xref: /third_party/node/deps/v8/src/base/bits.h (revision 1cb0ef41)
1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_BASE_BITS_H_
6#define V8_BASE_BITS_H_
7
8#include <stdint.h>
9#include <type_traits>
10
11#include "src/base/base-export.h"
12#include "src/base/macros.h"
13#if V8_CC_MSVC
14#include <intrin.h>
15#endif
16#if V8_OS_WIN32
17#include "src/base/win32-headers.h"
18#endif
19
20namespace v8 {
21namespace base {
22namespace bits {
23
24// CountPopulation(value) returns the number of bits set in |value|.
25template <typename T>
26constexpr inline
27    typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
28                            unsigned>::type
29    CountPopulation(T value) {
30  STATIC_ASSERT(sizeof(T) <= 8);
31#if V8_HAS_BUILTIN_POPCOUNT
32  return sizeof(T) == 8 ? __builtin_popcountll(static_cast<uint64_t>(value))
33                        : __builtin_popcount(static_cast<uint32_t>(value));
34#else
35  // Fall back to divide-and-conquer popcount (see "Hacker's Delight" by Henry
36  // S. Warren, Jr.), chapter 5-1.
37  constexpr uint64_t mask[] = {0x5555555555555555, 0x3333333333333333,
38                               0x0f0f0f0f0f0f0f0f};
39  // Start with 64 buckets of 1 bits, holding values from [0,1].
40  value = ((value >> 1) & mask[0]) + (value & mask[0]);
41  // Having 32 buckets of 2 bits, holding values from [0,2] now.
42  value = ((value >> 2) & mask[1]) + (value & mask[1]);
43  // Having 16 buckets of 4 bits, holding values from [0,4] now.
44  value = ((value >> 4) & mask[2]) + (value & mask[2]);
45  // Having 8 buckets of 8 bits, holding values from [0,8] now.
46  // From this point on, the buckets are bigger than the number of bits
47  // required to hold the values, and the buckets are bigger the maximum
48  // result, so there's no need to mask value anymore, since there's no
49  // more risk of overflow between buckets.
50  if (sizeof(T) > 1) value = (value >> (sizeof(T) > 1 ? 8 : 0)) + value;
51  // Having 4 buckets of 16 bits, holding values from [0,16] now.
52  if (sizeof(T) > 2) value = (value >> (sizeof(T) > 2 ? 16 : 0)) + value;
53  // Having 2 buckets of 32 bits, holding values from [0,32] now.
54  if (sizeof(T) > 4) value = (value >> (sizeof(T) > 4 ? 32 : 0)) + value;
55  // Having 1 buckets of 64 bits, holding values from [0,64] now.
56  return static_cast<unsigned>(value & 0xff);
57#endif
58}
59
60// ReverseBits(value) returns |value| in reverse bit order.
61template <typename T>
62T ReverseBits(T value) {
63  STATIC_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
64                (sizeof(value) == 4) || (sizeof(value) == 8));
65  T result = 0;
66  for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
67    result = (result << 1) | (value & 1);
68    value >>= 1;
69  }
70  return result;
71}
72
73// CountLeadingZeros(value) returns the number of zero bits following the most
74// significant 1 bit in |value| if |value| is non-zero, otherwise it returns
75// {sizeof(T) * 8}.
76template <typename T, unsigned bits = sizeof(T) * 8>
77inline constexpr
78    typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
79                            unsigned>::type
80    CountLeadingZeros(T value) {
81  static_assert(bits > 0, "invalid instantiation");
82#if V8_HAS_BUILTIN_CLZ
83  return value == 0
84             ? bits
85             : bits == 64
86                   ? __builtin_clzll(static_cast<uint64_t>(value))
87                   : __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits);
88#else
89  // Binary search algorithm taken from "Hacker's Delight" (by Henry S. Warren,
90  // Jr.), figures 5-11 and 5-12.
91  if (bits == 1) return static_cast<unsigned>(value) ^ 1;
92  T upper_half = value >> (bits / 2);
93  T next_value = upper_half != 0 ? upper_half : value;
94  unsigned add = upper_half != 0 ? 0 : bits / 2;
95  constexpr unsigned next_bits = bits == 1 ? 1 : bits / 2;
96  return CountLeadingZeros<T, next_bits>(next_value) + add;
97#endif
98}
99
100inline constexpr unsigned CountLeadingZeros32(uint32_t value) {
101  return CountLeadingZeros(value);
102}
103inline constexpr unsigned CountLeadingZeros64(uint64_t value) {
104  return CountLeadingZeros(value);
105}
106
107// CountTrailingZeros(value) returns the number of zero bits preceding the
108// least significant 1 bit in |value| if |value| is non-zero, otherwise it
109// returns {sizeof(T) * 8}.
110// See CountTrailingZerosNonZero for an optimized version for the case that
111// |value| is guaranteed to be non-zero.
112template <typename T, unsigned bits = sizeof(T) * 8>
113inline constexpr
114    typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8,
115                            unsigned>::type
116    CountTrailingZeros(T value) {
117#if V8_HAS_BUILTIN_CTZ
118  return value == 0 ? bits
119                    : bits == 64 ? __builtin_ctzll(static_cast<uint64_t>(value))
120                                 : __builtin_ctz(static_cast<uint32_t>(value));
121#else
122  // Fall back to popcount (see "Hacker's Delight" by Henry S. Warren, Jr.),
123  // chapter 5-4. On x64, since is faster than counting in a loop and faster
124  // than doing binary search.
125  using U = typename std::make_unsigned<T>::type;
126  U u = value;
127  return CountPopulation(static_cast<U>(~u & (u - 1u)));
128#endif
129}
130
131inline constexpr unsigned CountTrailingZeros32(uint32_t value) {
132  return CountTrailingZeros(value);
133}
134inline constexpr unsigned CountTrailingZeros64(uint64_t value) {
135  return CountTrailingZeros(value);
136}
137
138// CountTrailingZerosNonZero(value) returns the number of zero bits preceding
139// the least significant 1 bit in |value| if |value| is non-zero, otherwise the
140// behavior is undefined.
141// See CountTrailingZeros for an alternative version that allows |value| == 0.
142template <typename T, unsigned bits = sizeof(T) * 8>
143inline constexpr
144    typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8,
145                            unsigned>::type
146    CountTrailingZerosNonZero(T value) {
147  DCHECK_NE(0, value);
148#if V8_HAS_BUILTIN_CTZ
149  return bits == 64 ? __builtin_ctzll(static_cast<uint64_t>(value))
150                    : __builtin_ctz(static_cast<uint32_t>(value));
151#else
152  return CountTrailingZeros<T, bits>(value);
153#endif
154}
155
156// Returns true iff |value| is a power of 2.
157template <typename T,
158          typename = typename std::enable_if<std::is_integral<T>::value ||
159                                             std::is_enum<T>::value>::type>
160constexpr inline bool IsPowerOfTwo(T value) {
161  return value > 0 && (value & (value - 1)) == 0;
162}
163
164// Identical to {CountTrailingZeros}, but only works for powers of 2.
165template <typename T,
166          typename = typename std::enable_if<std::is_integral<T>::value>::type>
167inline constexpr int WhichPowerOfTwo(T value) {
168  DCHECK(IsPowerOfTwo(value));
169#if V8_HAS_BUILTIN_CTZ
170  STATIC_ASSERT(sizeof(T) <= 8);
171  return sizeof(T) == 8 ? __builtin_ctzll(static_cast<uint64_t>(value))
172                        : __builtin_ctz(static_cast<uint32_t>(value));
173#else
174  // Fall back to popcount (see "Hacker's Delight" by Henry S. Warren, Jr.),
175  // chapter 5-4. On x64, since is faster than counting in a loop and faster
176  // than doing binary search.
177  using U = typename std::make_unsigned<T>::type;
178  U u = value;
179  return CountPopulation(static_cast<U>(u - 1));
180#endif
181}
182
183// RoundUpToPowerOfTwo32(value) returns the smallest power of two which is
184// greater than or equal to |value|. If you pass in a |value| that is already a
185// power of two, it is returned as is. |value| must be less than or equal to
186// 0x80000000u. Uses computation based on leading zeros if we have compiler
187// support for that. Falls back to the implementation from "Hacker's Delight" by
188// Henry S. Warren, Jr., figure 3-3, page 48, where the function is called clp2.
189V8_BASE_EXPORT uint32_t RoundUpToPowerOfTwo32(uint32_t value);
190// Same for 64 bit integers. |value| must be <= 2^63
191V8_BASE_EXPORT uint64_t RoundUpToPowerOfTwo64(uint64_t value);
192// Same for size_t integers.
193inline size_t RoundUpToPowerOfTwo(size_t value) {
194  if (sizeof(size_t) == sizeof(uint64_t)) {
195    return RoundUpToPowerOfTwo64(value);
196  } else {
197    // Without windows.h included this line triggers a truncation warning on
198    // 64-bit builds. Presumably windows.h disables the relevant warning.
199    return RoundUpToPowerOfTwo32(static_cast<uint32_t>(value));
200  }
201}
202
203// RoundDownToPowerOfTwo32(value) returns the greatest power of two which is
204// less than or equal to |value|. If you pass in a |value| that is already a
205// power of two, it is returned as is.
206inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) {
207  if (value > 0x80000000u) return 0x80000000u;
208  uint32_t result = RoundUpToPowerOfTwo32(value);
209  if (result > value) result >>= 1;
210  return result;
211}
212
213
214// Precondition: 0 <= shift < 32
215inline constexpr uint32_t RotateRight32(uint32_t value, uint32_t shift) {
216  return (value >> shift) | (value << ((32 - shift) & 31));
217}
218
219// Precondition: 0 <= shift < 32
220inline constexpr uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
221  return (value << shift) | (value >> ((32 - shift) & 31));
222}
223
224// Precondition: 0 <= shift < 64
225inline constexpr uint64_t RotateRight64(uint64_t value, uint64_t shift) {
226  return (value >> shift) | (value << ((64 - shift) & 63));
227}
228
229// Precondition: 0 <= shift < 64
230inline constexpr uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
231  return (value << shift) | (value >> ((64 - shift) & 63));
232}
233
234// SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and
235// |rhs| and stores the result into the variable pointed to by |val| and
236// returns true if the signed summation resulted in an overflow.
237inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
238#if V8_HAS_BUILTIN_SADD_OVERFLOW
239  return __builtin_sadd_overflow(lhs, rhs, val);
240#else
241  uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs);
242  *val = bit_cast<int32_t>(res);
243  return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0;
244#endif
245}
246
247
248// SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and
249// |rhs| and stores the result into the variable pointed to by |val| and
250// returns true if the signed subtraction resulted in an overflow.
251inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
252#if V8_HAS_BUILTIN_SSUB_OVERFLOW
253  return __builtin_ssub_overflow(lhs, rhs, val);
254#else
255  uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs);
256  *val = bit_cast<int32_t>(res);
257  return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0;
258#endif
259}
260
261// SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs|
262// and |rhs| and stores the result into the variable pointed to by |val| and
263// returns true if the signed multiplication resulted in an overflow.
264V8_BASE_EXPORT bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val);
265
266// SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and
267// |rhs| and stores the result into the variable pointed to by |val| and
268// returns true if the signed summation resulted in an overflow.
269inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
270  uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs);
271  *val = bit_cast<int64_t>(res);
272  return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0;
273}
274
275
276// SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and
277// |rhs| and stores the result into the variable pointed to by |val| and
278// returns true if the signed subtraction resulted in an overflow.
279inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
280  uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs);
281  *val = bit_cast<int64_t>(res);
282  return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0;
283}
284
285// SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and
286// |rhs|, extracts the most significant 32 bits of the result, and returns
287// those.
288V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs);
289
290// SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values
291// |lhs| and |rhs|, extracts the most significant 32 bits of the result, and
292// adds the accumulate value |acc|.
293V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs,
294                                             int32_t acc);
295
296// SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
297// truncated to int32. If |rhs| is zero, then zero is returned. If |lhs|
298// is minint and |rhs| is -1, it returns minint.
299V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs);
300
301// SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
302// truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs|
303// is -1, it returns zero.
304V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs);
305
306// UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs|
307// and |rhs| and stores the result into the variable pointed to by |val| and
308// returns true if the unsigned summation resulted in an overflow.
309inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) {
310#if V8_HAS_BUILTIN_SADD_OVERFLOW
311  return __builtin_uadd_overflow(lhs, rhs, val);
312#else
313  *val = lhs + rhs;
314  return *val < (lhs | rhs);
315#endif
316}
317
318
319// UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
320// truncated to uint32. If |rhs| is zero, then zero is returned.
321inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) {
322  return rhs ? lhs / rhs : 0u;
323}
324
325
326// UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
327// truncated to uint32. If |rhs| is zero, then zero is returned.
328inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) {
329  return rhs ? lhs % rhs : 0u;
330}
331
332// Wraparound integer arithmetic without undefined behavior.
333
334inline int32_t WraparoundAdd32(int32_t lhs, int32_t rhs) {
335  return static_cast<int32_t>(static_cast<uint32_t>(lhs) +
336                              static_cast<uint32_t>(rhs));
337}
338
339inline int32_t WraparoundNeg32(int32_t x) {
340  return static_cast<int32_t>(-static_cast<uint32_t>(x));
341}
342
343// SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|,
344// checks and returns the result.
345V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs);
346
347// SignedSaturatedSub64(lhs, rhs) subtracts |lhs| by |rhs|,
348// checks and returns the result.
349V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs);
350
351}  // namespace bits
352}  // namespace base
353}  // namespace v8
354
355#endif  // V8_BASE_BITS_H_
356