1// Copyright 2011 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/base/numbers/bignum-dtoa.h"
6
7#include <cmath>
8
9#include "src/base/logging.h"
10#include "src/base/numbers/bignum.h"
11#include "src/base/numbers/double.h"
12
13namespace v8 {
14namespace base {
15
16static int NormalizedExponent(uint64_t significand, int exponent) {
17  DCHECK_NE(significand, 0);
18  while ((significand & Double::kHiddenBit) == 0) {
19    significand = significand << 1;
20    exponent = exponent - 1;
21  }
22  return exponent;
23}
24
25// Forward declarations:
26// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
27static int EstimatePower(int exponent);
28// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
29// and denominator.
30static void InitialScaledStartValues(double v, int estimated_power,
31                                     bool need_boundary_deltas,
32                                     Bignum* numerator, Bignum* denominator,
33                                     Bignum* delta_minus, Bignum* delta_plus);
34// Multiplies numerator/denominator so that its values lies in the range 1-10.
35// Returns decimal_point s.t.
36//  v = numerator'/denominator' * 10^(decimal_point-1)
37//     where numerator' and denominator' are the values of numerator and
38//     denominator after the call to this function.
39static void FixupMultiply10(int estimated_power, bool is_even,
40                            int* decimal_point, Bignum* numerator,
41                            Bignum* denominator, Bignum* delta_minus,
42                            Bignum* delta_plus);
43// Generates digits from the left to the right and stops when the generated
44// digits yield the shortest decimal representation of v.
45static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
46                                   Bignum* delta_minus, Bignum* delta_plus,
47                                   bool is_even, Vector<char> buffer,
48                                   int* length);
49// Generates 'requested_digits' after the decimal point.
50static void BignumToFixed(int requested_digits, int* decimal_point,
51                          Bignum* numerator, Bignum* denominator,
52                          Vector<char>(buffer), int* length);
53// Generates 'count' digits of numerator/denominator.
54// Once 'count' digits have been produced rounds the result depending on the
55// remainder (remainders of exactly .5 round upwards). Might update the
56// decimal_point when rounding up (for example for 0.9999).
57static void GenerateCountedDigits(int count, int* decimal_point,
58                                  Bignum* numerator, Bignum* denominator,
59                                  Vector<char>(buffer), int* length);
60
61void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
62                Vector<char> buffer, int* length, int* decimal_point) {
63  DCHECK_GT(v, 0);
64  DCHECK(!Double(v).IsSpecial());
65  uint64_t significand = Double(v).Significand();
66  bool is_even = (significand & 1) == 0;
67  int exponent = Double(v).Exponent();
68  int normalized_exponent = NormalizedExponent(significand, exponent);
69  // estimated_power might be too low by 1.
70  int estimated_power = EstimatePower(normalized_exponent);
71
72  // Shortcut for Fixed.
73  // The requested digits correspond to the digits after the point. If the
74  // number is much too small, then there is no need in trying to get any
75  // digits.
76  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
77    buffer[0] = '\0';
78    *length = 0;
79    // Set decimal-point to -requested_digits. This is what Gay does.
80    // Note that it should not have any effect anyways since the string is
81    // empty.
82    *decimal_point = -requested_digits;
83    return;
84  }
85
86  Bignum numerator;
87  Bignum denominator;
88  Bignum delta_minus;
89  Bignum delta_plus;
90  // Make sure the bignum can grow large enough. The smallest double equals
91  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
92  // The maximum double is 1.7976931348623157e308 which needs fewer than
93  // 308*4 binary digits.
94  DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4);
95  bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
96  InitialScaledStartValues(v, estimated_power, need_boundary_deltas, &numerator,
97                           &denominator, &delta_minus, &delta_plus);
98  // We now have v = (numerator / denominator) * 10^estimated_power.
99  FixupMultiply10(estimated_power, is_even, decimal_point, &numerator,
100                  &denominator, &delta_minus, &delta_plus);
101  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
102  //  1 <= (numerator + delta_plus) / denominator < 10
103  switch (mode) {
104    case BIGNUM_DTOA_SHORTEST:
105      GenerateShortestDigits(&numerator, &denominator, &delta_minus,
106                             &delta_plus, is_even, buffer, length);
107      break;
108    case BIGNUM_DTOA_FIXED:
109      BignumToFixed(requested_digits, decimal_point, &numerator, &denominator,
110                    buffer, length);
111      break;
112    case BIGNUM_DTOA_PRECISION:
113      GenerateCountedDigits(requested_digits, decimal_point, &numerator,
114                            &denominator, buffer, length);
115      break;
116    default:
117      UNREACHABLE();
118  }
119  buffer[*length] = '\0';
120}
121
122// The procedure starts generating digits from the left to the right and stops
123// when the generated digits yield the shortest decimal representation of v. A
124// decimal representation of v is a number lying closer to v than to any other
125// double, so it converts to v when read.
126//
127// This is true if d, the decimal representation, is between m- and m+, the
128// upper and lower boundaries. d must be strictly between them if !is_even.
129//           m- := (numerator - delta_minus) / denominator
130//           m+ := (numerator + delta_plus) / denominator
131//
132// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
133//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
134//   will be produced. This should be the standard precondition.
135static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
136                                   Bignum* delta_minus, Bignum* delta_plus,
137                                   bool is_even, Vector<char> buffer,
138                                   int* length) {
139  // Small optimization: if delta_minus and delta_plus are the same just reuse
140  // one of the two bignums.
141  if (Bignum::Equal(*delta_minus, *delta_plus)) {
142    delta_plus = delta_minus;
143  }
144  *length = 0;
145  while (true) {
146    uint16_t digit;
147    digit = numerator->DivideModuloIntBignum(*denominator);
148    DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
149    // digit = numerator / denominator (integer division).
150    // numerator = numerator % denominator.
151    buffer[(*length)++] = digit + '0';
152
153    // Can we stop already?
154    // If the remainder of the division is less than the distance to the lower
155    // boundary we can stop. In this case we simply round down (discarding the
156    // remainder).
157    // Similarly we test if we can round up (using the upper boundary).
158    bool in_delta_room_minus;
159    bool in_delta_room_plus;
160    if (is_even) {
161      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
162    } else {
163      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
164    }
165    if (is_even) {
166      in_delta_room_plus =
167          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
168    } else {
169      in_delta_room_plus =
170          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
171    }
172    if (!in_delta_room_minus && !in_delta_room_plus) {
173      // Prepare for next iteration.
174      numerator->Times10();
175      delta_minus->Times10();
176      // We optimized delta_plus to be equal to delta_minus (if they share the
177      // same value). So don't multiply delta_plus if they point to the same
178      // object.
179      if (delta_minus != delta_plus) {
180        delta_plus->Times10();
181      }
182    } else if (in_delta_room_minus && in_delta_room_plus) {
183      // Let's see if 2*numerator < denominator.
184      // If yes, then the next digit would be < 5 and we can round down.
185      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
186      if (compare < 0) {
187        // Remaining digits are less than .5. -> Round down (== do nothing).
188      } else if (compare > 0) {
189        // Remaining digits are more than .5 of denominator. -> Round up.
190        // Note that the last digit could not be a '9' as otherwise the whole
191        // loop would have stopped earlier.
192        // We still have an assert here in case the preconditions were not
193        // satisfied.
194        DCHECK_NE(buffer[(*length) - 1], '9');
195        buffer[(*length) - 1]++;
196      } else {
197        // Halfway case.
198        // TODO(floitsch): need a way to solve half-way cases.
199        //   For now let's round towards even (since this is what Gay seems to
200        //   do).
201
202        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
203          // Round down => Do nothing.
204        } else {
205          DCHECK_NE(buffer[(*length) - 1], '9');
206          buffer[(*length) - 1]++;
207        }
208      }
209      return;
210    } else if (in_delta_room_minus) {
211      // Round down (== do nothing).
212      return;
213    } else {  // in_delta_room_plus
214      // Round up.
215      // Note again that the last digit could not be '9' since this would have
216      // stopped the loop earlier.
217      // We still have an DCHECK here, in case the preconditions were not
218      // satisfied.
219      DCHECK_NE(buffer[(*length) - 1], '9');
220      buffer[(*length) - 1]++;
221      return;
222    }
223  }
224}
225
226// Let v = numerator / denominator < 10.
227// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
228// from left to right. Once 'count' digits have been produced we decide wether
229// to round up or down. Remainders of exactly .5 round upwards. Numbers such
230// as 9.999999 propagate a carry all the way, and change the
231// exponent (decimal_point), when rounding upwards.
232static void GenerateCountedDigits(int count, int* decimal_point,
233                                  Bignum* numerator, Bignum* denominator,
234                                  Vector<char>(buffer), int* length) {
235  DCHECK_GE(count, 0);
236  for (int i = 0; i < count - 1; ++i) {
237    uint16_t digit;
238    digit = numerator->DivideModuloIntBignum(*denominator);
239    DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
240    // digit = numerator / denominator (integer division).
241    // numerator = numerator % denominator.
242    buffer[i] = digit + '0';
243    // Prepare for next iteration.
244    numerator->Times10();
245  }
246  // Generate the last digit.
247  uint16_t digit;
248  digit = numerator->DivideModuloIntBignum(*denominator);
249  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
250    digit++;
251  }
252  buffer[count - 1] = digit + '0';
253  // Correct bad digits (in case we had a sequence of '9's). Propagate the
254  // carry until we hat a non-'9' or til we reach the first digit.
255  for (int i = count - 1; i > 0; --i) {
256    if (buffer[i] != '0' + 10) break;
257    buffer[i] = '0';
258    buffer[i - 1]++;
259  }
260  if (buffer[0] == '0' + 10) {
261    // Propagate a carry past the top place.
262    buffer[0] = '1';
263    (*decimal_point)++;
264  }
265  *length = count;
266}
267
268// Generates 'requested_digits' after the decimal point. It might omit
269// trailing '0's. If the input number is too small then no digits at all are
270// generated (ex.: 2 fixed digits for 0.00001).
271//
272// Input verifies:  1 <= (numerator + delta) / denominator < 10.
273static void BignumToFixed(int requested_digits, int* decimal_point,
274                          Bignum* numerator, Bignum* denominator,
275                          Vector<char>(buffer), int* length) {
276  // Note that we have to look at more than just the requested_digits, since
277  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
278  // Even though the power of v equals 0 we can't just stop here.
279  if (-(*decimal_point) > requested_digits) {
280    // The number is definitively too small.
281    // Ex: 0.001 with requested_digits == 1.
282    // Set decimal-point to -requested_digits. This is what Gay does.
283    // Note that it should not have any effect anyways since the string is
284    // empty.
285    *decimal_point = -requested_digits;
286    *length = 0;
287    return;
288  } else if (-(*decimal_point) == requested_digits) {
289    // We only need to verify if the number rounds down or up.
290    // Ex: 0.04 and 0.06 with requested_digits == 1.
291    DCHECK(*decimal_point == -requested_digits);
292    // Initially the fraction lies in range (1, 10]. Multiply the denominator
293    // by 10 so that we can compare more easily.
294    denominator->Times10();
295    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
296      // If the fraction is >= 0.5 then we have to include the rounded
297      // digit.
298      buffer[0] = '1';
299      *length = 1;
300      (*decimal_point)++;
301    } else {
302      // Note that we caught most of similar cases earlier.
303      *length = 0;
304    }
305    return;
306  } else {
307    // The requested digits correspond to the digits after the point.
308    // The variable 'needed_digits' includes the digits before the point.
309    int needed_digits = (*decimal_point) + requested_digits;
310    GenerateCountedDigits(needed_digits, decimal_point, numerator, denominator,
311                          buffer, length);
312  }
313}
314
315// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
316// v = f * 2^exponent and 2^52 <= f < 2^53.
317// v is hence a normalized double with the given exponent. The output is an
318// approximation for the exponent of the decimal approimation .digits * 10^k.
319//
320// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
321// Note: this property holds for v's upper boundary m+ too.
322//    10^k <= m+ < 10^k+1.
323//   (see explanation below).
324//
325// Examples:
326//  EstimatePower(0)   => 16
327//  EstimatePower(-52) => 0
328//
329// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
330static int EstimatePower(int exponent) {
331  // This function estimates log10 of v where v = f*2^e (with e == exponent).
332  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
333  // Note that f is bounded by its container size. Let p = 53 (the double's
334  // significand size). Then 2^(p-1) <= f < 2^p.
335  //
336  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
337  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
338  // The computed number undershoots by less than 0.631 (when we compute log3
339  // and not log10).
340  //
341  // Optimization: since we only need an approximated result this computation
342  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
343  // not really measurable, though.
344  //
345  // Since we want to avoid overshooting we decrement by 1e10 so that
346  // floating-point imprecisions don't affect us.
347  //
348  // Explanation for v's boundary m+: the computation takes advantage of
349  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
350  // (even for denormals where the delta can be much more important).
351
352  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
353
354  // For doubles len(f) == 53 (don't forget the hidden bit).
355  const int kSignificandSize = 53;
356  double estimate =
357      std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
358  return static_cast<int>(estimate);
359}
360
361// See comments for InitialScaledStartValues.
362static void InitialScaledStartValuesPositiveExponent(
363    double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator,
364    Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) {
365  // A positive exponent implies a positive power.
366  DCHECK_GE(estimated_power, 0);
367  // Since the estimated_power is positive we simply multiply the denominator
368  // by 10^estimated_power.
369
370  // numerator = v.
371  numerator->AssignUInt64(Double(v).Significand());
372  numerator->ShiftLeft(Double(v).Exponent());
373  // denominator = 10^estimated_power.
374  denominator->AssignPowerUInt16(10, estimated_power);
375
376  if (need_boundary_deltas) {
377    // Introduce a common denominator so that the deltas to the boundaries are
378    // integers.
379    denominator->ShiftLeft(1);
380    numerator->ShiftLeft(1);
381    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
382    // denominator (of 2) delta_plus equals 2^e.
383    delta_plus->AssignUInt16(1);
384    delta_plus->ShiftLeft(Double(v).Exponent());
385    // Same for delta_minus (with adjustments below if f == 2^p-1).
386    delta_minus->AssignUInt16(1);
387    delta_minus->ShiftLeft(Double(v).Exponent());
388
389    // If the significand (without the hidden bit) is 0, then the lower
390    // boundary is closer than just half a ulp (unit in the last place).
391    // There is only one exception: if the next lower number is a denormal then
392    // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
393    // have to test it in the other function where exponent < 0).
394    uint64_t v_bits = Double(v).AsUint64();
395    if ((v_bits & Double::kSignificandMask) == 0) {
396      // The lower boundary is closer at half the distance of "normal" numbers.
397      // Increase the common denominator and adapt all but the delta_minus.
398      denominator->ShiftLeft(1);  // *2
399      numerator->ShiftLeft(1);    // *2
400      delta_plus->ShiftLeft(1);   // *2
401    }
402  }
403}
404
405// See comments for InitialScaledStartValues
406static void InitialScaledStartValuesNegativeExponentPositivePower(
407    double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator,
408    Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) {
409  uint64_t significand = Double(v).Significand();
410  int exponent = Double(v).Exponent();
411  // v = f * 2^e with e < 0, and with estimated_power >= 0.
412  // This means that e is close to 0 (have a look at how estimated_power is
413  // computed).
414
415  // numerator = significand
416  //  since v = significand * 2^exponent this is equivalent to
417  //  numerator = v * / 2^-exponent
418  numerator->AssignUInt64(significand);
419  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
420  denominator->AssignPowerUInt16(10, estimated_power);
421  denominator->ShiftLeft(-exponent);
422
423  if (need_boundary_deltas) {
424    // Introduce a common denominator so that the deltas to the boundaries are
425    // integers.
426    denominator->ShiftLeft(1);
427    numerator->ShiftLeft(1);
428    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
429    // denominator (of 2) delta_plus equals 2^e.
430    // Given that the denominator already includes v's exponent the distance
431    // to the boundaries is simply 1.
432    delta_plus->AssignUInt16(1);
433    // Same for delta_minus (with adjustments below if f == 2^p-1).
434    delta_minus->AssignUInt16(1);
435
436    // If the significand (without the hidden bit) is 0, then the lower
437    // boundary is closer than just one ulp (unit in the last place).
438    // There is only one exception: if the next lower number is a denormal
439    // then the distance is 1 ulp. Since the exponent is close to zero
440    // (otherwise estimated_power would have been negative) this cannot happen
441    // here either.
442    uint64_t v_bits = Double(v).AsUint64();
443    if ((v_bits & Double::kSignificandMask) == 0) {
444      // The lower boundary is closer at half the distance of "normal" numbers.
445      // Increase the denominator and adapt all but the delta_minus.
446      denominator->ShiftLeft(1);  // *2
447      numerator->ShiftLeft(1);    // *2
448      delta_plus->ShiftLeft(1);   // *2
449    }
450  }
451}
452
453// See comments for InitialScaledStartValues
454static void InitialScaledStartValuesNegativeExponentNegativePower(
455    double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator,
456    Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) {
457  const uint64_t kMinimalNormalizedExponent = 0x0010'0000'0000'0000;
458  uint64_t significand = Double(v).Significand();
459  int exponent = Double(v).Exponent();
460  // Instead of multiplying the denominator with 10^estimated_power we
461  // multiply all values (numerator and deltas) by 10^-estimated_power.
462
463  // Use numerator as temporary container for power_ten.
464  Bignum* power_ten = numerator;
465  power_ten->AssignPowerUInt16(10, -estimated_power);
466
467  if (need_boundary_deltas) {
468    // Since power_ten == numerator we must make a copy of 10^estimated_power
469    // before we complete the computation of the numerator.
470    // delta_plus = delta_minus = 10^estimated_power
471    delta_plus->AssignBignum(*power_ten);
472    delta_minus->AssignBignum(*power_ten);
473  }
474
475  // numerator = significand * 2 * 10^-estimated_power
476  //  since v = significand * 2^exponent this is equivalent to
477  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
478  // Remember: numerator has been abused as power_ten. So no need to assign it
479  //  to itself.
480  DCHECK(numerator == power_ten);
481  numerator->MultiplyByUInt64(significand);
482
483  // denominator = 2 * 2^-exponent with exponent < 0.
484  denominator->AssignUInt16(1);
485  denominator->ShiftLeft(-exponent);
486
487  if (need_boundary_deltas) {
488    // Introduce a common denominator so that the deltas to the boundaries are
489    // integers.
490    numerator->ShiftLeft(1);
491    denominator->ShiftLeft(1);
492    // With this shift the boundaries have their correct value, since
493    // delta_plus = 10^-estimated_power, and
494    // delta_minus = 10^-estimated_power.
495    // These assignments have been done earlier.
496
497    // The special case where the lower boundary is twice as close.
498    // This time we have to look out for the exception too.
499    uint64_t v_bits = Double(v).AsUint64();
500    if ((v_bits & Double::kSignificandMask) == 0 &&
501        // The only exception where a significand == 0 has its boundaries at
502        // "normal" distances:
503        (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
504      numerator->ShiftLeft(1);    // *2
505      denominator->ShiftLeft(1);  // *2
506      delta_plus->ShiftLeft(1);   // *2
507    }
508  }
509}
510
511// Let v = significand * 2^exponent.
512// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
513// and denominator. The functions GenerateShortestDigits and
514// GenerateCountedDigits will then convert this ratio to its decimal
515// representation d, with the required accuracy.
516// Then d * 10^estimated_power is the representation of v.
517// (Note: the fraction and the estimated_power might get adjusted before
518// generating the decimal representation.)
519//
520// The initial start values consist of:
521//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
522//  - a scaled (common) denominator.
523//  optionally (used by GenerateShortestDigits to decide if it has the shortest
524//  decimal converting back to v):
525//  - v - m-: the distance to the lower boundary.
526//  - m+ - v: the distance to the upper boundary.
527//
528// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
529//
530// Let ep == estimated_power, then the returned values will satisfy:
531//  v / 10^ep = numerator / denominator.
532//  v's boundarys m- and m+:
533//    m- / 10^ep == v / 10^ep - delta_minus / denominator
534//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
535//  Or in other words:
536//    m- == v - delta_minus * 10^ep / denominator;
537//    m+ == v + delta_plus * 10^ep / denominator;
538//
539// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
540//  or       10^k <= v < 10^(k+1)
541//  we then have 0.1 <= numerator/denominator < 1
542//           or    1 <= numerator/denominator < 10
543//
544// It is then easy to kickstart the digit-generation routine.
545//
546// The boundary-deltas are only filled if need_boundary_deltas is set.
547static void InitialScaledStartValues(double v, int estimated_power,
548                                     bool need_boundary_deltas,
549                                     Bignum* numerator, Bignum* denominator,
550                                     Bignum* delta_minus, Bignum* delta_plus) {
551  if (Double(v).Exponent() >= 0) {
552    InitialScaledStartValuesPositiveExponent(
553        v, estimated_power, need_boundary_deltas, numerator, denominator,
554        delta_minus, delta_plus);
555  } else if (estimated_power >= 0) {
556    InitialScaledStartValuesNegativeExponentPositivePower(
557        v, estimated_power, need_boundary_deltas, numerator, denominator,
558        delta_minus, delta_plus);
559  } else {
560    InitialScaledStartValuesNegativeExponentNegativePower(
561        v, estimated_power, need_boundary_deltas, numerator, denominator,
562        delta_minus, delta_plus);
563  }
564}
565
566// This routine multiplies numerator/denominator so that its values lies in the
567// range 1-10. That is after a call to this function we have:
568//    1 <= (numerator + delta_plus) /denominator < 10.
569// Let numerator the input before modification and numerator' the argument
570// after modification, then the output-parameter decimal_point is such that
571//  numerator / denominator * 10^estimated_power ==
572//    numerator' / denominator' * 10^(decimal_point - 1)
573// In some cases estimated_power was too low, and this is already the case. We
574// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
575// estimated_power) but do not touch the numerator or denominator.
576// Otherwise the routine multiplies the numerator and the deltas by 10.
577static void FixupMultiply10(int estimated_power, bool is_even,
578                            int* decimal_point, Bignum* numerator,
579                            Bignum* denominator, Bignum* delta_minus,
580                            Bignum* delta_plus) {
581  bool in_range;
582  if (is_even) {
583    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
584    // are rounded to the closest floating-point number with even significand.
585    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
586  } else {
587    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
588  }
589  if (in_range) {
590    // Since numerator + delta_plus >= denominator we already have
591    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
592    *decimal_point = estimated_power + 1;
593  } else {
594    *decimal_point = estimated_power;
595    numerator->Times10();
596    if (Bignum::Equal(*delta_minus, *delta_plus)) {
597      delta_minus->Times10();
598      delta_plus->AssignBignum(*delta_minus);
599    } else {
600      delta_minus->Times10();
601      delta_plus->Times10();
602    }
603  }
604}
605
606}  // namespace base
607}  // namespace v8
608