1// © 2016 and later: Unicode, Inc. and others. 2// License & terms of use: http://www.unicode.org/copyright.html 3/* 4****************************************************************************** 5* Copyright (C) 1997-2016, International Business Machines 6* Corporation and others. All Rights Reserved. 7****************************************************************************** 8* Date Name Description 9* 03/22/00 aliu Adapted from original C++ ICU Hashtable. 10* 07/06/01 aliu Modified to support int32_t keys on 11* platforms with sizeof(void*) < 32. 12****************************************************************************** 13*/ 14 15#include "uhash.h" 16#include "unicode/ustring.h" 17#include "cstring.h" 18#include "cmemory.h" 19#include "uassert.h" 20#include "ustr_imp.h" 21 22/* This hashtable is implemented as a double hash. All elements are 23 * stored in a single array with no secondary storage for collision 24 * resolution (no linked list, etc.). When there is a hash collision 25 * (when two unequal keys have the same hashcode) we resolve this by 26 * using a secondary hash. The secondary hash is an increment 27 * computed as a hash function (a different one) of the primary 28 * hashcode. This increment is added to the initial hash value to 29 * obtain further slots assigned to the same hash code. For this to 30 * work, the length of the array and the increment must be relatively 31 * prime. The easiest way to achieve this is to have the length of 32 * the array be prime, and the increment be any value from 33 * 1..length-1. 34 * 35 * Hashcodes are 32-bit integers. We make sure all hashcodes are 36 * non-negative by masking off the top bit. This has two effects: (1) 37 * modulo arithmetic is simplified. If we allowed negative hashcodes, 38 * then when we computed hashcode % length, we could get a negative 39 * result, which we would then have to adjust back into range. It's 40 * simpler to just make hashcodes non-negative. (2) It makes it easy 41 * to check for empty vs. occupied slots in the table. We just mark 42 * empty or deleted slots with a negative hashcode. 43 * 44 * The central function is _uhash_find(). This function looks for a 45 * slot matching the given key and hashcode. If one is found, it 46 * returns a pointer to that slot. If the table is full, and no match 47 * is found, it returns nullptr -- in theory. This would make the code 48 * more complicated, since all callers of _uhash_find() would then 49 * have to check for a nullptr result. To keep this from happening, we 50 * don't allow the table to fill. When there is only one 51 * empty/deleted slot left, uhash_put() will refuse to increase the 52 * count, and fail. This simplifies the code. In practice, one will 53 * seldom encounter this using default UHashtables. However, if a 54 * hashtable is set to a U_FIXED resize policy, or if memory is 55 * exhausted, then the table may fill. 56 * 57 * High and low water ratios control rehashing. They establish levels 58 * of fullness (from 0 to 1) outside of which the data array is 59 * reallocated and repopulated. Setting the low water ratio to zero 60 * means the table will never shrink. Setting the high water ratio to 61 * one means the table will never grow. The ratios should be 62 * coordinated with the ratio between successive elements of the 63 * PRIMES table, so that when the primeIndex is incremented or 64 * decremented during rehashing, it brings the ratio of count / length 65 * back into the desired range (between low and high water ratios). 66 */ 67 68/******************************************************************** 69 * PRIVATE Constants, Macros 70 ********************************************************************/ 71 72/* This is a list of non-consecutive primes chosen such that 73 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 74 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this 75 * ratio is changed, the low and high water ratios should also be 76 * adjusted to suit. 77 * 78 * These prime numbers were also chosen so that they are the largest 79 * prime number while being less than a power of two. 80 */ 81static const int32_t PRIMES[] = { 82 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 83 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, 84 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, 85 1073741789, 2147483647 /*, 4294967291 */ 86}; 87 88#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES) 89#define DEFAULT_PRIME_INDEX 4 90 91/* These ratios are tuned to the PRIMES array such that a resize 92 * places the table back into the zone of non-resizing. That is, 93 * after a call to _uhash_rehash(), a subsequent call to 94 * _uhash_rehash() should do nothing (should not churn). This is only 95 * a potential problem with U_GROW_AND_SHRINK. 96 */ 97static const float RESIZE_POLICY_RATIO_TABLE[6] = { 98 /* low, high water ratio */ 99 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ 100 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ 101 0.0F, 1.0F /* U_FIXED: Never change size */ 102}; 103 104/* 105 Invariants for hashcode values: 106 107 * DELETED < 0 108 * EMPTY < 0 109 * Real hashes >= 0 110 111 Hashcodes may not start out this way, but internally they are 112 adjusted so that they are always positive. We assume 32-bit 113 hashcodes; adjust these constants for other hashcode sizes. 114*/ 115#define HASH_DELETED ((int32_t) 0x80000000) 116#define HASH_EMPTY ((int32_t) HASH_DELETED + 1) 117 118#define IS_EMPTY_OR_DELETED(x) ((x) < 0) 119 120/* This macro expects a UHashTok.pointer as its keypointer and 121 valuepointer parameters */ 122#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \ 123 if (hash->keyDeleter != nullptr && keypointer != nullptr) { \ 124 (*hash->keyDeleter)(keypointer); \ 125 } \ 126 if (hash->valueDeleter != nullptr && valuepointer != nullptr) { \ 127 (*hash->valueDeleter)(valuepointer); \ 128 } \ 129} UPRV_BLOCK_MACRO_END 130 131/* 132 * Constants for hinting whether a key or value is an integer 133 * or a pointer. If a hint bit is zero, then the associated 134 * token is assumed to be an integer. 135 */ 136#define HINT_BOTH_INTEGERS (0) 137#define HINT_KEY_POINTER (1) 138#define HINT_VALUE_POINTER (2) 139#define HINT_ALLOW_ZERO (4) 140 141/******************************************************************** 142 * PRIVATE Implementation 143 ********************************************************************/ 144 145static UHashTok 146_uhash_setElement(UHashtable *hash, UHashElement* e, 147 int32_t hashcode, 148 UHashTok key, UHashTok value, int8_t hint) { 149 150 UHashTok oldValue = e->value; 151 if (hash->keyDeleter != nullptr && e->key.pointer != nullptr && 152 e->key.pointer != key.pointer) { /* Avoid double deletion */ 153 (*hash->keyDeleter)(e->key.pointer); 154 } 155 if (hash->valueDeleter != nullptr) { 156 if (oldValue.pointer != nullptr && 157 oldValue.pointer != value.pointer) { /* Avoid double deletion */ 158 (*hash->valueDeleter)(oldValue.pointer); 159 } 160 oldValue.pointer = nullptr; 161 } 162 /* Compilers should copy the UHashTok union correctly, but even if 163 * they do, memory heap tools (e.g. BoundsChecker) can get 164 * confused when a pointer is cloaked in a union and then copied. 165 * TO ALLEVIATE THIS, we use hints (based on what API the user is 166 * calling) to copy pointers when we know the user thinks 167 * something is a pointer. */ 168 if (hint & HINT_KEY_POINTER) { 169 e->key.pointer = key.pointer; 170 } else { 171 e->key = key; 172 } 173 if (hint & HINT_VALUE_POINTER) { 174 e->value.pointer = value.pointer; 175 } else { 176 e->value = value; 177 } 178 e->hashcode = hashcode; 179 return oldValue; 180} 181 182/** 183 * Assumes that the given element is not empty or deleted. 184 */ 185static UHashTok 186_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { 187 UHashTok empty; 188 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); 189 --hash->count; 190 empty.pointer = nullptr; empty.integer = 0; 191 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); 192} 193 194static void 195_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { 196 U_ASSERT(hash != nullptr); 197 U_ASSERT(((int32_t)policy) >= 0); 198 U_ASSERT(((int32_t)policy) < 3); 199 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; 200 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; 201} 202 203/** 204 * Allocate internal data array of a size determined by the given 205 * prime index. If the index is out of range it is pinned into range. 206 * If the allocation fails the status is set to 207 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In 208 * either case the previous array pointer is overwritten. 209 * 210 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. 211 */ 212static void 213_uhash_allocate(UHashtable *hash, 214 int32_t primeIndex, 215 UErrorCode *status) { 216 217 UHashElement *p, *limit; 218 UHashTok emptytok; 219 220 if (U_FAILURE(*status)) return; 221 222 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); 223 224 hash->primeIndex = static_cast<int8_t>(primeIndex); 225 hash->length = PRIMES[primeIndex]; 226 227 p = hash->elements = (UHashElement*) 228 uprv_malloc(sizeof(UHashElement) * hash->length); 229 230 if (hash->elements == nullptr) { 231 *status = U_MEMORY_ALLOCATION_ERROR; 232 return; 233 } 234 235 emptytok.pointer = nullptr; /* Only one of these two is needed */ 236 emptytok.integer = 0; /* but we don't know which one. */ 237 238 limit = p + hash->length; 239 while (p < limit) { 240 p->key = emptytok; 241 p->value = emptytok; 242 p->hashcode = HASH_EMPTY; 243 ++p; 244 } 245 246 hash->count = 0; 247 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); 248 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); 249} 250 251static UHashtable* 252_uhash_init(UHashtable *result, 253 UHashFunction *keyHash, 254 UKeyComparator *keyComp, 255 UValueComparator *valueComp, 256 int32_t primeIndex, 257 UErrorCode *status) 258{ 259 if (U_FAILURE(*status)) return nullptr; 260 U_ASSERT(keyHash != nullptr); 261 U_ASSERT(keyComp != nullptr); 262 263 result->keyHasher = keyHash; 264 result->keyComparator = keyComp; 265 result->valueComparator = valueComp; 266 result->keyDeleter = nullptr; 267 result->valueDeleter = nullptr; 268 result->allocated = false; 269 _uhash_internalSetResizePolicy(result, U_GROW); 270 271 _uhash_allocate(result, primeIndex, status); 272 273 if (U_FAILURE(*status)) { 274 return nullptr; 275 } 276 277 return result; 278} 279 280static UHashtable* 281_uhash_create(UHashFunction *keyHash, 282 UKeyComparator *keyComp, 283 UValueComparator *valueComp, 284 int32_t primeIndex, 285 UErrorCode *status) { 286 UHashtable *result; 287 288 if (U_FAILURE(*status)) return nullptr; 289 290 result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); 291 if (result == nullptr) { 292 *status = U_MEMORY_ALLOCATION_ERROR; 293 return nullptr; 294 } 295 296 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); 297 result->allocated = true; 298 299 if (U_FAILURE(*status)) { 300 uprv_free(result); 301 return nullptr; 302 } 303 304 return result; 305} 306 307/** 308 * Look for a key in the table, or if no such key exists, the first 309 * empty slot matching the given hashcode. Keys are compared using 310 * the keyComparator function. 311 * 312 * First find the start position, which is the hashcode modulo 313 * the length. Test it to see if it is: 314 * 315 * a. identical: First check the hash values for a quick check, 316 * then compare keys for equality using keyComparator. 317 * b. deleted 318 * c. empty 319 * 320 * Stop if it is identical or empty, otherwise continue by adding a 321 * "jump" value (moduloing by the length again to keep it within 322 * range) and retesting. For efficiency, there need enough empty 323 * values so that the searches stop within a reasonable amount of time. 324 * This can be changed by changing the high/low water marks. 325 * 326 * In theory, this function can return nullptr, if it is full (no empty 327 * or deleted slots) and if no matching key is found. In practice, we 328 * prevent this elsewhere (in uhash_put) by making sure the last slot 329 * in the table is never filled. 330 * 331 * The size of the table should be prime for this algorithm to work; 332 * otherwise we are not guaranteed that the jump value (the secondary 333 * hash) is relatively prime to the table length. 334 */ 335static UHashElement* 336_uhash_find(const UHashtable *hash, UHashTok key, 337 int32_t hashcode) { 338 339 int32_t firstDeleted = -1; /* assume invalid index */ 340 int32_t theIndex, startIndex; 341 int32_t jump = 0; /* lazy evaluate */ 342 int32_t tableHash; 343 UHashElement *elements = hash->elements; 344 345 hashcode &= 0x7FFFFFFF; /* must be positive */ 346 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; 347 348 do { 349 tableHash = elements[theIndex].hashcode; 350 if (tableHash == hashcode) { /* quick check */ 351 if ((*hash->keyComparator)(key, elements[theIndex].key)) { 352 return &(elements[theIndex]); 353 } 354 } else if (!IS_EMPTY_OR_DELETED(tableHash)) { 355 /* We have hit a slot which contains a key-value pair, 356 * but for which the hash code does not match. Keep 357 * looking. 358 */ 359 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ 360 break; 361 } else if (firstDeleted < 0) { /* remember first deleted */ 362 firstDeleted = theIndex; 363 } 364 if (jump == 0) { /* lazy compute jump */ 365 /* The jump value must be relatively prime to the table 366 * length. As long as the length is prime, then any value 367 * 1..length-1 will be relatively prime to it. 368 */ 369 jump = (hashcode % (hash->length - 1)) + 1; 370 } 371 theIndex = (theIndex + jump) % hash->length; 372 } while (theIndex != startIndex); 373 374 if (firstDeleted >= 0) { 375 theIndex = firstDeleted; /* reset if had deleted slot */ 376 } else if (tableHash != HASH_EMPTY) { 377 /* We get to this point if the hashtable is full (no empty or 378 * deleted slots), and we've failed to find a match. THIS 379 * WILL NEVER HAPPEN as long as uhash_put() makes sure that 380 * count is always < length. 381 */ 382 UPRV_UNREACHABLE_EXIT; 383 } 384 return &(elements[theIndex]); 385} 386 387/** 388 * Attempt to grow or shrink the data arrays in order to make the 389 * count fit between the high and low water marks. hash_put() and 390 * hash_remove() call this method when the count exceeds the high or 391 * low water marks. This method may do nothing, if memory allocation 392 * fails, or if the count is already in range, or if the length is 393 * already at the low or high limit. In any case, upon return the 394 * arrays will be valid. 395 */ 396static void 397_uhash_rehash(UHashtable *hash, UErrorCode *status) { 398 399 UHashElement *old = hash->elements; 400 int32_t oldLength = hash->length; 401 int32_t newPrimeIndex = hash->primeIndex; 402 int32_t i; 403 404 if (hash->count > hash->highWaterMark) { 405 if (++newPrimeIndex >= PRIMES_LENGTH) { 406 return; 407 } 408 } else if (hash->count < hash->lowWaterMark) { 409 if (--newPrimeIndex < 0) { 410 return; 411 } 412 } else { 413 return; 414 } 415 416 _uhash_allocate(hash, newPrimeIndex, status); 417 418 if (U_FAILURE(*status)) { 419 hash->elements = old; 420 hash->length = oldLength; 421 return; 422 } 423 424 for (i = oldLength - 1; i >= 0; --i) { 425 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { 426 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); 427 U_ASSERT(e != nullptr); 428 U_ASSERT(e->hashcode == HASH_EMPTY); 429 e->key = old[i].key; 430 e->value = old[i].value; 431 e->hashcode = old[i].hashcode; 432 ++hash->count; 433 } 434 } 435 436 uprv_free(old); 437} 438 439static UHashTok 440_uhash_remove(UHashtable *hash, 441 UHashTok key) { 442 /* First find the position of the key in the table. If the object 443 * has not been removed already, remove it. If the user wanted 444 * keys deleted, then delete it also. We have to put a special 445 * hashcode in that position that means that something has been 446 * deleted, since when we do a find, we have to continue PAST any 447 * deleted values. 448 */ 449 UHashTok result; 450 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); 451 U_ASSERT(e != nullptr); 452 result.pointer = nullptr; 453 result.integer = 0; 454 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { 455 result = _uhash_internalRemoveElement(hash, e); 456 if (hash->count < hash->lowWaterMark) { 457 UErrorCode status = U_ZERO_ERROR; 458 _uhash_rehash(hash, &status); 459 } 460 } 461 return result; 462} 463 464static UHashTok 465_uhash_put(UHashtable *hash, 466 UHashTok key, 467 UHashTok value, 468 int8_t hint, 469 UErrorCode *status) { 470 471 /* Put finds the position in the table for the new value. If the 472 * key is already in the table, it is deleted, if there is a 473 * non-nullptr keyDeleter. Then the key, the hash and the value are 474 * all put at the position in their respective arrays. 475 */ 476 int32_t hashcode; 477 UHashElement* e; 478 UHashTok emptytok; 479 480 if (U_FAILURE(*status)) { 481 goto err; 482 } 483 U_ASSERT(hash != nullptr); 484 if ((hint & HINT_VALUE_POINTER) ? 485 value.pointer == nullptr : 486 value.integer == 0 && (hint & HINT_ALLOW_ZERO) == 0) { 487 /* Disallow storage of nullptr values, since nullptr is returned by 488 * get() to indicate an absent key. Storing nullptr == removing. 489 */ 490 return _uhash_remove(hash, key); 491 } 492 if (hash->count > hash->highWaterMark) { 493 _uhash_rehash(hash, status); 494 if (U_FAILURE(*status)) { 495 goto err; 496 } 497 } 498 499 hashcode = (*hash->keyHasher)(key); 500 e = _uhash_find(hash, key, hashcode); 501 U_ASSERT(e != nullptr); 502 503 if (IS_EMPTY_OR_DELETED(e->hashcode)) { 504 /* Important: We must never actually fill the table up. If we 505 * do so, then _uhash_find() will return nullptr, and we'll have 506 * to check for nullptr after every call to _uhash_find(). To 507 * avoid this we make sure there is always at least one empty 508 * or deleted slot in the table. This only is a problem if we 509 * are out of memory and rehash isn't working. 510 */ 511 ++hash->count; 512 if (hash->count == hash->length) { 513 /* Don't allow count to reach length */ 514 --hash->count; 515 *status = U_MEMORY_ALLOCATION_ERROR; 516 goto err; 517 } 518 } 519 520 /* We must in all cases handle storage properly. If there was an 521 * old key, then it must be deleted (if the deleter != nullptr). 522 * Make hashcodes stored in table positive. 523 */ 524 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); 525 526 err: 527 /* If the deleters are non-nullptr, this method adopts its key and/or 528 * value arguments, and we must be sure to delete the key and/or 529 * value in all cases, even upon failure. 530 */ 531 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); 532 emptytok.pointer = nullptr; emptytok.integer = 0; 533 return emptytok; 534} 535 536 537/******************************************************************** 538 * PUBLIC API 539 ********************************************************************/ 540 541U_CAPI UHashtable* U_EXPORT2 542uhash_open(UHashFunction *keyHash, 543 UKeyComparator *keyComp, 544 UValueComparator *valueComp, 545 UErrorCode *status) { 546 547 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); 548} 549 550U_CAPI UHashtable* U_EXPORT2 551uhash_openSize(UHashFunction *keyHash, 552 UKeyComparator *keyComp, 553 UValueComparator *valueComp, 554 int32_t size, 555 UErrorCode *status) { 556 557 /* Find the smallest index i for which PRIMES[i] >= size. */ 558 int32_t i = 0; 559 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { 560 ++i; 561 } 562 563 return _uhash_create(keyHash, keyComp, valueComp, i, status); 564} 565 566U_CAPI UHashtable* U_EXPORT2 567uhash_init(UHashtable *fillinResult, 568 UHashFunction *keyHash, 569 UKeyComparator *keyComp, 570 UValueComparator *valueComp, 571 UErrorCode *status) { 572 573 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); 574} 575 576U_CAPI UHashtable* U_EXPORT2 577uhash_initSize(UHashtable *fillinResult, 578 UHashFunction *keyHash, 579 UKeyComparator *keyComp, 580 UValueComparator *valueComp, 581 int32_t size, 582 UErrorCode *status) { 583 584 // Find the smallest index i for which PRIMES[i] >= size. 585 int32_t i = 0; 586 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { 587 ++i; 588 } 589 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status); 590} 591 592U_CAPI void U_EXPORT2 593uhash_close(UHashtable *hash) { 594 if (hash == nullptr) { 595 return; 596 } 597 if (hash->elements != nullptr) { 598 if (hash->keyDeleter != nullptr || hash->valueDeleter != nullptr) { 599 int32_t pos=UHASH_FIRST; 600 UHashElement *e; 601 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != nullptr) { 602 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); 603 } 604 } 605 uprv_free(hash->elements); 606 hash->elements = nullptr; 607 } 608 if (hash->allocated) { 609 uprv_free(hash); 610 } 611} 612 613U_CAPI UHashFunction *U_EXPORT2 614uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { 615 UHashFunction *result = hash->keyHasher; 616 hash->keyHasher = fn; 617 return result; 618} 619 620U_CAPI UKeyComparator *U_EXPORT2 621uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { 622 UKeyComparator *result = hash->keyComparator; 623 hash->keyComparator = fn; 624 return result; 625} 626U_CAPI UValueComparator *U_EXPORT2 627uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ 628 UValueComparator *result = hash->valueComparator; 629 hash->valueComparator = fn; 630 return result; 631} 632 633U_CAPI UObjectDeleter *U_EXPORT2 634uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { 635 UObjectDeleter *result = hash->keyDeleter; 636 hash->keyDeleter = fn; 637 return result; 638} 639 640U_CAPI UObjectDeleter *U_EXPORT2 641uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { 642 UObjectDeleter *result = hash->valueDeleter; 643 hash->valueDeleter = fn; 644 return result; 645} 646 647U_CAPI void U_EXPORT2 648uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { 649 UErrorCode status = U_ZERO_ERROR; 650 _uhash_internalSetResizePolicy(hash, policy); 651 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); 652 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); 653 _uhash_rehash(hash, &status); 654} 655 656U_CAPI int32_t U_EXPORT2 657uhash_count(const UHashtable *hash) { 658 return hash->count; 659} 660 661U_CAPI void* U_EXPORT2 662uhash_get(const UHashtable *hash, 663 const void* key) { 664 UHashTok keyholder; 665 keyholder.pointer = (void*) key; 666 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; 667} 668 669U_CAPI void* U_EXPORT2 670uhash_iget(const UHashtable *hash, 671 int32_t key) { 672 UHashTok keyholder; 673 keyholder.integer = key; 674 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; 675} 676 677U_CAPI int32_t U_EXPORT2 678uhash_geti(const UHashtable *hash, 679 const void* key) { 680 UHashTok keyholder; 681 keyholder.pointer = (void*) key; 682 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; 683} 684 685U_CAPI int32_t U_EXPORT2 686uhash_igeti(const UHashtable *hash, 687 int32_t key) { 688 UHashTok keyholder; 689 keyholder.integer = key; 690 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; 691} 692 693U_CAPI int32_t U_EXPORT2 694uhash_getiAndFound(const UHashtable *hash, 695 const void *key, 696 UBool *found) { 697 UHashTok keyholder; 698 keyholder.pointer = (void *)key; 699 const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 700 *found = !IS_EMPTY_OR_DELETED(e->hashcode); 701 return e->value.integer; 702} 703 704U_CAPI int32_t U_EXPORT2 705uhash_igetiAndFound(const UHashtable *hash, 706 int32_t key, 707 UBool *found) { 708 UHashTok keyholder; 709 keyholder.integer = key; 710 const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 711 *found = !IS_EMPTY_OR_DELETED(e->hashcode); 712 return e->value.integer; 713} 714 715U_CAPI void* U_EXPORT2 716uhash_put(UHashtable *hash, 717 void* key, 718 void* value, 719 UErrorCode *status) { 720 UHashTok keyholder, valueholder; 721 keyholder.pointer = key; 722 valueholder.pointer = value; 723 return _uhash_put(hash, keyholder, valueholder, 724 HINT_KEY_POINTER | HINT_VALUE_POINTER, 725 status).pointer; 726} 727 728U_CAPI void* U_EXPORT2 729uhash_iput(UHashtable *hash, 730 int32_t key, 731 void* value, 732 UErrorCode *status) { 733 UHashTok keyholder, valueholder; 734 keyholder.integer = key; 735 valueholder.pointer = value; 736 return _uhash_put(hash, keyholder, valueholder, 737 HINT_VALUE_POINTER, 738 status).pointer; 739} 740 741U_CAPI int32_t U_EXPORT2 742uhash_puti(UHashtable *hash, 743 void* key, 744 int32_t value, 745 UErrorCode *status) { 746 UHashTok keyholder, valueholder; 747 keyholder.pointer = key; 748 valueholder.integer = value; 749 return _uhash_put(hash, keyholder, valueholder, 750 HINT_KEY_POINTER, 751 status).integer; 752} 753 754 755U_CAPI int32_t U_EXPORT2 756uhash_iputi(UHashtable *hash, 757 int32_t key, 758 int32_t value, 759 UErrorCode *status) { 760 UHashTok keyholder, valueholder; 761 keyholder.integer = key; 762 valueholder.integer = value; 763 return _uhash_put(hash, keyholder, valueholder, 764 HINT_BOTH_INTEGERS, 765 status).integer; 766} 767 768U_CAPI int32_t U_EXPORT2 769uhash_putiAllowZero(UHashtable *hash, 770 void *key, 771 int32_t value, 772 UErrorCode *status) { 773 UHashTok keyholder, valueholder; 774 keyholder.pointer = key; 775 valueholder.integer = value; 776 return _uhash_put(hash, keyholder, valueholder, 777 HINT_KEY_POINTER | HINT_ALLOW_ZERO, 778 status).integer; 779} 780 781 782U_CAPI int32_t U_EXPORT2 783uhash_iputiAllowZero(UHashtable *hash, 784 int32_t key, 785 int32_t value, 786 UErrorCode *status) { 787 UHashTok keyholder, valueholder; 788 keyholder.integer = key; 789 valueholder.integer = value; 790 return _uhash_put(hash, keyholder, valueholder, 791 HINT_BOTH_INTEGERS | HINT_ALLOW_ZERO, 792 status).integer; 793} 794 795U_CAPI void* U_EXPORT2 796uhash_remove(UHashtable *hash, 797 const void* key) { 798 UHashTok keyholder; 799 keyholder.pointer = (void*) key; 800 return _uhash_remove(hash, keyholder).pointer; 801} 802 803U_CAPI void* U_EXPORT2 804uhash_iremove(UHashtable *hash, 805 int32_t key) { 806 UHashTok keyholder; 807 keyholder.integer = key; 808 return _uhash_remove(hash, keyholder).pointer; 809} 810 811U_CAPI int32_t U_EXPORT2 812uhash_removei(UHashtable *hash, 813 const void* key) { 814 UHashTok keyholder; 815 keyholder.pointer = (void*) key; 816 return _uhash_remove(hash, keyholder).integer; 817} 818 819U_CAPI int32_t U_EXPORT2 820uhash_iremovei(UHashtable *hash, 821 int32_t key) { 822 UHashTok keyholder; 823 keyholder.integer = key; 824 return _uhash_remove(hash, keyholder).integer; 825} 826 827U_CAPI void U_EXPORT2 828uhash_removeAll(UHashtable *hash) { 829 int32_t pos = UHASH_FIRST; 830 const UHashElement *e; 831 U_ASSERT(hash != nullptr); 832 if (hash->count != 0) { 833 while ((e = uhash_nextElement(hash, &pos)) != nullptr) { 834 uhash_removeElement(hash, e); 835 } 836 } 837 U_ASSERT(hash->count == 0); 838} 839 840U_CAPI UBool U_EXPORT2 841uhash_containsKey(const UHashtable *hash, const void *key) { 842 UHashTok keyholder; 843 keyholder.pointer = (void *)key; 844 const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 845 return !IS_EMPTY_OR_DELETED(e->hashcode); 846} 847 848/** 849 * Returns true if the UHashtable contains an item with this integer key. 850 * 851 * @param hash The target UHashtable. 852 * @param key An integer key stored in a hashtable 853 * @return true if the key is found. 854 */ 855U_CAPI UBool U_EXPORT2 856uhash_icontainsKey(const UHashtable *hash, int32_t key) { 857 UHashTok keyholder; 858 keyholder.integer = key; 859 const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 860 return !IS_EMPTY_OR_DELETED(e->hashcode); 861} 862 863U_CAPI const UHashElement* U_EXPORT2 864uhash_find(const UHashtable *hash, const void* key) { 865 UHashTok keyholder; 866 const UHashElement *e; 867 keyholder.pointer = (void*) key; 868 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); 869 return IS_EMPTY_OR_DELETED(e->hashcode) ? nullptr : e; 870} 871 872U_CAPI const UHashElement* U_EXPORT2 873uhash_nextElement(const UHashtable *hash, int32_t *pos) { 874 /* Walk through the array until we find an element that is not 875 * EMPTY and not DELETED. 876 */ 877 int32_t i; 878 U_ASSERT(hash != nullptr); 879 for (i = *pos + 1; i < hash->length; ++i) { 880 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { 881 *pos = i; 882 return &(hash->elements[i]); 883 } 884 } 885 886 /* No more elements */ 887 return nullptr; 888} 889 890U_CAPI void* U_EXPORT2 891uhash_removeElement(UHashtable *hash, const UHashElement* e) { 892 U_ASSERT(hash != nullptr); 893 U_ASSERT(e != nullptr); 894 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { 895 UHashElement *nce = (UHashElement *)e; 896 return _uhash_internalRemoveElement(hash, nce).pointer; 897 } 898 return nullptr; 899} 900 901/******************************************************************** 902 * UHashTok convenience 903 ********************************************************************/ 904 905/** 906 * Return a UHashTok for an integer. 907 */ 908/*U_CAPI UHashTok U_EXPORT2 909uhash_toki(int32_t i) { 910 UHashTok tok; 911 tok.integer = i; 912 return tok; 913}*/ 914 915/** 916 * Return a UHashTok for a pointer. 917 */ 918/*U_CAPI UHashTok U_EXPORT2 919uhash_tokp(void* p) { 920 UHashTok tok; 921 tok.pointer = p; 922 return tok; 923}*/ 924 925/******************************************************************** 926 * PUBLIC Key Hash Functions 927 ********************************************************************/ 928 929U_CAPI int32_t U_EXPORT2 930uhash_hashUChars(const UHashTok key) { 931 const char16_t *s = (const char16_t *)key.pointer; 932 return s == nullptr ? 0 : ustr_hashUCharsN(s, u_strlen(s)); 933} 934 935U_CAPI int32_t U_EXPORT2 936uhash_hashChars(const UHashTok key) { 937 const char *s = (const char *)key.pointer; 938 return s == nullptr ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s)))); 939} 940 941U_CAPI int32_t U_EXPORT2 942uhash_hashIChars(const UHashTok key) { 943 const char *s = (const char *)key.pointer; 944 return s == nullptr ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s))); 945} 946 947U_CAPI UBool U_EXPORT2 948uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ 949 int32_t count1, count2, pos, i; 950 951 if(hash1==hash2){ 952 return true; 953 } 954 955 /* 956 * Make sure that we are comparing 2 valid hashes of the same type 957 * with valid comparison functions. 958 * Without valid comparison functions, a binary comparison 959 * of the hash values will yield random results on machines 960 * with 64-bit pointers and 32-bit integer hashes. 961 * A valueComparator is normally optional. 962 */ 963 if (hash1==nullptr || hash2==nullptr || 964 hash1->keyComparator != hash2->keyComparator || 965 hash1->valueComparator != hash2->valueComparator || 966 hash1->valueComparator == nullptr) 967 { 968 /* 969 Normally we would return an error here about incompatible hash tables, 970 but we return false instead. 971 */ 972 return false; 973 } 974 975 count1 = uhash_count(hash1); 976 count2 = uhash_count(hash2); 977 if(count1!=count2){ 978 return false; 979 } 980 981 pos=UHASH_FIRST; 982 for(i=0; i<count1; i++){ 983 const UHashElement* elem1 = uhash_nextElement(hash1, &pos); 984 const UHashTok key1 = elem1->key; 985 const UHashTok val1 = elem1->value; 986 /* here the keys are not compared, instead the key form hash1 is used to fetch 987 * value from hash2. If the hashes are equal then then both hashes should 988 * contain equal values for the same key! 989 */ 990 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); 991 const UHashTok val2 = elem2->value; 992 if(hash1->valueComparator(val1, val2)==false){ 993 return false; 994 } 995 } 996 return true; 997} 998 999/******************************************************************** 1000 * PUBLIC Comparator Functions 1001 ********************************************************************/ 1002 1003U_CAPI UBool U_EXPORT2 1004uhash_compareUChars(const UHashTok key1, const UHashTok key2) { 1005 const char16_t *p1 = (const char16_t*) key1.pointer; 1006 const char16_t *p2 = (const char16_t*) key2.pointer; 1007 if (p1 == p2) { 1008 return true; 1009 } 1010 if (p1 == nullptr || p2 == nullptr) { 1011 return false; 1012 } 1013 while (*p1 != 0 && *p1 == *p2) { 1014 ++p1; 1015 ++p2; 1016 } 1017 return (UBool)(*p1 == *p2); 1018} 1019 1020U_CAPI UBool U_EXPORT2 1021uhash_compareChars(const UHashTok key1, const UHashTok key2) { 1022 const char *p1 = (const char*) key1.pointer; 1023 const char *p2 = (const char*) key2.pointer; 1024 if (p1 == p2) { 1025 return true; 1026 } 1027 if (p1 == nullptr || p2 == nullptr) { 1028 return false; 1029 } 1030 while (*p1 != 0 && *p1 == *p2) { 1031 ++p1; 1032 ++p2; 1033 } 1034 return (UBool)(*p1 == *p2); 1035} 1036 1037U_CAPI UBool U_EXPORT2 1038uhash_compareIChars(const UHashTok key1, const UHashTok key2) { 1039 const char *p1 = (const char*) key1.pointer; 1040 const char *p2 = (const char*) key2.pointer; 1041 if (p1 == p2) { 1042 return true; 1043 } 1044 if (p1 == nullptr || p2 == nullptr) { 1045 return false; 1046 } 1047 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { 1048 ++p1; 1049 ++p2; 1050 } 1051 return (UBool)(*p1 == *p2); 1052} 1053 1054/******************************************************************** 1055 * PUBLIC int32_t Support Functions 1056 ********************************************************************/ 1057 1058U_CAPI int32_t U_EXPORT2 1059uhash_hashLong(const UHashTok key) { 1060 return key.integer; 1061} 1062 1063U_CAPI UBool U_EXPORT2 1064uhash_compareLong(const UHashTok key1, const UHashTok key2) { 1065 return (UBool)(key1.integer == key2.integer); 1066} 1067