1// © 2016 and later: Unicode, Inc. and others. 2// License & terms of use: http://www.unicode.org/copyright.html 3/* 4 ********************************************************************** 5 * Copyright (c) 2003-2008, International Business Machines 6 * Corporation and others. All Rights Reserved. 7 ********************************************************************** 8 * Author: Alan Liu 9 * Created: September 2 2003 10 * Since: ICU 2.8 11 ********************************************************************** 12 */ 13 14#include "gregoimp.h" 15 16#if !UCONFIG_NO_FORMATTING 17 18#include "unicode/ucal.h" 19#include "uresimp.h" 20#include "cstring.h" 21#include "uassert.h" 22 23U_NAMESPACE_BEGIN 24 25int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) { 26 return (numerator >= 0) ? 27 numerator / denominator : ((numerator + 1) / denominator) - 1; 28} 29 30int64_t ClockMath::floorDivide(int64_t numerator, int64_t denominator) { 31 return (numerator >= 0) ? 32 numerator / denominator : ((numerator + 1) / denominator) - 1; 33} 34 35int32_t ClockMath::floorDivide(double numerator, int32_t denominator, 36 int32_t* remainder) { 37 // For an integer n and representable ⌊x/n⌋, ⌊RN(x/n)⌋=⌊x/n⌋, where RN is 38 // rounding to nearest. 39 double quotient = uprv_floor(numerator / denominator); 40 if (remainder != nullptr) { 41 // For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the 42 // expression `(int32_t) (x + n)` evaluated with rounding to nearest 43 // differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to 44 // n+⌈x⌉ = ⌊x+n⌋ + 1. Rewriting it as ⌊x⌋+n makes the addition exact. 45 *remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator)); 46 } 47 return (int32_t) quotient; 48} 49 50double ClockMath::floorDivide(double dividend, double divisor, 51 double* remainder) { 52 // Only designed to work for positive divisors 53 U_ASSERT(divisor > 0); 54 double quotient = floorDivide(dividend, divisor); 55 double r = dividend - (quotient * divisor); 56 // N.B. For certain large dividends, on certain platforms, there 57 // is a bug such that the quotient is off by one. If you doubt 58 // this to be true, set a breakpoint below and run cintltst. 59 if (r < 0 || r >= divisor) { 60 // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my 61 // machine (too high by one). 4.1792057231752762e+024 / 62 // 86400000.0 is wrong the other way (too low). 63 double q = quotient; 64 quotient += (r < 0) ? -1 : +1; 65 if (q == quotient) { 66 // For quotients > ~2^53, we won't be able to add or 67 // subtract one, since the LSB of the mantissa will be > 68 // 2^0; that is, the exponent (base 2) will be larger than 69 // the length, in bits, of the mantissa. In that case, we 70 // can't give a correct answer, so we set the remainder to 71 // zero. This has the desired effect of making extreme 72 // values give back an approximate answer rather than 73 // crashing. For example, UDate values above a ~10^25 74 // might all have a time of midnight. 75 r = 0; 76 } else { 77 r = dividend - (quotient * divisor); 78 } 79 } 80 U_ASSERT(0 <= r && r < divisor); 81 if (remainder != nullptr) { 82 *remainder = r; 83 } 84 return quotient; 85} 86 87const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian 88const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian 89 90const int16_t Grego::DAYS_BEFORE[24] = 91 {0,31,59,90,120,151,181,212,243,273,304,334, 92 0,31,60,91,121,152,182,213,244,274,305,335}; 93 94const int8_t Grego::MONTH_LENGTH[24] = 95 {31,28,31,30,31,30,31,31,30,31,30,31, 96 31,29,31,30,31,30,31,31,30,31,30,31}; 97 98double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) { 99 100 int32_t y = year - 1; 101 102 double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal 103 ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal 104 DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom 105 106 return julian - JULIAN_1970_CE; // JD => epoch day 107} 108 109void Grego::dayToFields(double day, int32_t& year, int32_t& month, 110 int32_t& dom, int32_t& dow, int32_t& doy) { 111 112 // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar) 113 day += JULIAN_1970_CE - JULIAN_1_CE; 114 115 // Convert from the day number to the multiple radix 116 // representation. We use 400-year, 100-year, and 4-year cycles. 117 // For example, the 4-year cycle has 4 years + 1 leap day; giving 118 // 1461 == 365*4 + 1 days. 119 int32_t n400 = ClockMath::floorDivide(day, 146097, &doy); // 400-year cycle length 120 int32_t n100 = ClockMath::floorDivide(doy, 36524, &doy); // 100-year cycle length 121 int32_t n4 = ClockMath::floorDivide(doy, 1461, &doy); // 4-year cycle length 122 int32_t n1 = ClockMath::floorDivide(doy, 365, &doy); 123 year = 400*n400 + 100*n100 + 4*n4 + n1; 124 if (n100 == 4 || n1 == 4) { 125 doy = 365; // Dec 31 at end of 4- or 400-year cycle 126 } else { 127 ++year; 128 } 129 130 UBool isLeap = isLeapYear(year); 131 132 // Gregorian day zero is a Monday. 133 dow = (int32_t) uprv_fmod(day + 1, 7); 134 dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY; 135 136 // Common Julian/Gregorian calculation 137 int32_t correction = 0; 138 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 139 if (doy >= march1) { 140 correction = isLeap ? 1 : 2; 141 } 142 month = (12 * (doy + correction) + 6) / 367; // zero-based month 143 dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM 144 doy++; // one-based doy 145} 146 147void Grego::timeToFields(UDate time, int32_t& year, int32_t& month, 148 int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) { 149 double millisInDay; 150 double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, &millisInDay); 151 mid = (int32_t)millisInDay; 152 dayToFields(day, year, month, dom, dow, doy); 153} 154 155int32_t Grego::dayOfWeek(double day) { 156 int32_t dow; 157 ClockMath::floorDivide(day + int{UCAL_THURSDAY}, 7, &dow); 158 return (dow == 0) ? UCAL_SATURDAY : dow; 159} 160 161int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) { 162 int32_t weekInMonth = (dom + 6)/7; 163 if (weekInMonth == 4) { 164 if (dom + 7 > monthLength(year, month)) { 165 weekInMonth = -1; 166 } 167 } else if (weekInMonth == 5) { 168 weekInMonth = -1; 169 } 170 return weekInMonth; 171} 172 173U_NAMESPACE_END 174 175#endif 176//eof 177