1// Copyright 2020 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5/**
6 * This file provides additional API on top of the default one for making
7 * API calls, which come from embedder C++ functions. The functions are being
8 * called directly from optimized code, doing all the necessary typechecks
9 * in the compiler itself, instead of on the embedder side. Hence the "fast"
10 * in the name. Example usage might look like:
11 *
12 * \code
13 *    void FastMethod(int param, bool another_param);
14 *
15 *    v8::FunctionTemplate::New(isolate, SlowCallback, data,
16 *                              signature, length, constructor_behavior
17 *                              side_effect_type,
18 *                              &v8::CFunction::Make(FastMethod));
19 * \endcode
20 *
21 * By design, fast calls are limited by the following requirements, which
22 * the embedder should enforce themselves:
23 *   - they should not allocate on the JS heap;
24 *   - they should not trigger JS execution.
25 * To enforce them, the embedder could use the existing
26 * v8::Isolate::DisallowJavascriptExecutionScope and a utility similar to
27 * Blink's NoAllocationScope:
28 * https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/platform/heap/thread_state_scopes.h;l=16
29 *
30 * Due to these limitations, it's not directly possible to report errors by
31 * throwing a JS exception or to otherwise do an allocation. There is an
32 * alternative way of creating fast calls that supports falling back to the
33 * slow call and then performing the necessary allocation. When one creates
34 * the fast method by using CFunction::MakeWithFallbackSupport instead of
35 * CFunction::Make, the fast callback gets as last parameter an output variable,
36 * through which it can request falling back to the slow call. So one might
37 * declare their method like:
38 *
39 * \code
40 *    void FastMethodWithFallback(int param, FastApiCallbackOptions& options);
41 * \endcode
42 *
43 * If the callback wants to signal an error condition or to perform an
44 * allocation, it must set options.fallback to true and do an early return from
45 * the fast method. Then V8 checks the value of options.fallback and if it's
46 * true, falls back to executing the SlowCallback, which is capable of reporting
47 * the error (either by throwing a JS exception or logging to the console) or
48 * doing the allocation. It's the embedder's responsibility to ensure that the
49 * fast callback is idempotent up to the point where error and fallback
50 * conditions are checked, because otherwise executing the slow callback might
51 * produce visible side-effects twice.
52 *
53 * An example for custom embedder type support might employ a way to wrap/
54 * unwrap various C++ types in JSObject instances, e.g:
55 *
56 * \code
57 *
58 *    // Helper method with a check for field count.
59 *    template <typename T, int offset>
60 *    inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
61 *      assert(offset < wrapper->InternalFieldCount());
62 *      return reinterpret_cast<T*>(
63 *          wrapper->GetAlignedPointerFromInternalField(offset));
64 *    }
65 *
66 *    class CustomEmbedderType {
67 *     public:
68 *      // Returns the raw C object from a wrapper JS object.
69 *      static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
70 *        return GetInternalField<CustomEmbedderType,
71 *                                kV8EmbedderWrapperObjectIndex>(wrapper);
72 *      }
73 *      static void FastMethod(v8::Local<v8::Object> receiver_obj, int param) {
74 *        CustomEmbedderType* receiver = static_cast<CustomEmbedderType*>(
75 *          receiver_obj->GetAlignedPointerFromInternalField(
76 *            kV8EmbedderWrapperObjectIndex));
77 *
78 *        // Type checks are already done by the optimized code.
79 *        // Then call some performance-critical method like:
80 *        // receiver->Method(param);
81 *      }
82 *
83 *      static void SlowMethod(
84 *          const v8::FunctionCallbackInfo<v8::Value>& info) {
85 *        v8::Local<v8::Object> instance =
86 *          v8::Local<v8::Object>::Cast(info.Holder());
87 *        CustomEmbedderType* receiver = Unwrap(instance);
88 *        // TODO: Do type checks and extract {param}.
89 *        receiver->Method(param);
90 *      }
91 *    };
92 *
93 *    // TODO(mslekova): Clean-up these constants
94 *    // The constants kV8EmbedderWrapperTypeIndex and
95 *    // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
96 *    // struct and the native object, when expressed as internal field indices
97 *    // within a JSObject. The existance of this helper function assumes that
98 *    // all embedder objects have their JSObject-side type info at the same
99 *    // offset, but this is not a limitation of the API itself. For a detailed
100 *    // use case, see the third example.
101 *    static constexpr int kV8EmbedderWrapperTypeIndex = 0;
102 *    static constexpr int kV8EmbedderWrapperObjectIndex = 1;
103 *
104 *    // The following setup function can be templatized based on
105 *    // the {embedder_object} argument.
106 *    void SetupCustomEmbedderObject(v8::Isolate* isolate,
107 *                                   v8::Local<v8::Context> context,
108 *                                   CustomEmbedderType* embedder_object) {
109 *      isolate->set_embedder_wrapper_type_index(
110 *        kV8EmbedderWrapperTypeIndex);
111 *      isolate->set_embedder_wrapper_object_index(
112 *        kV8EmbedderWrapperObjectIndex);
113 *
114 *      v8::CFunction c_func =
115 *        MakeV8CFunction(CustomEmbedderType::FastMethod);
116 *
117 *      Local<v8::FunctionTemplate> method_template =
118 *        v8::FunctionTemplate::New(
119 *          isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
120 *          v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
121 *          v8::SideEffectType::kHasSideEffect, &c_func);
122 *
123 *      v8::Local<v8::ObjectTemplate> object_template =
124 *        v8::ObjectTemplate::New(isolate);
125 *      object_template->SetInternalFieldCount(
126 *        kV8EmbedderWrapperObjectIndex + 1);
127 *      object_template->Set(isolate, "method", method_template);
128 *
129 *      // Instantiate the wrapper JS object.
130 *      v8::Local<v8::Object> object =
131 *          object_template->NewInstance(context).ToLocalChecked();
132 *      object->SetAlignedPointerInInternalField(
133 *        kV8EmbedderWrapperObjectIndex,
134 *        reinterpret_cast<void*>(embedder_object));
135 *
136 *      // TODO: Expose {object} where it's necessary.
137 *    }
138 * \endcode
139 *
140 * For instance if {object} is exposed via a global "obj" variable,
141 * one could write in JS:
142 *   function hot_func() {
143 *     obj.method(42);
144 *   }
145 * and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
146 * will be called instead of the slow version, with the following arguments:
147 *   receiver := the {embedder_object} from above
148 *   param := 42
149 *
150 * Currently supported return types:
151 *   - void
152 *   - bool
153 *   - int32_t
154 *   - uint32_t
155 *   - float32_t
156 *   - float64_t
157 * Currently supported argument types:
158 *  - pointer to an embedder type
159 *  - JavaScript array of primitive types
160 *  - bool
161 *  - int32_t
162 *  - uint32_t
163 *  - int64_t
164 *  - uint64_t
165 *  - float32_t
166 *  - float64_t
167 *
168 * The 64-bit integer types currently have the IDL (unsigned) long long
169 * semantics: https://heycam.github.io/webidl/#abstract-opdef-converttoint
170 * In the future we'll extend the API to also provide conversions from/to
171 * BigInt to preserve full precision.
172 * The floating point types currently have the IDL (unrestricted) semantics,
173 * which is the only one used by WebGL. We plan to add support also for
174 * restricted floats/doubles, similarly to the BigInt conversion policies.
175 * We also differ from the specific NaN bit pattern that WebIDL prescribes
176 * (https://heycam.github.io/webidl/#es-unrestricted-float) in that Blink
177 * passes NaN values as-is, i.e. doesn't normalize them.
178 *
179 * To be supported types:
180 *  - TypedArrays and ArrayBuffers
181 *  - arrays of embedder types
182 *
183 *
184 * The API offers a limited support for function overloads:
185 *
186 * \code
187 *    void FastMethod_2Args(int param, bool another_param);
188 *    void FastMethod_3Args(int param, bool another_param, int third_param);
189 *
190 *    v8::CFunction fast_method_2args_c_func =
191 *         MakeV8CFunction(FastMethod_2Args);
192 *    v8::CFunction fast_method_3args_c_func =
193 *         MakeV8CFunction(FastMethod_3Args);
194 *    const v8::CFunction fast_method_overloads[] = {fast_method_2args_c_func,
195 *                                                   fast_method_3args_c_func};
196 *    Local<v8::FunctionTemplate> method_template =
197 *        v8::FunctionTemplate::NewWithCFunctionOverloads(
198 *            isolate, SlowCallback, data, signature, length,
199 *            constructor_behavior, side_effect_type,
200 *            {fast_method_overloads, 2});
201 * \endcode
202 *
203 * In this example a single FunctionTemplate is associated to multiple C++
204 * functions. The overload resolution is currently only based on the number of
205 * arguments passed in a call. For example, if this method_template is
206 * registered with a wrapper JS object as described above, a call with two
207 * arguments:
208 *    obj.method(42, true);
209 * will result in a fast call to FastMethod_2Args, while a call with three or
210 * more arguments:
211 *    obj.method(42, true, 11);
212 * will result in a fast call to FastMethod_3Args. Instead a call with less than
213 * two arguments, like:
214 *    obj.method(42);
215 * would not result in a fast call but would fall back to executing the
216 * associated SlowCallback.
217 */
218
219#ifndef INCLUDE_V8_FAST_API_CALLS_H_
220#define INCLUDE_V8_FAST_API_CALLS_H_
221
222#include <stddef.h>
223#include <stdint.h>
224
225#include <tuple>
226#include <type_traits>
227
228#include "v8-internal.h"      // NOLINT(build/include_directory)
229#include "v8-local-handle.h"  // NOLINT(build/include_directory)
230#include "v8-typed-array.h"   // NOLINT(build/include_directory)
231#include "v8-value.h"         // NOLINT(build/include_directory)
232#include "v8config.h"         // NOLINT(build/include_directory)
233
234namespace v8 {
235
236class Isolate;
237
238class CTypeInfo {
239 public:
240  enum class Type : uint8_t {
241    kVoid,
242    kBool,
243    kUint8,
244    kInt32,
245    kUint32,
246    kInt64,
247    kUint64,
248    kFloat32,
249    kFloat64,
250    kPointer,
251    kV8Value,
252    kSeqOneByteString,
253    kApiObject,  // This will be deprecated once all users have
254                 // migrated from v8::ApiObject to v8::Local<v8::Value>.
255    kAny,        // This is added to enable untyped representation of fast
256                 // call arguments for test purposes. It can represent any of
257                 // the other types stored in the same memory as a union (see
258                 // the AnyCType struct declared below). This allows for
259                 // uniform passing of arguments w.r.t. their location
260                 // (in a register or on the stack), independent of their
261                 // actual type. It's currently used by the arm64 simulator
262                 // and can be added to the other simulators as well when fast
263                 // calls having both GP and FP params need to be supported.
264  };
265
266  // kCallbackOptionsType is not part of the Type enum
267  // because it is only used internally. Use value 255 that is larger
268  // than any valid Type enum.
269  static constexpr Type kCallbackOptionsType = Type(255);
270
271  enum class SequenceType : uint8_t {
272    kScalar,
273    kIsSequence,    // sequence<T>
274    kIsTypedArray,  // TypedArray of T or any ArrayBufferView if T
275                    // is void
276    kIsArrayBuffer  // ArrayBuffer
277  };
278
279  enum class Flags : uint8_t {
280    kNone = 0,
281    kAllowSharedBit = 1 << 0,   // Must be an ArrayBuffer or TypedArray
282    kEnforceRangeBit = 1 << 1,  // T must be integral
283    kClampBit = 1 << 2,         // T must be integral
284    kIsRestrictedBit = 1 << 3,  // T must be float or double
285  };
286
287  explicit constexpr CTypeInfo(
288      Type type, SequenceType sequence_type = SequenceType::kScalar,
289      Flags flags = Flags::kNone)
290      : type_(type), sequence_type_(sequence_type), flags_(flags) {}
291
292  typedef uint32_t Identifier;
293  explicit constexpr CTypeInfo(Identifier identifier)
294      : CTypeInfo(static_cast<Type>(identifier >> 16),
295                  static_cast<SequenceType>((identifier >> 8) & 255),
296                  static_cast<Flags>(identifier & 255)) {}
297  constexpr Identifier GetId() const {
298    return static_cast<uint8_t>(type_) << 16 |
299           static_cast<uint8_t>(sequence_type_) << 8 |
300           static_cast<uint8_t>(flags_);
301  }
302
303  constexpr Type GetType() const { return type_; }
304  constexpr SequenceType GetSequenceType() const { return sequence_type_; }
305  constexpr Flags GetFlags() const { return flags_; }
306
307  static constexpr bool IsIntegralType(Type type) {
308    return type == Type::kUint8 || type == Type::kInt32 ||
309           type == Type::kUint32 || type == Type::kInt64 ||
310           type == Type::kUint64;
311  }
312
313  static constexpr bool IsFloatingPointType(Type type) {
314    return type == Type::kFloat32 || type == Type::kFloat64;
315  }
316
317  static constexpr bool IsPrimitive(Type type) {
318    return IsIntegralType(type) || IsFloatingPointType(type) ||
319           type == Type::kBool;
320  }
321
322 private:
323  Type type_;
324  SequenceType sequence_type_;
325  Flags flags_;
326};
327
328struct FastApiTypedArrayBase {
329 public:
330  // Returns the length in number of elements.
331  size_t V8_EXPORT length() const { return length_; }
332  // Checks whether the given index is within the bounds of the collection.
333  void V8_EXPORT ValidateIndex(size_t index) const;
334
335 protected:
336  size_t length_ = 0;
337};
338
339template <typename T>
340struct FastApiTypedArray : public FastApiTypedArrayBase {
341 public:
342  V8_INLINE T get(size_t index) const {
343#ifdef DEBUG
344    ValidateIndex(index);
345#endif  // DEBUG
346    T tmp;
347    memcpy(&tmp, reinterpret_cast<T*>(data_) + index, sizeof(T));
348    return tmp;
349  }
350
351  bool getStorageIfAligned(T** elements) const {
352    if (reinterpret_cast<uintptr_t>(data_) % alignof(T) != 0) {
353      return false;
354    }
355    *elements = reinterpret_cast<T*>(data_);
356    return true;
357  }
358
359 private:
360  // This pointer should include the typed array offset applied.
361  // It's not guaranteed that it's aligned to sizeof(T), it's only
362  // guaranteed that it's 4-byte aligned, so for 8-byte types we need to
363  // provide a special implementation for reading from it, which hides
364  // the possibly unaligned read in the `get` method.
365  void* data_;
366};
367
368// Any TypedArray. It uses kTypedArrayBit with base type void
369// Overloaded args of ArrayBufferView and TypedArray are not supported
370// (for now) because the generic “any” ArrayBufferView doesn’t have its
371// own instance type. It could be supported if we specify that
372// TypedArray<T> always has precedence over the generic ArrayBufferView,
373// but this complicates overload resolution.
374struct FastApiArrayBufferView {
375  void* data;
376  size_t byte_length;
377};
378
379struct FastApiArrayBuffer {
380  void* data;
381  size_t byte_length;
382};
383
384struct FastOneByteString {
385  const char* data;
386  uint32_t length;
387};
388
389class V8_EXPORT CFunctionInfo {
390 public:
391  // Construct a struct to hold a CFunction's type information.
392  // |return_info| describes the function's return type.
393  // |arg_info| is an array of |arg_count| CTypeInfos describing the
394  //   arguments. Only the last argument may be of the special type
395  //   CTypeInfo::kCallbackOptionsType.
396  CFunctionInfo(const CTypeInfo& return_info, unsigned int arg_count,
397                const CTypeInfo* arg_info);
398
399  const CTypeInfo& ReturnInfo() const { return return_info_; }
400
401  // The argument count, not including the v8::FastApiCallbackOptions
402  // if present.
403  unsigned int ArgumentCount() const {
404    return HasOptions() ? arg_count_ - 1 : arg_count_;
405  }
406
407  // |index| must be less than ArgumentCount().
408  //  Note: if the last argument passed on construction of CFunctionInfo
409  //  has type CTypeInfo::kCallbackOptionsType, it is not included in
410  //  ArgumentCount().
411  const CTypeInfo& ArgumentInfo(unsigned int index) const;
412
413  bool HasOptions() const {
414    // The options arg is always the last one.
415    return arg_count_ > 0 && arg_info_[arg_count_ - 1].GetType() ==
416                                 CTypeInfo::kCallbackOptionsType;
417  }
418
419 private:
420  const CTypeInfo return_info_;
421  const unsigned int arg_count_;
422  const CTypeInfo* arg_info_;
423};
424
425struct FastApiCallbackOptions;
426
427// Provided for testing.
428struct AnyCType {
429  AnyCType() : int64_value(0) {}
430
431  union {
432    bool bool_value;
433    int32_t int32_value;
434    uint32_t uint32_value;
435    int64_t int64_value;
436    uint64_t uint64_value;
437    float float_value;
438    double double_value;
439    void* pointer_value;
440    Local<Object> object_value;
441    Local<Array> sequence_value;
442    const FastApiTypedArray<uint8_t>* uint8_ta_value;
443    const FastApiTypedArray<int32_t>* int32_ta_value;
444    const FastApiTypedArray<uint32_t>* uint32_ta_value;
445    const FastApiTypedArray<int64_t>* int64_ta_value;
446    const FastApiTypedArray<uint64_t>* uint64_ta_value;
447    const FastApiTypedArray<float>* float_ta_value;
448    const FastApiTypedArray<double>* double_ta_value;
449    const FastOneByteString* string_value;
450    FastApiCallbackOptions* options_value;
451  };
452};
453
454static_assert(
455    sizeof(AnyCType) == 8,
456    "The AnyCType struct should have size == 64 bits, as this is assumed "
457    "by EffectControlLinearizer.");
458
459class V8_EXPORT CFunction {
460 public:
461  constexpr CFunction() : address_(nullptr), type_info_(nullptr) {}
462
463  const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
464
465  const CTypeInfo& ArgumentInfo(unsigned int index) const {
466    return type_info_->ArgumentInfo(index);
467  }
468
469  unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
470
471  const void* GetAddress() const { return address_; }
472  const CFunctionInfo* GetTypeInfo() const { return type_info_; }
473
474  enum class OverloadResolution { kImpossible, kAtRuntime, kAtCompileTime };
475
476  // Returns whether an overload between this and the given CFunction can
477  // be resolved at runtime by the RTTI available for the arguments or at
478  // compile time for functions with different number of arguments.
479  OverloadResolution GetOverloadResolution(const CFunction* other) {
480    // Runtime overload resolution can only deal with functions with the
481    // same number of arguments. Functions with different arity are handled
482    // by compile time overload resolution though.
483    if (ArgumentCount() != other->ArgumentCount()) {
484      return OverloadResolution::kAtCompileTime;
485    }
486
487    // The functions can only differ by a single argument position.
488    int diff_index = -1;
489    for (unsigned int i = 0; i < ArgumentCount(); ++i) {
490      if (ArgumentInfo(i).GetSequenceType() !=
491          other->ArgumentInfo(i).GetSequenceType()) {
492        if (diff_index >= 0) {
493          return OverloadResolution::kImpossible;
494        }
495        diff_index = i;
496
497        // We only support overload resolution between sequence types.
498        if (ArgumentInfo(i).GetSequenceType() ==
499                CTypeInfo::SequenceType::kScalar ||
500            other->ArgumentInfo(i).GetSequenceType() ==
501                CTypeInfo::SequenceType::kScalar) {
502          return OverloadResolution::kImpossible;
503        }
504      }
505    }
506
507    return OverloadResolution::kAtRuntime;
508  }
509
510  template <typename F>
511  static CFunction Make(F* func) {
512    return ArgUnwrap<F*>::Make(func);
513  }
514
515  // Provided for testing purposes.
516  template <typename R, typename... Args, typename R_Patch,
517            typename... Args_Patch>
518  static CFunction Make(R (*func)(Args...),
519                        R_Patch (*patching_func)(Args_Patch...)) {
520    CFunction c_func = ArgUnwrap<R (*)(Args...)>::Make(func);
521    static_assert(
522        sizeof...(Args_Patch) == sizeof...(Args),
523        "The patching function must have the same number of arguments.");
524    c_func.address_ = reinterpret_cast<void*>(patching_func);
525    return c_func;
526  }
527
528  CFunction(const void* address, const CFunctionInfo* type_info);
529
530 private:
531  const void* address_;
532  const CFunctionInfo* type_info_;
533
534  template <typename F>
535  class ArgUnwrap {
536    static_assert(sizeof(F) != sizeof(F),
537                  "CFunction must be created from a function pointer.");
538  };
539
540  template <typename R, typename... Args>
541  class ArgUnwrap<R (*)(Args...)> {
542   public:
543    static CFunction Make(R (*func)(Args...));
544  };
545};
546
547/**
548 * A struct which may be passed to a fast call callback, like so:
549 * \code
550 *    void FastMethodWithOptions(int param, FastApiCallbackOptions& options);
551 * \endcode
552 */
553struct FastApiCallbackOptions {
554  /**
555   * Creates a new instance of FastApiCallbackOptions for testing purpose.  The
556   * returned instance may be filled with mock data.
557   */
558  static FastApiCallbackOptions CreateForTesting(Isolate* isolate) {
559    return {false, {0}, nullptr};
560  }
561
562  /**
563   * If the callback wants to signal an error condition or to perform an
564   * allocation, it must set options.fallback to true and do an early return
565   * from the fast method. Then V8 checks the value of options.fallback and if
566   * it's true, falls back to executing the SlowCallback, which is capable of
567   * reporting the error (either by throwing a JS exception or logging to the
568   * console) or doing the allocation. It's the embedder's responsibility to
569   * ensure that the fast callback is idempotent up to the point where error and
570   * fallback conditions are checked, because otherwise executing the slow
571   * callback might produce visible side-effects twice.
572   */
573  bool fallback;
574
575  /**
576   * The `data` passed to the FunctionTemplate constructor, or `undefined`.
577   * `data_ptr` allows for default constructing FastApiCallbackOptions.
578   */
579  union {
580    uintptr_t data_ptr;
581    v8::Local<v8::Value> data;
582  };
583
584  /**
585   * When called from WebAssembly, a view of the calling module's memory.
586   */
587  FastApiTypedArray<uint8_t>* const wasm_memory;
588};
589
590namespace internal {
591
592// Helper to count the number of occurances of `T` in `List`
593template <typename T, typename... List>
594struct count : std::integral_constant<int, 0> {};
595template <typename T, typename... Args>
596struct count<T, T, Args...>
597    : std::integral_constant<std::size_t, 1 + count<T, Args...>::value> {};
598template <typename T, typename U, typename... Args>
599struct count<T, U, Args...> : count<T, Args...> {};
600
601template <typename RetBuilder, typename... ArgBuilders>
602class CFunctionInfoImpl : public CFunctionInfo {
603  static constexpr int kOptionsArgCount =
604      count<FastApiCallbackOptions&, ArgBuilders...>();
605  static constexpr int kReceiverCount = 1;
606
607  static_assert(kOptionsArgCount == 0 || kOptionsArgCount == 1,
608                "Only one options parameter is supported.");
609
610  static_assert(sizeof...(ArgBuilders) >= kOptionsArgCount + kReceiverCount,
611                "The receiver or the options argument is missing.");
612
613 public:
614  constexpr CFunctionInfoImpl()
615      : CFunctionInfo(RetBuilder::Build(), sizeof...(ArgBuilders),
616                      arg_info_storage_),
617        arg_info_storage_{ArgBuilders::Build()...} {
618    constexpr CTypeInfo::Type kReturnType = RetBuilder::Build().GetType();
619    static_assert(kReturnType == CTypeInfo::Type::kVoid ||
620                      kReturnType == CTypeInfo::Type::kBool ||
621                      kReturnType == CTypeInfo::Type::kInt32 ||
622                      kReturnType == CTypeInfo::Type::kUint32 ||
623                      kReturnType == CTypeInfo::Type::kFloat32 ||
624                      kReturnType == CTypeInfo::Type::kFloat64 ||
625                      kReturnType == CTypeInfo::Type::kPointer ||
626                      kReturnType == CTypeInfo::Type::kAny,
627                  "64-bit int, string and api object values are not currently "
628                  "supported return types.");
629  }
630
631 private:
632  const CTypeInfo arg_info_storage_[sizeof...(ArgBuilders)];
633};
634
635template <typename T>
636struct TypeInfoHelper {
637  static_assert(sizeof(T) != sizeof(T), "This type is not supported");
638};
639
640#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR(T, Enum)                          \
641  template <>                                                                 \
642  struct TypeInfoHelper<T> {                                                  \
643    static constexpr CTypeInfo::Flags Flags() {                               \
644      return CTypeInfo::Flags::kNone;                                         \
645    }                                                                         \
646                                                                              \
647    static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
648    static constexpr CTypeInfo::SequenceType SequenceType() {                 \
649      return CTypeInfo::SequenceType::kScalar;                                \
650    }                                                                         \
651  };
652
653template <CTypeInfo::Type type>
654struct CTypeInfoTraits {};
655
656#define DEFINE_TYPE_INFO_TRAITS(CType, Enum)      \
657  template <>                                     \
658  struct CTypeInfoTraits<CTypeInfo::Type::Enum> { \
659    using ctype = CType;                          \
660  };
661
662#define PRIMITIVE_C_TYPES(V) \
663  V(bool, kBool)             \
664  V(uint8_t, kUint8)         \
665  V(int32_t, kInt32)         \
666  V(uint32_t, kUint32)       \
667  V(int64_t, kInt64)         \
668  V(uint64_t, kUint64)       \
669  V(float, kFloat32)         \
670  V(double, kFloat64)        \
671  V(void*, kPointer)
672
673// Same as above, but includes deprecated types for compatibility.
674#define ALL_C_TYPES(V)               \
675  PRIMITIVE_C_TYPES(V)               \
676  V(void, kVoid)                     \
677  V(v8::Local<v8::Value>, kV8Value)  \
678  V(v8::Local<v8::Object>, kV8Value) \
679  V(AnyCType, kAny)
680
681// ApiObject was a temporary solution to wrap the pointer to the v8::Value.
682// Please use v8::Local<v8::Value> in new code for the arguments and
683// v8::Local<v8::Object> for the receiver, as ApiObject will be deprecated.
684
685ALL_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR)
686PRIMITIVE_C_TYPES(DEFINE_TYPE_INFO_TRAITS)
687
688#undef PRIMITIVE_C_TYPES
689#undef ALL_C_TYPES
690
691#define SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA(T, Enum)                       \
692  template <>                                                                 \
693  struct TypeInfoHelper<const FastApiTypedArray<T>&> {                        \
694    static constexpr CTypeInfo::Flags Flags() {                               \
695      return CTypeInfo::Flags::kNone;                                         \
696    }                                                                         \
697                                                                              \
698    static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::Enum; } \
699    static constexpr CTypeInfo::SequenceType SequenceType() {                 \
700      return CTypeInfo::SequenceType::kIsTypedArray;                          \
701    }                                                                         \
702  };
703
704#define TYPED_ARRAY_C_TYPES(V) \
705  V(uint8_t, kUint8)           \
706  V(int32_t, kInt32)           \
707  V(uint32_t, kUint32)         \
708  V(int64_t, kInt64)           \
709  V(uint64_t, kUint64)         \
710  V(float, kFloat32)           \
711  V(double, kFloat64)
712
713TYPED_ARRAY_C_TYPES(SPECIALIZE_GET_TYPE_INFO_HELPER_FOR_TA)
714
715#undef TYPED_ARRAY_C_TYPES
716
717template <>
718struct TypeInfoHelper<v8::Local<v8::Array>> {
719  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
720
721  static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kVoid; }
722  static constexpr CTypeInfo::SequenceType SequenceType() {
723    return CTypeInfo::SequenceType::kIsSequence;
724  }
725};
726
727template <>
728struct TypeInfoHelper<v8::Local<v8::Uint32Array>> {
729  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
730
731  static constexpr CTypeInfo::Type Type() { return CTypeInfo::Type::kUint32; }
732  static constexpr CTypeInfo::SequenceType SequenceType() {
733    return CTypeInfo::SequenceType::kIsTypedArray;
734  }
735};
736
737template <>
738struct TypeInfoHelper<FastApiCallbackOptions&> {
739  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
740
741  static constexpr CTypeInfo::Type Type() {
742    return CTypeInfo::kCallbackOptionsType;
743  }
744  static constexpr CTypeInfo::SequenceType SequenceType() {
745    return CTypeInfo::SequenceType::kScalar;
746  }
747};
748
749template <>
750struct TypeInfoHelper<const FastOneByteString&> {
751  static constexpr CTypeInfo::Flags Flags() { return CTypeInfo::Flags::kNone; }
752
753  static constexpr CTypeInfo::Type Type() {
754    return CTypeInfo::Type::kSeqOneByteString;
755  }
756  static constexpr CTypeInfo::SequenceType SequenceType() {
757    return CTypeInfo::SequenceType::kScalar;
758  }
759};
760
761#define STATIC_ASSERT_IMPLIES(COND, ASSERTION, MSG) \
762  static_assert(((COND) == 0) || (ASSERTION), MSG)
763
764}  // namespace internal
765
766template <typename T, CTypeInfo::Flags... Flags>
767class V8_EXPORT CTypeInfoBuilder {
768 public:
769  using BaseType = T;
770
771  static constexpr CTypeInfo Build() {
772    constexpr CTypeInfo::Flags kFlags =
773        MergeFlags(internal::TypeInfoHelper<T>::Flags(), Flags...);
774    constexpr CTypeInfo::Type kType = internal::TypeInfoHelper<T>::Type();
775    constexpr CTypeInfo::SequenceType kSequenceType =
776        internal::TypeInfoHelper<T>::SequenceType();
777
778    STATIC_ASSERT_IMPLIES(
779        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kAllowSharedBit),
780        (kSequenceType == CTypeInfo::SequenceType::kIsTypedArray ||
781         kSequenceType == CTypeInfo::SequenceType::kIsArrayBuffer),
782        "kAllowSharedBit is only allowed for TypedArrays and ArrayBuffers.");
783    STATIC_ASSERT_IMPLIES(
784        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kEnforceRangeBit),
785        CTypeInfo::IsIntegralType(kType),
786        "kEnforceRangeBit is only allowed for integral types.");
787    STATIC_ASSERT_IMPLIES(
788        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kClampBit),
789        CTypeInfo::IsIntegralType(kType),
790        "kClampBit is only allowed for integral types.");
791    STATIC_ASSERT_IMPLIES(
792        uint8_t(kFlags) & uint8_t(CTypeInfo::Flags::kIsRestrictedBit),
793        CTypeInfo::IsFloatingPointType(kType),
794        "kIsRestrictedBit is only allowed for floating point types.");
795    STATIC_ASSERT_IMPLIES(kSequenceType == CTypeInfo::SequenceType::kIsSequence,
796                          kType == CTypeInfo::Type::kVoid,
797                          "Sequences are only supported from void type.");
798    STATIC_ASSERT_IMPLIES(
799        kSequenceType == CTypeInfo::SequenceType::kIsTypedArray,
800        CTypeInfo::IsPrimitive(kType) || kType == CTypeInfo::Type::kVoid,
801        "TypedArrays are only supported from primitive types or void.");
802
803    // Return the same type with the merged flags.
804    return CTypeInfo(internal::TypeInfoHelper<T>::Type(),
805                     internal::TypeInfoHelper<T>::SequenceType(), kFlags);
806  }
807
808 private:
809  template <typename... Rest>
810  static constexpr CTypeInfo::Flags MergeFlags(CTypeInfo::Flags flags,
811                                               Rest... rest) {
812    return CTypeInfo::Flags(uint8_t(flags) | uint8_t(MergeFlags(rest...)));
813  }
814  static constexpr CTypeInfo::Flags MergeFlags() { return CTypeInfo::Flags(0); }
815};
816
817namespace internal {
818template <typename RetBuilder, typename... ArgBuilders>
819class CFunctionBuilderWithFunction {
820 public:
821  explicit constexpr CFunctionBuilderWithFunction(const void* fn) : fn_(fn) {}
822
823  template <CTypeInfo::Flags... Flags>
824  constexpr auto Ret() {
825    return CFunctionBuilderWithFunction<
826        CTypeInfoBuilder<typename RetBuilder::BaseType, Flags...>,
827        ArgBuilders...>(fn_);
828  }
829
830  template <unsigned int N, CTypeInfo::Flags... Flags>
831  constexpr auto Arg() {
832    // Return a copy of the builder with the Nth arg builder merged with
833    // template parameter pack Flags.
834    return ArgImpl<N, Flags...>(
835        std::make_index_sequence<sizeof...(ArgBuilders)>());
836  }
837
838  // Provided for testing purposes.
839  template <typename Ret, typename... Args>
840  auto Patch(Ret (*patching_func)(Args...)) {
841    static_assert(
842        sizeof...(Args) == sizeof...(ArgBuilders),
843        "The patching function must have the same number of arguments.");
844    fn_ = reinterpret_cast<void*>(patching_func);
845    return *this;
846  }
847
848  auto Build() {
849    static CFunctionInfoImpl<RetBuilder, ArgBuilders...> instance;
850    return CFunction(fn_, &instance);
851  }
852
853 private:
854  template <bool Merge, unsigned int N, CTypeInfo::Flags... Flags>
855  struct GetArgBuilder;
856
857  // Returns the same ArgBuilder as the one at index N, including its flags.
858  // Flags in the template parameter pack are ignored.
859  template <unsigned int N, CTypeInfo::Flags... Flags>
860  struct GetArgBuilder<false, N, Flags...> {
861    using type =
862        typename std::tuple_element<N, std::tuple<ArgBuilders...>>::type;
863  };
864
865  // Returns an ArgBuilder with the same base type as the one at index N,
866  // but merges the flags with the flags in the template parameter pack.
867  template <unsigned int N, CTypeInfo::Flags... Flags>
868  struct GetArgBuilder<true, N, Flags...> {
869    using type = CTypeInfoBuilder<
870        typename std::tuple_element<N,
871                                    std::tuple<ArgBuilders...>>::type::BaseType,
872        std::tuple_element<N, std::tuple<ArgBuilders...>>::type::Build()
873            .GetFlags(),
874        Flags...>;
875  };
876
877  // Return a copy of the CFunctionBuilder, but merges the Flags on
878  // ArgBuilder index N with the new Flags passed in the template parameter
879  // pack.
880  template <unsigned int N, CTypeInfo::Flags... Flags, size_t... I>
881  constexpr auto ArgImpl(std::index_sequence<I...>) {
882    return CFunctionBuilderWithFunction<
883        RetBuilder, typename GetArgBuilder<N == I, I, Flags...>::type...>(fn_);
884  }
885
886  const void* fn_;
887};
888
889class CFunctionBuilder {
890 public:
891  constexpr CFunctionBuilder() {}
892
893  template <typename R, typename... Args>
894  constexpr auto Fn(R (*fn)(Args...)) {
895    return CFunctionBuilderWithFunction<CTypeInfoBuilder<R>,
896                                        CTypeInfoBuilder<Args>...>(
897        reinterpret_cast<const void*>(fn));
898  }
899};
900
901}  // namespace internal
902
903// static
904template <typename R, typename... Args>
905CFunction CFunction::ArgUnwrap<R (*)(Args...)>::Make(R (*func)(Args...)) {
906  return internal::CFunctionBuilder().Fn(func).Build();
907}
908
909using CFunctionBuilder = internal::CFunctionBuilder;
910
911static constexpr CTypeInfo kTypeInfoInt32 = CTypeInfo(CTypeInfo::Type::kInt32);
912static constexpr CTypeInfo kTypeInfoFloat64 =
913    CTypeInfo(CTypeInfo::Type::kFloat64);
914
915/**
916 * Copies the contents of this JavaScript array to a C++ buffer with
917 * a given max_length. A CTypeInfo is passed as an argument,
918 * instructing different rules for conversion (e.g. restricted float/double).
919 * The element type T of the destination array must match the C type
920 * corresponding to the CTypeInfo (specified by CTypeInfoTraits).
921 * If the array length is larger than max_length or the array is of
922 * unsupported type, the operation will fail, returning false. Generally, an
923 * array which contains objects, undefined, null or anything not convertible
924 * to the requested destination type, is considered unsupported. The operation
925 * returns true on success. `type_info` will be used for conversions.
926 */
927template <CTypeInfo::Identifier type_info_id, typename T>
928bool V8_EXPORT V8_WARN_UNUSED_RESULT TryToCopyAndConvertArrayToCppBuffer(
929    Local<Array> src, T* dst, uint32_t max_length);
930
931template <>
932bool V8_EXPORT V8_WARN_UNUSED_RESULT
933TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<int32_t>::Build().GetId(),
934                                    int32_t>(Local<Array> src, int32_t* dst,
935                                             uint32_t max_length);
936
937template <>
938bool V8_EXPORT V8_WARN_UNUSED_RESULT
939TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<uint32_t>::Build().GetId(),
940                                    uint32_t>(Local<Array> src, uint32_t* dst,
941                                              uint32_t max_length);
942
943template <>
944bool V8_EXPORT V8_WARN_UNUSED_RESULT
945TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<float>::Build().GetId(),
946                                    float>(Local<Array> src, float* dst,
947                                           uint32_t max_length);
948
949template <>
950bool V8_EXPORT V8_WARN_UNUSED_RESULT
951TryToCopyAndConvertArrayToCppBuffer<CTypeInfoBuilder<double>::Build().GetId(),
952                                    double>(Local<Array> src, double* dst,
953                                            uint32_t max_length);
954
955}  // namespace v8
956
957#endif  // INCLUDE_V8_FAST_API_CALLS_H_
958