11cb0ef41Sopenharmony_ci/*
21cb0ef41Sopenharmony_ci * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved.
31cb0ef41Sopenharmony_ci *
41cb0ef41Sopenharmony_ci * Licensed under the Apache License 2.0 (the "License").  You may not use
51cb0ef41Sopenharmony_ci * this file except in compliance with the License.  You can obtain a copy
61cb0ef41Sopenharmony_ci * in the file LICENSE in the source distribution or at
71cb0ef41Sopenharmony_ci * https://www.openssl.org/source/license.html
81cb0ef41Sopenharmony_ci */
91cb0ef41Sopenharmony_ci
101cb0ef41Sopenharmony_ci/* Copyright 2011 Google Inc.
111cb0ef41Sopenharmony_ci *
121cb0ef41Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License");
131cb0ef41Sopenharmony_ci *
141cb0ef41Sopenharmony_ci * you may not use this file except in compliance with the License.
151cb0ef41Sopenharmony_ci * You may obtain a copy of the License at
161cb0ef41Sopenharmony_ci *
171cb0ef41Sopenharmony_ci *     http://www.apache.org/licenses/LICENSE-2.0
181cb0ef41Sopenharmony_ci *
191cb0ef41Sopenharmony_ci *  Unless required by applicable law or agreed to in writing, software
201cb0ef41Sopenharmony_ci *  distributed under the License is distributed on an "AS IS" BASIS,
211cb0ef41Sopenharmony_ci *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
221cb0ef41Sopenharmony_ci *  See the License for the specific language governing permissions and
231cb0ef41Sopenharmony_ci *  limitations under the License.
241cb0ef41Sopenharmony_ci */
251cb0ef41Sopenharmony_ci
261cb0ef41Sopenharmony_ci/*
271cb0ef41Sopenharmony_ci * ECDSA low level APIs are deprecated for public use, but still ok for
281cb0ef41Sopenharmony_ci * internal use.
291cb0ef41Sopenharmony_ci */
301cb0ef41Sopenharmony_ci#include "internal/deprecated.h"
311cb0ef41Sopenharmony_ci
321cb0ef41Sopenharmony_ci#include <openssl/opensslconf.h>
331cb0ef41Sopenharmony_ci
341cb0ef41Sopenharmony_ci/*
351cb0ef41Sopenharmony_ci * Common utility functions for ecp_nistp224.c, ecp_nistp256.c, ecp_nistp521.c.
361cb0ef41Sopenharmony_ci */
371cb0ef41Sopenharmony_ci
381cb0ef41Sopenharmony_ci#include <stddef.h>
391cb0ef41Sopenharmony_ci#include "ec_local.h"
401cb0ef41Sopenharmony_ci
411cb0ef41Sopenharmony_ci/*
421cb0ef41Sopenharmony_ci * Convert an array of points into affine coordinates. (If the point at
431cb0ef41Sopenharmony_ci * infinity is found (Z = 0), it remains unchanged.) This function is
441cb0ef41Sopenharmony_ci * essentially an equivalent to EC_POINTs_make_affine(), but works with the
451cb0ef41Sopenharmony_ci * internal representation of points as used by ecp_nistp###.c rather than
461cb0ef41Sopenharmony_ci * with (BIGNUM-based) EC_POINT data structures. point_array is the
471cb0ef41Sopenharmony_ci * input/output buffer ('num' points in projective form, i.e. three
481cb0ef41Sopenharmony_ci * coordinates each), based on an internal representation of field elements
491cb0ef41Sopenharmony_ci * of size 'felem_size'. tmp_felems needs to point to a temporary array of
501cb0ef41Sopenharmony_ci * 'num'+1 field elements for storage of intermediate values.
511cb0ef41Sopenharmony_ci */
521cb0ef41Sopenharmony_civoid
531cb0ef41Sopenharmony_ciossl_ec_GFp_nistp_points_make_affine_internal(size_t num, void *point_array,
541cb0ef41Sopenharmony_ci                                              size_t felem_size,
551cb0ef41Sopenharmony_ci                                              void *tmp_felems,
561cb0ef41Sopenharmony_ci                                              void (*felem_one) (void *out),
571cb0ef41Sopenharmony_ci                                              int (*felem_is_zero) (const void
581cb0ef41Sopenharmony_ci                                                                    *in),
591cb0ef41Sopenharmony_ci                                              void (*felem_assign) (void *out,
601cb0ef41Sopenharmony_ci                                                                    const void
611cb0ef41Sopenharmony_ci                                                                    *in),
621cb0ef41Sopenharmony_ci                                              void (*felem_square) (void *out,
631cb0ef41Sopenharmony_ci                                                                    const void
641cb0ef41Sopenharmony_ci                                                                    *in),
651cb0ef41Sopenharmony_ci                                              void (*felem_mul) (void *out,
661cb0ef41Sopenharmony_ci                                                                 const void
671cb0ef41Sopenharmony_ci                                                                 *in1,
681cb0ef41Sopenharmony_ci                                                                 const void
691cb0ef41Sopenharmony_ci                                                                 *in2),
701cb0ef41Sopenharmony_ci                                              void (*felem_inv) (void *out,
711cb0ef41Sopenharmony_ci                                                                 const void
721cb0ef41Sopenharmony_ci                                                                 *in),
731cb0ef41Sopenharmony_ci                                              void (*felem_contract) (void
741cb0ef41Sopenharmony_ci                                                                      *out,
751cb0ef41Sopenharmony_ci                                                                      const
761cb0ef41Sopenharmony_ci                                                                      void
771cb0ef41Sopenharmony_ci                                                                      *in))
781cb0ef41Sopenharmony_ci{
791cb0ef41Sopenharmony_ci    int i = 0;
801cb0ef41Sopenharmony_ci
811cb0ef41Sopenharmony_ci#define tmp_felem(I) (&((char *)tmp_felems)[(I) * felem_size])
821cb0ef41Sopenharmony_ci#define X(I) (&((char *)point_array)[3*(I) * felem_size])
831cb0ef41Sopenharmony_ci#define Y(I) (&((char *)point_array)[(3*(I) + 1) * felem_size])
841cb0ef41Sopenharmony_ci#define Z(I) (&((char *)point_array)[(3*(I) + 2) * felem_size])
851cb0ef41Sopenharmony_ci
861cb0ef41Sopenharmony_ci    if (!felem_is_zero(Z(0)))
871cb0ef41Sopenharmony_ci        felem_assign(tmp_felem(0), Z(0));
881cb0ef41Sopenharmony_ci    else
891cb0ef41Sopenharmony_ci        felem_one(tmp_felem(0));
901cb0ef41Sopenharmony_ci    for (i = 1; i < (int)num; i++) {
911cb0ef41Sopenharmony_ci        if (!felem_is_zero(Z(i)))
921cb0ef41Sopenharmony_ci            felem_mul(tmp_felem(i), tmp_felem(i - 1), Z(i));
931cb0ef41Sopenharmony_ci        else
941cb0ef41Sopenharmony_ci            felem_assign(tmp_felem(i), tmp_felem(i - 1));
951cb0ef41Sopenharmony_ci    }
961cb0ef41Sopenharmony_ci    /*
971cb0ef41Sopenharmony_ci     * Now each tmp_felem(i) is the product of Z(0) .. Z(i), skipping any
981cb0ef41Sopenharmony_ci     * zero-valued factors: if Z(i) = 0, we essentially pretend that Z(i) = 1
991cb0ef41Sopenharmony_ci     */
1001cb0ef41Sopenharmony_ci
1011cb0ef41Sopenharmony_ci    felem_inv(tmp_felem(num - 1), tmp_felem(num - 1));
1021cb0ef41Sopenharmony_ci    for (i = num - 1; i >= 0; i--) {
1031cb0ef41Sopenharmony_ci        if (i > 0)
1041cb0ef41Sopenharmony_ci            /*
1051cb0ef41Sopenharmony_ci             * tmp_felem(i-1) is the product of Z(0) .. Z(i-1), tmp_felem(i)
1061cb0ef41Sopenharmony_ci             * is the inverse of the product of Z(0) .. Z(i)
1071cb0ef41Sopenharmony_ci             */
1081cb0ef41Sopenharmony_ci            /* 1/Z(i) */
1091cb0ef41Sopenharmony_ci            felem_mul(tmp_felem(num), tmp_felem(i - 1), tmp_felem(i));
1101cb0ef41Sopenharmony_ci        else
1111cb0ef41Sopenharmony_ci            felem_assign(tmp_felem(num), tmp_felem(0)); /* 1/Z(0) */
1121cb0ef41Sopenharmony_ci
1131cb0ef41Sopenharmony_ci        if (!felem_is_zero(Z(i))) {
1141cb0ef41Sopenharmony_ci            if (i > 0)
1151cb0ef41Sopenharmony_ci                /*
1161cb0ef41Sopenharmony_ci                 * For next iteration, replace tmp_felem(i-1) by its inverse
1171cb0ef41Sopenharmony_ci                 */
1181cb0ef41Sopenharmony_ci                felem_mul(tmp_felem(i - 1), tmp_felem(i), Z(i));
1191cb0ef41Sopenharmony_ci
1201cb0ef41Sopenharmony_ci            /*
1211cb0ef41Sopenharmony_ci             * Convert point (X, Y, Z) into affine form (X/(Z^2), Y/(Z^3), 1)
1221cb0ef41Sopenharmony_ci             */
1231cb0ef41Sopenharmony_ci            felem_square(Z(i), tmp_felem(num)); /* 1/(Z^2) */
1241cb0ef41Sopenharmony_ci            felem_mul(X(i), X(i), Z(i)); /* X/(Z^2) */
1251cb0ef41Sopenharmony_ci            felem_mul(Z(i), Z(i), tmp_felem(num)); /* 1/(Z^3) */
1261cb0ef41Sopenharmony_ci            felem_mul(Y(i), Y(i), Z(i)); /* Y/(Z^3) */
1271cb0ef41Sopenharmony_ci            felem_contract(X(i), X(i));
1281cb0ef41Sopenharmony_ci            felem_contract(Y(i), Y(i));
1291cb0ef41Sopenharmony_ci            felem_one(Z(i));
1301cb0ef41Sopenharmony_ci        } else {
1311cb0ef41Sopenharmony_ci            if (i > 0)
1321cb0ef41Sopenharmony_ci                /*
1331cb0ef41Sopenharmony_ci                 * For next iteration, replace tmp_felem(i-1) by its inverse
1341cb0ef41Sopenharmony_ci                 */
1351cb0ef41Sopenharmony_ci                felem_assign(tmp_felem(i - 1), tmp_felem(i));
1361cb0ef41Sopenharmony_ci        }
1371cb0ef41Sopenharmony_ci    }
1381cb0ef41Sopenharmony_ci}
1391cb0ef41Sopenharmony_ci
1401cb0ef41Sopenharmony_ci/*-
1411cb0ef41Sopenharmony_ci * This function looks at 5+1 scalar bits (5 current, 1 adjacent less
1421cb0ef41Sopenharmony_ci * significant bit), and recodes them into a signed digit for use in fast point
1431cb0ef41Sopenharmony_ci * multiplication: the use of signed rather than unsigned digits means that
1441cb0ef41Sopenharmony_ci * fewer points need to be precomputed, given that point inversion is easy
1451cb0ef41Sopenharmony_ci * (a precomputed point dP makes -dP available as well).
1461cb0ef41Sopenharmony_ci *
1471cb0ef41Sopenharmony_ci * BACKGROUND:
1481cb0ef41Sopenharmony_ci *
1491cb0ef41Sopenharmony_ci * Signed digits for multiplication were introduced by Booth ("A signed binary
1501cb0ef41Sopenharmony_ci * multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV,
1511cb0ef41Sopenharmony_ci * pt. 2 (1951), pp. 236-240), in that case for multiplication of integers.
1521cb0ef41Sopenharmony_ci * Booth's original encoding did not generally improve the density of nonzero
1531cb0ef41Sopenharmony_ci * digits over the binary representation, and was merely meant to simplify the
1541cb0ef41Sopenharmony_ci * handling of signed factors given in two's complement; but it has since been
1551cb0ef41Sopenharmony_ci * shown to be the basis of various signed-digit representations that do have
1561cb0ef41Sopenharmony_ci * further advantages, including the wNAF, using the following general approach:
1571cb0ef41Sopenharmony_ci *
1581cb0ef41Sopenharmony_ci * (1) Given a binary representation
1591cb0ef41Sopenharmony_ci *
1601cb0ef41Sopenharmony_ci *       b_k  ...  b_2  b_1  b_0,
1611cb0ef41Sopenharmony_ci *
1621cb0ef41Sopenharmony_ci *     of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1
1631cb0ef41Sopenharmony_ci *     by using bit-wise subtraction as follows:
1641cb0ef41Sopenharmony_ci *
1651cb0ef41Sopenharmony_ci *        b_k     b_(k-1)  ...  b_2  b_1  b_0
1661cb0ef41Sopenharmony_ci *      -         b_k      ...  b_3  b_2  b_1  b_0
1671cb0ef41Sopenharmony_ci *       -----------------------------------------
1681cb0ef41Sopenharmony_ci *        s_(k+1) s_k      ...  s_3  s_2  s_1  s_0
1691cb0ef41Sopenharmony_ci *
1701cb0ef41Sopenharmony_ci *     A left-shift followed by subtraction of the original value yields a new
1711cb0ef41Sopenharmony_ci *     representation of the same value, using signed bits s_i = b_(i-1) - b_i.
1721cb0ef41Sopenharmony_ci *     This representation from Booth's paper has since appeared in the
1731cb0ef41Sopenharmony_ci *     literature under a variety of different names including "reversed binary
1741cb0ef41Sopenharmony_ci *     form", "alternating greedy expansion", "mutual opposite form", and
1751cb0ef41Sopenharmony_ci *     "sign-alternating {+-1}-representation".
1761cb0ef41Sopenharmony_ci *
1771cb0ef41Sopenharmony_ci *     An interesting property is that among the nonzero bits, values 1 and -1
1781cb0ef41Sopenharmony_ci *     strictly alternate.
1791cb0ef41Sopenharmony_ci *
1801cb0ef41Sopenharmony_ci * (2) Various window schemes can be applied to the Booth representation of
1811cb0ef41Sopenharmony_ci *     integers: for example, right-to-left sliding windows yield the wNAF
1821cb0ef41Sopenharmony_ci *     (a signed-digit encoding independently discovered by various researchers
1831cb0ef41Sopenharmony_ci *     in the 1990s), and left-to-right sliding windows yield a left-to-right
1841cb0ef41Sopenharmony_ci *     equivalent of the wNAF (independently discovered by various researchers
1851cb0ef41Sopenharmony_ci *     around 2004).
1861cb0ef41Sopenharmony_ci *
1871cb0ef41Sopenharmony_ci * To prevent leaking information through side channels in point multiplication,
1881cb0ef41Sopenharmony_ci * we need to recode the given integer into a regular pattern: sliding windows
1891cb0ef41Sopenharmony_ci * as in wNAFs won't do, we need their fixed-window equivalent -- which is a few
1901cb0ef41Sopenharmony_ci * decades older: we'll be using the so-called "modified Booth encoding" due to
1911cb0ef41Sopenharmony_ci * MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49
1921cb0ef41Sopenharmony_ci * (1961), pp. 67-91), in a radix-2^5 setting.  That is, we always combine five
1931cb0ef41Sopenharmony_ci * signed bits into a signed digit:
1941cb0ef41Sopenharmony_ci *
1951cb0ef41Sopenharmony_ci *       s_(5j + 4) s_(5j + 3) s_(5j + 2) s_(5j + 1) s_(5j)
1961cb0ef41Sopenharmony_ci *
1971cb0ef41Sopenharmony_ci * The sign-alternating property implies that the resulting digit values are
1981cb0ef41Sopenharmony_ci * integers from -16 to 16.
1991cb0ef41Sopenharmony_ci *
2001cb0ef41Sopenharmony_ci * Of course, we don't actually need to compute the signed digits s_i as an
2011cb0ef41Sopenharmony_ci * intermediate step (that's just a nice way to see how this scheme relates
2021cb0ef41Sopenharmony_ci * to the wNAF): a direct computation obtains the recoded digit from the
2031cb0ef41Sopenharmony_ci * six bits b_(5j + 4) ... b_(5j - 1).
2041cb0ef41Sopenharmony_ci *
2051cb0ef41Sopenharmony_ci * This function takes those six bits as an integer (0 .. 63), writing the
2061cb0ef41Sopenharmony_ci * recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
2071cb0ef41Sopenharmony_ci * value, in the range 0 .. 16).  Note that this integer essentially provides
2081cb0ef41Sopenharmony_ci * the input bits "shifted to the left" by one position: for example, the input
2091cb0ef41Sopenharmony_ci * to compute the least significant recoded digit, given that there's no bit
2101cb0ef41Sopenharmony_ci * b_-1, has to be b_4 b_3 b_2 b_1 b_0 0.
2111cb0ef41Sopenharmony_ci *
2121cb0ef41Sopenharmony_ci */
2131cb0ef41Sopenharmony_civoid ossl_ec_GFp_nistp_recode_scalar_bits(unsigned char *sign,
2141cb0ef41Sopenharmony_ci                                          unsigned char *digit, unsigned char in)
2151cb0ef41Sopenharmony_ci{
2161cb0ef41Sopenharmony_ci    unsigned char s, d;
2171cb0ef41Sopenharmony_ci
2181cb0ef41Sopenharmony_ci    s = ~((in >> 5) - 1);       /* sets all bits to MSB(in), 'in' seen as
2191cb0ef41Sopenharmony_ci                                 * 6-bit value */
2201cb0ef41Sopenharmony_ci    d = (1 << 6) - in - 1;
2211cb0ef41Sopenharmony_ci    d = (d & s) | (in & ~s);
2221cb0ef41Sopenharmony_ci    d = (d >> 1) + (d & 1);
2231cb0ef41Sopenharmony_ci
2241cb0ef41Sopenharmony_ci    *sign = s & 1;
2251cb0ef41Sopenharmony_ci    *digit = d;
2261cb0ef41Sopenharmony_ci}
227