round down. 185 int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); 186 if (compare < 0) { 187 // Remaining digits are less than .5. -> Round down (== do nothing). 188 } else if (compare > 0) { 189 // Remaining digits are more than .5 of denominator. -> Round up. 190 // Note that the last digit could not be a '9' as otherwise the whole 191 // loop would have stopped earlier. 192 // We still have an assert here in case the preconditions were not 193 // satisfied. 194 DCHECK_NE(buffer[(*length) - 1], '9'); 195 buffer[(*length) - 1]++; 196 } else { 197 // Halfway case. 198 // TODO(floitsch): need a way to solve half-way cases. 199 // For now let's round towards even (since this is what Gay seems to 200 // do). 201 202 if ((buffer[(*length) - 1] - '0') % 2 == 0) { 203 // Round down => Do nothing. 204 } else { 205 DCHECK_NE(buffer[(*length) - 1], '9'); 206 buffer[(*length) - 1]++; 207 } 208 } 209 return; 210 } else if (in_delta_room_minus) { 211 // Round down (== do nothing). 212 return; 213 } else { // in_delta_room_plus 214 // Round up. 215 // Note again that the last digit could not be '9' since this would have 216 // stopped the loop earlier. 217 // We still have an DCHECK here, in case the preconditions were not 218 // satisfied. 219 DCHECK_NE(buffer[(*length) - 1], '9'); 220 buffer[(*length) - 1]++; 221 return; 222 } 223 } 224} 225 226// Let v = numerator / denominator < 10. 227// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) 228// from left to right. Once 'count' digits have been produced we decide wether 229// to round up or down. Remainders of exactly .5 round upwards. Numbers such 230// as 9.999999 propagate a carry all the way, and change the 231// exponent (decimal_point), when rounding upwards. 232static void GenerateCountedDigits(int count, int* decimal_point, 233 Bignum* numerator, Bignum* denominator, 234 Vector<char>(buffer), int* length) { 235 DCHECK_GE(count, 0); 236 for (int i = 0; i < count - 1; ++i) { 237 uint16_t digit; 238 digit = numerator->DivideModuloIntBignum(*denominator); 239 DCHECK_LE(digit, 9); // digit is a uint16_t and therefore always positive. 240 // digit = numerator / denominator (integer division). 241 // numerator = numerator % denominator. 242 buffer[i] = digit + '0'; 243 // Prepare for next iteration. 244 numerator->Times10(); 245 } 246 // Generate the last digit. 247 uint16_t digit; 248 digit = numerator->DivideModuloIntBignum(*denominator); 249 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 250 digit++; 251 } 252 buffer[count - 1] = digit + '0'; 253 // Correct bad digits (in case we had a sequence of '9's). Propagate the 254 // carry until we hat a non-'9' or til we reach the first digit. 255 for (int i = count - 1; i > 0; --i) { 256 if (buffer[i] != '0' + 10) break; 257 buffer[i] = '0'; 258 buffer[i - 1]++; 259 } 260 if (buffer[0] == '0' + 10) { 261 // Propagate a carry past the top place. 262 buffer[0] = '1'; 263 (*decimal_point)++; 264 } 265 *length = count; 266} 267 268// Generates 'requested_digits' after the decimal point. It might omit 269// trailing '0's. If the input number is too small then no digits at all are 270// generated (ex.: 2 fixed digits for 0.00001). 271// 272// Input verifies: 1 <= (numerator + delta) / denominator < 10. 273static void BignumToFixed(int requested_digits, int* decimal_point, 274 Bignum* numerator, Bignum* denominator, 275 Vector<char>(buffer), int* length) { 276 // Note that we have to look at more than just the requested_digits, since 277 // a number could be rounded up. Example: v=0.5 with requested_digits=0. 278 // Even though the power of v equals 0 we can't just stop here. 279 if (-(*decimal_point) > requested_digits) { 280 // The number is definitively too small. 281 // Ex: 0.001 with requested_digits == 1. 282 // Set decimal-point to -requested_digits. This is what Gay does. 283 // Note that it should not have any effect anyways since the string is 284 // empty. 285 *decimal_point = -requested_digits; 286 *length = 0; 287 return; 288 } else if (-(*decimal_point) == requested_digits) { 289 // We only need to verify if the number rounds down or up. 290 // Ex: 0.04 and 0.06 with requested_digits == 1. 291 DCHECK(*decimal_point == -requested_digits); 292 // Initially the fraction lies in range (1, 10]. Multiply the denominator 293 // by 10 so that we can compare more easily. 294 denominator->Times10(); 295 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { 296 // If the fraction is >= 0.5 then we have to include the rounded 297 // digit. 298 buffer[0] = '1'; 299 *length = 1; 300 (*decimal_point)++; 301 } else { 302 // Note that we caught most of similar cases earlier. 303 *length = 0; 304 } 305 return; 306 } else { 307 // The requested digits correspond to the digits after the point. 308 // The variable 'needed_digits' includes the digits before the point. 309 int needed_digits = (*decimal_point) + requested_digits; 310 GenerateCountedDigits(needed_digits, decimal_point, numerator, denominator, 311 buffer, length); 312 } 313} 314 315// Returns an estimation of k such that 10^(k-1) <= v < 10^k where 316// v = f * 2^exponent and 2^52 <= f < 2^53. 317// v is hence a normalized double with the given exponent. The output is an 318// approximation for the exponent of the decimal approimation .digits * 10^k. 319// 320// The result might undershoot by 1 in which case 10^k <= v < 10^k+1. 321// Note: this property holds for v's upper boundary m+ too. 322// 10^k <= m+ < 10^k+1. 323// (see explanation below). 324// 325// Examples: 326// EstimatePower(0) => 16 327// EstimatePower(-52) => 0 328// 329// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. 330static int EstimatePower(int exponent) { 331 // This function estimates log10 of v where v = f*2^e (with e == exponent). 332 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). 333 // Note that f is bounded by its container size. Let p = 53 (the double's 334 // significand size). Then 2^(p-1) <= f < 2^p. 335 // 336 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close 337 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). 338 // The computed number undershoots by less than 0.631 (when we compute log3 339 // and not log10). 340 // 341 // Optimization: since we only need an approximated result this computation 342 // can be performed on 64 bit integers. On x86/x64 architecture the speedup is 343 // not really measurable, though. 344 // 345 // Since we want to avoid overshooting we decrement by 1e10 so that 346 // floating-point imprecisions don't affect us. 347 // 348 // Explanation for v's boundary m+: the computation takes advantage of 349 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement 350 // (even for denormals where the delta can be much more important). 351 352 const double k1Log10 = 0.30102999566398114; // 1/lg(10) 353 354 // For doubles len(f) == 53 (don't forget the hidden bit). 355 const int kSignificandSize = 53; 356 double estimate = 357 std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); 358 return static_cast<int>(estimate); 359} 360 361// See comments for InitialScaledStartValues. 362static void InitialScaledStartValuesPositiveExponent( 363 double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator, 364 Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { 365 // A positive exponent implies a positive power. 366 DCHECK_GE(estimated_power, 0); 367 // Since the estimated_power is positive we simply multiply the denominator 368 // by 10^estimated_power. 369 370 // numerator = v. 371 numerator->AssignUInt64(Double(v).Significand()); 372 numerator->ShiftLeft(Double(v).Exponent()); 373 // denominator = 10^estimated_power. 374 denominator->AssignPowerUInt16(10, estimated_power); 375 376 if (need_boundary_deltas) { 377 // Introduce a common denominator so that the deltas to the boundaries are 378 // integers. 379 denominator->ShiftLeft(1); 380 numerator->ShiftLeft(1); 381 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 382 // denominator (of 2) delta_plus equals 2^e. 383 delta_plus->AssignUInt16(1); 384 delta_plus->ShiftLeft(Double(v).Exponent()); 385 // Same for delta_minus (with adjustments below if f == 2^p-1). 386 delta_minus->AssignUInt16(1); 387 delta_minus->ShiftLeft(Double(v).Exponent()); 388 389 // If the significand (without the hidden bit) is 0, then the lower 390 // boundary is closer than just half a ulp (unit in the last place). 391 // There is only one exception: if the next lower number is a denormal then 392 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we 393 // have to test it in the other function where exponent < 0). 394 uint64_t v_bits = Double(v).AsUint64(); 395 if ((v_bits & Double::kSignificandMask) == 0) { 396 // The lower boundary is closer at half the distance of "normal" numbers. 397 // Increase the common denominator and adapt all but the delta_minus. 398 denominator->ShiftLeft(1); // *2 399 numerator->ShiftLeft(1); // *2 400 delta_plus->ShiftLeft(1); // *2 401 } 402 } 403} 404 405// See comments for InitialScaledStartValues 406static void InitialScaledStartValuesNegativeExponentPositivePower( 407 double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator, 408 Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { 409 uint64_t significand = Double(v).Significand(); 410 int exponent = Double(v).Exponent(); 411 // v = f * 2^e with e < 0, and with estimated_power >= 0. 412 // This means that e is close to 0 (have a look at how estimated_power is 413 // computed). 414 415 // numerator = significand 416 // since v = significand * 2^exponent this is equivalent to 417 // numerator = v * / 2^-exponent 418 numerator->AssignUInt64(significand); 419 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) 420 denominator->AssignPowerUInt16(10, estimated_power); 421 denominator->ShiftLeft(-exponent); 422 423 if (need_boundary_deltas) { 424 // Introduce a common denominator so that the deltas to the boundaries are 425 // integers. 426 denominator->ShiftLeft(1); 427 numerator->ShiftLeft(1); 428 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common 429 // denominator (of 2) delta_plus equals 2^e. 430 // Given that the denominator already includes v's exponent the distance 431 // to the boundaries is simply 1. 432 delta_plus->AssignUInt16(1); 433 // Same for delta_minus (with adjustments below if f == 2^p-1). 434 delta_minus->AssignUInt16(1); 435 436 // If the significand (without the hidden bit) is 0, then the lower 437 // boundary is closer than just one ulp (unit in the last place). 438 // There is only one exception: if the next lower number is a denormal 439 // then the distance is 1 ulp. Since the exponent is close to zero 440 // (otherwise estimated_power would have been negative) this cannot happen 441 // here either. 442 uint64_t v_bits = Double(v).AsUint64(); 443 if ((v_bits & Double::kSignificandMask) == 0) { 444 // The lower boundary is closer at half the distance of "normal" numbers. 445 // Increase the denominator and adapt all but the delta_minus. 446 denominator->ShiftLeft(1); // *2 447 numerator->ShiftLeft(1); // *2 448 delta_plus->ShiftLeft(1); // *2 449 } 450 } 451} 452 453// See comments for InitialScaledStartValues 454static void InitialScaledStartValuesNegativeExponentNegativePower( 455 double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator, 456 Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) { 457 const uint64_t kMinimalNormalizedExponent = 0x0010'0000'0000'0000; 458 uint64_t significand = Double(v).Significand(); 459 int exponent = Double(v).Exponent(); 460 // Instead of multiplying the denominator with 10^estimated_power we 461 // multiply all values (numerator and deltas) by 10^-estimated_power. 462 463 // Use numerator as temporary container for power_ten. 464 Bignum* power_ten = numerator; 465 power_ten->AssignPowerUInt16(10, -estimated_power); 466 467 if (need_boundary_deltas) { 468 // Since power_ten == numerator we must make a copy of 10^estimated_power 469 // before we complete the computation of the numerator. 470 // delta_plus = delta_minus = 10^estimated_power 471 delta_plus->AssignBignum(*power_ten); 472 delta_minus->AssignBignum(*power_ten); 473 } 474 475 // numerator = significand * 2 * 10^-estimated_power 476 // since v = significand * 2^exponent this is equivalent to 477 // numerator = v * 10^-estimated_power * 2 * 2^-exponent. 478 // Remember: numerator has been abused as power_ten. So no need to assign it 479 // to itself. 480 DCHECK(numerator == power_ten); 481 numerator->MultiplyByUInt64(significand); 482 483 // denominator = 2 * 2^-exponent with exponent < 0. 484 denominator->AssignUInt16(1); 485 denominator->ShiftLeft(-exponent); 486 487 if (need_boundary_deltas) { 488 // Introduce a common denominator so that the deltas to the boundaries are 489 // integers. 490 numerator->ShiftLeft(1); 491 denominator->ShiftLeft(1); 492 // With this shift the boundaries have their correct value, since 493 // delta_plus = 10^-estimated_power, and 494 // delta_minus = 10^-estimated_power. 495 // These assignments have been done earlier. 496 497 // The special case where the lower boundary is twice as close. 498 // This time we have to look out for the exception too. 499 uint64_t v_bits = Double(v).AsUint64(); 500 if ((v_bits & Double::kSignificandMask) == 0 && 501 // The only exception where a significand == 0 has its boundaries at 502 // "normal" distances: 503 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) { 504 numerator->ShiftLeft(1); // *2 505 denominator->ShiftLeft(1); // *2 506 delta_plus->ShiftLeft(1); // *2 507 } 508 } 509} 510 511// Let v = significand * 2^exponent. 512// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator 513// and denominator. The functions GenerateShortestDigits and 514// GenerateCountedDigits will then convert this ratio to its decimal 515// representation d, with the required accuracy. 516// Then d * 10^estimated_power is the representation of v. 517// (Note: the fraction and the estimated_power might get adjusted before 518// generating the decimal representation.) 519// 520// The initial start values consist of: 521// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. 522// - a scaled (common) denominator. 523// optionally (used by GenerateShortestDigits to decide if it has the shortest 524// decimal converting back to v): 525// - v - m-: the distance to the lower boundary. 526// - m+ - v: the distance to the upper boundary. 527// 528// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. 529// 530// Let ep == estimated_power, then the returned values will satisfy: 531// v / 10^ep = numerator / denominator. 532// v's boundarys m- and m+: 533// m- / 10^ep == v / 10^ep - delta_minus / denominator 534// m+ / 10^ep == v / 10^ep + delta_plus / denominator 535// Or in other words: 536// m- == v - delta_minus * 10^ep / denominator; 537// m+ == v + delta_plus * 10^ep / denominator; 538// 539// Since 10^(k-1) <= v < 10^k (with k == estimated_power) 540// or 10^k <= v < 10^(k+1) 541// we then have 0.1 <= numerator/denominator < 1 542// or 1 <= numerator/denominator < 10 543// 544// It is then easy to kickstart the digit-generation routine. 545// 546// The boundary-deltas are only filled if need_boundary_deltas is set. 547static void InitialScaledStartValues(double v, int estimated_power, 548 bool need_boundary_deltas, 549 Bignum* numerator, Bignum* denominator, 550 Bignum* delta_minus, Bignum* delta_plus) { 551 if (Double(v).Exponent() >= 0) { 552 InitialScaledStartValuesPositiveExponent( 553 v, estimated_power, need_boundary_deltas, numerator, denominator, 554 delta_minus, delta_plus); 555 } else if (estimated_power >= 0) { 556 InitialScaledStartValuesNegativeExponentPositivePower( 557 v, estimated_power, need_boundary_deltas, numerator, denominator, 558 delta_minus, delta_plus); 559 } else { 560 InitialScaledStartValuesNegativeExponentNegativePower( 561 v, estimated_power, need_boundary_deltas, numerator, denominator, 562 delta_minus, delta_plus); 563 } 564} 565 566// This routine multiplies numerator/denominator so that its values lies in the 567// range 1-10. That is after a call to this function we have: 568// 1 <= (numerator + delta_plus) /denominator < 10. 569// Let numerator the input before modification and numerator' the argument 570// after modification, then the output-parameter decimal_point is such that 571// numerator / denominator * 10^estimated_power == 572// numerator' / denominator' * 10^(decimal_point - 1) 573// In some cases estimated_power was too low, and this is already the case. We 574// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == 575// estimated_power) but do not touch the numerator or denominator. 576// Otherwise the routine multiplies the numerator and the deltas by 10. 577static void FixupMultiply10(int estimated_power, bool is_even, 578 int* decimal_point, Bignum* numerator, 579 Bignum* denominator, Bignum* delta_minus, 580 Bignum* delta_plus) { 581 bool in_range; 582 if (is_even) { 583 // For IEEE doubles half-way cases (in decimal system numbers ending with 5) 584 // are rounded to the closest floating-point number with even significand. 585 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; 586 } else { 587 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; 588 } 589 if (in_range) { 590 // Since numerator + delta_plus >= denominator we already have 591 // 1 <= numerator/denominator < 10. Simply update the estimated_power. 592 *decimal_point = estimated_power + 1; 593 } else { 594 *decimal_point = estimated_power; 595 numerator->Times10(); 596 if (Bignum::Equal(*delta_minus, *delta_plus)) { 597 delta_minus->Times10(); 598 delta_plus->AssignBignum(*delta_minus); 599 } else { 600 delta_minus->Times10(); 601 delta_plus->Times10(); 602 } 603 } 604} 605 606} // namespace base 607} // namespace v8 608