1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4******************************************************************************
5*   Copyright (C) 1997-2016, International Business Machines
6*   Corporation and others.  All Rights Reserved.
7******************************************************************************
8*   Date        Name        Description
9*   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
10*   07/06/01    aliu        Modified to support int32_t keys on
11*                           platforms with sizeof(void*) < 32.
12******************************************************************************
13*/
14
15#include "uhash.h"
16#include "unicode/ustring.h"
17#include "cstring.h"
18#include "cmemory.h"
19#include "uassert.h"
20#include "ustr_imp.h"
21
22/* This hashtable is implemented as a double hash.  All elements are
23 * stored in a single array with no secondary storage for collision
24 * resolution (no linked list, etc.).  When there is a hash collision
25 * (when two unequal keys have the same hashcode) we resolve this by
26 * using a secondary hash.  The secondary hash is an increment
27 * computed as a hash function (a different one) of the primary
28 * hashcode.  This increment is added to the initial hash value to
29 * obtain further slots assigned to the same hash code.  For this to
30 * work, the length of the array and the increment must be relatively
31 * prime.  The easiest way to achieve this is to have the length of
32 * the array be prime, and the increment be any value from
33 * 1..length-1.
34 *
35 * Hashcodes are 32-bit integers.  We make sure all hashcodes are
36 * non-negative by masking off the top bit.  This has two effects: (1)
37 * modulo arithmetic is simplified.  If we allowed negative hashcodes,
38 * then when we computed hashcode % length, we could get a negative
39 * result, which we would then have to adjust back into range.  It's
40 * simpler to just make hashcodes non-negative. (2) It makes it easy
41 * to check for empty vs. occupied slots in the table.  We just mark
42 * empty or deleted slots with a negative hashcode.
43 *
44 * The central function is _uhash_find().  This function looks for a
45 * slot matching the given key and hashcode.  If one is found, it
46 * returns a pointer to that slot.  If the table is full, and no match
47 * is found, it returns nullptr -- in theory.  This would make the code
48 * more complicated, since all callers of _uhash_find() would then
49 * have to check for a nullptr result.  To keep this from happening, we
50 * don't allow the table to fill.  When there is only one
51 * empty/deleted slot left, uhash_put() will refuse to increase the
52 * count, and fail.  This simplifies the code.  In practice, one will
53 * seldom encounter this using default UHashtables.  However, if a
54 * hashtable is set to a U_FIXED resize policy, or if memory is
55 * exhausted, then the table may fill.
56 *
57 * High and low water ratios control rehashing.  They establish levels
58 * of fullness (from 0 to 1) outside of which the data array is
59 * reallocated and repopulated.  Setting the low water ratio to zero
60 * means the table will never shrink.  Setting the high water ratio to
61 * one means the table will never grow.  The ratios should be
62 * coordinated with the ratio between successive elements of the
63 * PRIMES table, so that when the primeIndex is incremented or
64 * decremented during rehashing, it brings the ratio of count / length
65 * back into the desired range (between low and high water ratios).
66 */
67
68/********************************************************************
69 * PRIVATE Constants, Macros
70 ********************************************************************/
71
72/* This is a list of non-consecutive primes chosen such that
73 * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
74 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
75 * ratio is changed, the low and high water ratios should also be
76 * adjusted to suit.
77 *
78 * These prime numbers were also chosen so that they are the largest
79 * prime number while being less than a power of two.
80 */
81static const int32_t PRIMES[] = {
82    7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
83    65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84    16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85    1073741789, 2147483647 /*, 4294967291 */
86};
87
88#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89#define DEFAULT_PRIME_INDEX 4
90
91/* These ratios are tuned to the PRIMES array such that a resize
92 * places the table back into the zone of non-resizing.  That is,
93 * after a call to _uhash_rehash(), a subsequent call to
94 * _uhash_rehash() should do nothing (should not churn).  This is only
95 * a potential problem with U_GROW_AND_SHRINK.
96 */
97static const float RESIZE_POLICY_RATIO_TABLE[6] = {
98    /* low, high water ratio */
99    0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
100    0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101    0.0F, 1.0F  /* U_FIXED: Never change size */
102};
103
104/*
105  Invariants for hashcode values:
106
107  * DELETED < 0
108  * EMPTY < 0
109  * Real hashes >= 0
110
111  Hashcodes may not start out this way, but internally they are
112  adjusted so that they are always positive.  We assume 32-bit
113  hashcodes; adjust these constants for other hashcode sizes.
114*/
115#define HASH_DELETED    ((int32_t) 0x80000000)
116#define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
117
118#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
119
120/* This macro expects a UHashTok.pointer as its keypointer and
121   valuepointer parameters */
122#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \
123    if (hash->keyDeleter != nullptr && keypointer != nullptr) { \
124        (*hash->keyDeleter)(keypointer); \
125    } \
126    if (hash->valueDeleter != nullptr && valuepointer != nullptr) { \
127        (*hash->valueDeleter)(valuepointer); \
128    } \
129} UPRV_BLOCK_MACRO_END
130
131/*
132 * Constants for hinting whether a key or value is an integer
133 * or a pointer.  If a hint bit is zero, then the associated
134 * token is assumed to be an integer.
135 */
136#define HINT_BOTH_INTEGERS (0)
137#define HINT_KEY_POINTER   (1)
138#define HINT_VALUE_POINTER (2)
139#define HINT_ALLOW_ZERO    (4)
140
141/********************************************************************
142 * PRIVATE Implementation
143 ********************************************************************/
144
145static UHashTok
146_uhash_setElement(UHashtable *hash, UHashElement* e,
147                  int32_t hashcode,
148                  UHashTok key, UHashTok value, int8_t hint) {
149
150    UHashTok oldValue = e->value;
151    if (hash->keyDeleter != nullptr && e->key.pointer != nullptr &&
152        e->key.pointer != key.pointer) { /* Avoid double deletion */
153        (*hash->keyDeleter)(e->key.pointer);
154    }
155    if (hash->valueDeleter != nullptr) {
156        if (oldValue.pointer != nullptr &&
157            oldValue.pointer != value.pointer) { /* Avoid double deletion */
158            (*hash->valueDeleter)(oldValue.pointer);
159        }
160        oldValue.pointer = nullptr;
161    }
162    /* Compilers should copy the UHashTok union correctly, but even if
163     * they do, memory heap tools (e.g. BoundsChecker) can get
164     * confused when a pointer is cloaked in a union and then copied.
165     * TO ALLEVIATE THIS, we use hints (based on what API the user is
166     * calling) to copy pointers when we know the user thinks
167     * something is a pointer. */
168    if (hint & HINT_KEY_POINTER) {
169        e->key.pointer = key.pointer;
170    } else {
171        e->key = key;
172    }
173    if (hint & HINT_VALUE_POINTER) {
174        e->value.pointer = value.pointer;
175    } else {
176        e->value = value;
177    }
178    e->hashcode = hashcode;
179    return oldValue;
180}
181
182/**
183 * Assumes that the given element is not empty or deleted.
184 */
185static UHashTok
186_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
187    UHashTok empty;
188    U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
189    --hash->count;
190    empty.pointer = nullptr; empty.integer = 0;
191    return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
192}
193
194static void
195_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
196    U_ASSERT(hash != nullptr);
197    U_ASSERT(((int32_t)policy) >= 0);
198    U_ASSERT(((int32_t)policy) < 3);
199    hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
200    hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
201}
202
203/**
204 * Allocate internal data array of a size determined by the given
205 * prime index.  If the index is out of range it is pinned into range.
206 * If the allocation fails the status is set to
207 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
208 * either case the previous array pointer is overwritten.
209 *
210 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
211 */
212static void
213_uhash_allocate(UHashtable *hash,
214                int32_t primeIndex,
215                UErrorCode *status) {
216
217    UHashElement *p, *limit;
218    UHashTok emptytok;
219
220    if (U_FAILURE(*status)) return;
221
222    U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
223
224    hash->primeIndex = static_cast<int8_t>(primeIndex);
225    hash->length = PRIMES[primeIndex];
226
227    p = hash->elements = (UHashElement*)
228        uprv_malloc(sizeof(UHashElement) * hash->length);
229
230    if (hash->elements == nullptr) {
231        *status = U_MEMORY_ALLOCATION_ERROR;
232        return;
233    }
234
235    emptytok.pointer = nullptr; /* Only one of these two is needed */
236    emptytok.integer = 0;    /* but we don't know which one. */
237
238    limit = p + hash->length;
239    while (p < limit) {
240        p->key = emptytok;
241        p->value = emptytok;
242        p->hashcode = HASH_EMPTY;
243        ++p;
244    }
245
246    hash->count = 0;
247    hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
248    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
249}
250
251static UHashtable*
252_uhash_init(UHashtable *result,
253              UHashFunction *keyHash,
254              UKeyComparator *keyComp,
255              UValueComparator *valueComp,
256              int32_t primeIndex,
257              UErrorCode *status)
258{
259    if (U_FAILURE(*status)) return nullptr;
260    U_ASSERT(keyHash != nullptr);
261    U_ASSERT(keyComp != nullptr);
262
263    result->keyHasher       = keyHash;
264    result->keyComparator   = keyComp;
265    result->valueComparator = valueComp;
266    result->keyDeleter      = nullptr;
267    result->valueDeleter    = nullptr;
268    result->allocated       = false;
269    _uhash_internalSetResizePolicy(result, U_GROW);
270
271    _uhash_allocate(result, primeIndex, status);
272
273    if (U_FAILURE(*status)) {
274        return nullptr;
275    }
276
277    return result;
278}
279
280static UHashtable*
281_uhash_create(UHashFunction *keyHash,
282              UKeyComparator *keyComp,
283              UValueComparator *valueComp,
284              int32_t primeIndex,
285              UErrorCode *status) {
286    UHashtable *result;
287
288    if (U_FAILURE(*status)) return nullptr;
289
290    result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
291    if (result == nullptr) {
292        *status = U_MEMORY_ALLOCATION_ERROR;
293        return nullptr;
294    }
295
296    _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
297    result->allocated       = true;
298
299    if (U_FAILURE(*status)) {
300        uprv_free(result);
301        return nullptr;
302    }
303
304    return result;
305}
306
307/**
308 * Look for a key in the table, or if no such key exists, the first
309 * empty slot matching the given hashcode.  Keys are compared using
310 * the keyComparator function.
311 *
312 * First find the start position, which is the hashcode modulo
313 * the length.  Test it to see if it is:
314 *
315 * a. identical:  First check the hash values for a quick check,
316 *    then compare keys for equality using keyComparator.
317 * b. deleted
318 * c. empty
319 *
320 * Stop if it is identical or empty, otherwise continue by adding a
321 * "jump" value (moduloing by the length again to keep it within
322 * range) and retesting.  For efficiency, there need enough empty
323 * values so that the searches stop within a reasonable amount of time.
324 * This can be changed by changing the high/low water marks.
325 *
326 * In theory, this function can return nullptr, if it is full (no empty
327 * or deleted slots) and if no matching key is found.  In practice, we
328 * prevent this elsewhere (in uhash_put) by making sure the last slot
329 * in the table is never filled.
330 *
331 * The size of the table should be prime for this algorithm to work;
332 * otherwise we are not guaranteed that the jump value (the secondary
333 * hash) is relatively prime to the table length.
334 */
335static UHashElement*
336_uhash_find(const UHashtable *hash, UHashTok key,
337            int32_t hashcode) {
338
339    int32_t firstDeleted = -1;  /* assume invalid index */
340    int32_t theIndex, startIndex;
341    int32_t jump = 0; /* lazy evaluate */
342    int32_t tableHash;
343    UHashElement *elements = hash->elements;
344
345    hashcode &= 0x7FFFFFFF; /* must be positive */
346    startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
347
348    do {
349        tableHash = elements[theIndex].hashcode;
350        if (tableHash == hashcode) {          /* quick check */
351            if ((*hash->keyComparator)(key, elements[theIndex].key)) {
352                return &(elements[theIndex]);
353            }
354        } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
355            /* We have hit a slot which contains a key-value pair,
356             * but for which the hash code does not match.  Keep
357             * looking.
358             */
359        } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
360            break;
361        } else if (firstDeleted < 0) { /* remember first deleted */
362            firstDeleted = theIndex;
363        }
364        if (jump == 0) { /* lazy compute jump */
365            /* The jump value must be relatively prime to the table
366             * length.  As long as the length is prime, then any value
367             * 1..length-1 will be relatively prime to it.
368             */
369            jump = (hashcode % (hash->length - 1)) + 1;
370        }
371        theIndex = (theIndex + jump) % hash->length;
372    } while (theIndex != startIndex);
373
374    if (firstDeleted >= 0) {
375        theIndex = firstDeleted; /* reset if had deleted slot */
376    } else if (tableHash != HASH_EMPTY) {
377        /* We get to this point if the hashtable is full (no empty or
378         * deleted slots), and we've failed to find a match.  THIS
379         * WILL NEVER HAPPEN as long as uhash_put() makes sure that
380         * count is always < length.
381         */
382        UPRV_UNREACHABLE_EXIT;
383    }
384    return &(elements[theIndex]);
385}
386
387/**
388 * Attempt to grow or shrink the data arrays in order to make the
389 * count fit between the high and low water marks.  hash_put() and
390 * hash_remove() call this method when the count exceeds the high or
391 * low water marks.  This method may do nothing, if memory allocation
392 * fails, or if the count is already in range, or if the length is
393 * already at the low or high limit.  In any case, upon return the
394 * arrays will be valid.
395 */
396static void
397_uhash_rehash(UHashtable *hash, UErrorCode *status) {
398
399    UHashElement *old = hash->elements;
400    int32_t oldLength = hash->length;
401    int32_t newPrimeIndex = hash->primeIndex;
402    int32_t i;
403
404    if (hash->count > hash->highWaterMark) {
405        if (++newPrimeIndex >= PRIMES_LENGTH) {
406            return;
407        }
408    } else if (hash->count < hash->lowWaterMark) {
409        if (--newPrimeIndex < 0) {
410            return;
411        }
412    } else {
413        return;
414    }
415
416    _uhash_allocate(hash, newPrimeIndex, status);
417
418    if (U_FAILURE(*status)) {
419        hash->elements = old;
420        hash->length = oldLength;
421        return;
422    }
423
424    for (i = oldLength - 1; i >= 0; --i) {
425        if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
426            UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
427            U_ASSERT(e != nullptr);
428            U_ASSERT(e->hashcode == HASH_EMPTY);
429            e->key = old[i].key;
430            e->value = old[i].value;
431            e->hashcode = old[i].hashcode;
432            ++hash->count;
433        }
434    }
435
436    uprv_free(old);
437}
438
439static UHashTok
440_uhash_remove(UHashtable *hash,
441              UHashTok key) {
442    /* First find the position of the key in the table.  If the object
443     * has not been removed already, remove it.  If the user wanted
444     * keys deleted, then delete it also.  We have to put a special
445     * hashcode in that position that means that something has been
446     * deleted, since when we do a find, we have to continue PAST any
447     * deleted values.
448     */
449    UHashTok result;
450    UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
451    U_ASSERT(e != nullptr);
452    result.pointer = nullptr;
453    result.integer = 0;
454    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
455        result = _uhash_internalRemoveElement(hash, e);
456        if (hash->count < hash->lowWaterMark) {
457            UErrorCode status = U_ZERO_ERROR;
458            _uhash_rehash(hash, &status);
459        }
460    }
461    return result;
462}
463
464static UHashTok
465_uhash_put(UHashtable *hash,
466           UHashTok key,
467           UHashTok value,
468           int8_t hint,
469           UErrorCode *status) {
470
471    /* Put finds the position in the table for the new value.  If the
472     * key is already in the table, it is deleted, if there is a
473     * non-nullptr keyDeleter.  Then the key, the hash and the value are
474     * all put at the position in their respective arrays.
475     */
476    int32_t hashcode;
477    UHashElement* e;
478    UHashTok emptytok;
479
480    if (U_FAILURE(*status)) {
481        goto err;
482    }
483    U_ASSERT(hash != nullptr);
484    if ((hint & HINT_VALUE_POINTER) ?
485            value.pointer == nullptr :
486            value.integer == 0 && (hint & HINT_ALLOW_ZERO) == 0) {
487        /* Disallow storage of nullptr values, since nullptr is returned by
488         * get() to indicate an absent key.  Storing nullptr == removing.
489         */
490        return _uhash_remove(hash, key);
491    }
492    if (hash->count > hash->highWaterMark) {
493        _uhash_rehash(hash, status);
494        if (U_FAILURE(*status)) {
495            goto err;
496        }
497    }
498
499    hashcode = (*hash->keyHasher)(key);
500    e = _uhash_find(hash, key, hashcode);
501    U_ASSERT(e != nullptr);
502
503    if (IS_EMPTY_OR_DELETED(e->hashcode)) {
504        /* Important: We must never actually fill the table up.  If we
505         * do so, then _uhash_find() will return nullptr, and we'll have
506         * to check for nullptr after every call to _uhash_find().  To
507         * avoid this we make sure there is always at least one empty
508         * or deleted slot in the table.  This only is a problem if we
509         * are out of memory and rehash isn't working.
510         */
511        ++hash->count;
512        if (hash->count == hash->length) {
513            /* Don't allow count to reach length */
514            --hash->count;
515            *status = U_MEMORY_ALLOCATION_ERROR;
516            goto err;
517        }
518    }
519
520    /* We must in all cases handle storage properly.  If there was an
521     * old key, then it must be deleted (if the deleter != nullptr).
522     * Make hashcodes stored in table positive.
523     */
524    return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
525
526 err:
527    /* If the deleters are non-nullptr, this method adopts its key and/or
528     * value arguments, and we must be sure to delete the key and/or
529     * value in all cases, even upon failure.
530     */
531    HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
532    emptytok.pointer = nullptr; emptytok.integer = 0;
533    return emptytok;
534}
535
536
537/********************************************************************
538 * PUBLIC API
539 ********************************************************************/
540
541U_CAPI UHashtable* U_EXPORT2
542uhash_open(UHashFunction *keyHash,
543           UKeyComparator *keyComp,
544           UValueComparator *valueComp,
545           UErrorCode *status) {
546
547    return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
548}
549
550U_CAPI UHashtable* U_EXPORT2
551uhash_openSize(UHashFunction *keyHash,
552               UKeyComparator *keyComp,
553               UValueComparator *valueComp,
554               int32_t size,
555               UErrorCode *status) {
556
557    /* Find the smallest index i for which PRIMES[i] >= size. */
558    int32_t i = 0;
559    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
560        ++i;
561    }
562
563    return _uhash_create(keyHash, keyComp, valueComp, i, status);
564}
565
566U_CAPI UHashtable* U_EXPORT2
567uhash_init(UHashtable *fillinResult,
568           UHashFunction *keyHash,
569           UKeyComparator *keyComp,
570           UValueComparator *valueComp,
571           UErrorCode *status) {
572
573    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
574}
575
576U_CAPI UHashtable* U_EXPORT2
577uhash_initSize(UHashtable *fillinResult,
578               UHashFunction *keyHash,
579               UKeyComparator *keyComp,
580               UValueComparator *valueComp,
581               int32_t size,
582               UErrorCode *status) {
583
584    // Find the smallest index i for which PRIMES[i] >= size.
585    int32_t i = 0;
586    while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
587        ++i;
588    }
589    return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
590}
591
592U_CAPI void U_EXPORT2
593uhash_close(UHashtable *hash) {
594    if (hash == nullptr) {
595        return;
596    }
597    if (hash->elements != nullptr) {
598        if (hash->keyDeleter != nullptr || hash->valueDeleter != nullptr) {
599            int32_t pos=UHASH_FIRST;
600            UHashElement *e;
601            while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != nullptr) {
602                HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
603            }
604        }
605        uprv_free(hash->elements);
606        hash->elements = nullptr;
607    }
608    if (hash->allocated) {
609        uprv_free(hash);
610    }
611}
612
613U_CAPI UHashFunction *U_EXPORT2
614uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
615    UHashFunction *result = hash->keyHasher;
616    hash->keyHasher = fn;
617    return result;
618}
619
620U_CAPI UKeyComparator *U_EXPORT2
621uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
622    UKeyComparator *result = hash->keyComparator;
623    hash->keyComparator = fn;
624    return result;
625}
626U_CAPI UValueComparator *U_EXPORT2
627uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
628    UValueComparator *result = hash->valueComparator;
629    hash->valueComparator = fn;
630    return result;
631}
632
633U_CAPI UObjectDeleter *U_EXPORT2
634uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
635    UObjectDeleter *result = hash->keyDeleter;
636    hash->keyDeleter = fn;
637    return result;
638}
639
640U_CAPI UObjectDeleter *U_EXPORT2
641uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
642    UObjectDeleter *result = hash->valueDeleter;
643    hash->valueDeleter = fn;
644    return result;
645}
646
647U_CAPI void U_EXPORT2
648uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
649    UErrorCode status = U_ZERO_ERROR;
650    _uhash_internalSetResizePolicy(hash, policy);
651    hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
652    hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
653    _uhash_rehash(hash, &status);
654}
655
656U_CAPI int32_t U_EXPORT2
657uhash_count(const UHashtable *hash) {
658    return hash->count;
659}
660
661U_CAPI void* U_EXPORT2
662uhash_get(const UHashtable *hash,
663          const void* key) {
664    UHashTok keyholder;
665    keyholder.pointer = (void*) key;
666    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
667}
668
669U_CAPI void* U_EXPORT2
670uhash_iget(const UHashtable *hash,
671           int32_t key) {
672    UHashTok keyholder;
673    keyholder.integer = key;
674    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
675}
676
677U_CAPI int32_t U_EXPORT2
678uhash_geti(const UHashtable *hash,
679           const void* key) {
680    UHashTok keyholder;
681    keyholder.pointer = (void*) key;
682    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
683}
684
685U_CAPI int32_t U_EXPORT2
686uhash_igeti(const UHashtable *hash,
687           int32_t key) {
688    UHashTok keyholder;
689    keyholder.integer = key;
690    return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
691}
692
693U_CAPI int32_t U_EXPORT2
694uhash_getiAndFound(const UHashtable *hash,
695                   const void *key,
696                   UBool *found) {
697    UHashTok keyholder;
698    keyholder.pointer = (void *)key;
699    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
700    *found = !IS_EMPTY_OR_DELETED(e->hashcode);
701    return e->value.integer;
702}
703
704U_CAPI int32_t U_EXPORT2
705uhash_igetiAndFound(const UHashtable *hash,
706                    int32_t key,
707                    UBool *found) {
708    UHashTok keyholder;
709    keyholder.integer = key;
710    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
711    *found = !IS_EMPTY_OR_DELETED(e->hashcode);
712    return e->value.integer;
713}
714
715U_CAPI void* U_EXPORT2
716uhash_put(UHashtable *hash,
717          void* key,
718          void* value,
719          UErrorCode *status) {
720    UHashTok keyholder, valueholder;
721    keyholder.pointer = key;
722    valueholder.pointer = value;
723    return _uhash_put(hash, keyholder, valueholder,
724                      HINT_KEY_POINTER | HINT_VALUE_POINTER,
725                      status).pointer;
726}
727
728U_CAPI void* U_EXPORT2
729uhash_iput(UHashtable *hash,
730           int32_t key,
731           void* value,
732           UErrorCode *status) {
733    UHashTok keyholder, valueholder;
734    keyholder.integer = key;
735    valueholder.pointer = value;
736    return _uhash_put(hash, keyholder, valueholder,
737                      HINT_VALUE_POINTER,
738                      status).pointer;
739}
740
741U_CAPI int32_t U_EXPORT2
742uhash_puti(UHashtable *hash,
743           void* key,
744           int32_t value,
745           UErrorCode *status) {
746    UHashTok keyholder, valueholder;
747    keyholder.pointer = key;
748    valueholder.integer = value;
749    return _uhash_put(hash, keyholder, valueholder,
750                      HINT_KEY_POINTER,
751                      status).integer;
752}
753
754
755U_CAPI int32_t U_EXPORT2
756uhash_iputi(UHashtable *hash,
757           int32_t key,
758           int32_t value,
759           UErrorCode *status) {
760    UHashTok keyholder, valueholder;
761    keyholder.integer = key;
762    valueholder.integer = value;
763    return _uhash_put(hash, keyholder, valueholder,
764                      HINT_BOTH_INTEGERS,
765                      status).integer;
766}
767
768U_CAPI int32_t U_EXPORT2
769uhash_putiAllowZero(UHashtable *hash,
770                    void *key,
771                    int32_t value,
772                    UErrorCode *status) {
773    UHashTok keyholder, valueholder;
774    keyholder.pointer = key;
775    valueholder.integer = value;
776    return _uhash_put(hash, keyholder, valueholder,
777                      HINT_KEY_POINTER | HINT_ALLOW_ZERO,
778                      status).integer;
779}
780
781
782U_CAPI int32_t U_EXPORT2
783uhash_iputiAllowZero(UHashtable *hash,
784                     int32_t key,
785                     int32_t value,
786                     UErrorCode *status) {
787    UHashTok keyholder, valueholder;
788    keyholder.integer = key;
789    valueholder.integer = value;
790    return _uhash_put(hash, keyholder, valueholder,
791                      HINT_BOTH_INTEGERS | HINT_ALLOW_ZERO,
792                      status).integer;
793}
794
795U_CAPI void* U_EXPORT2
796uhash_remove(UHashtable *hash,
797             const void* key) {
798    UHashTok keyholder;
799    keyholder.pointer = (void*) key;
800    return _uhash_remove(hash, keyholder).pointer;
801}
802
803U_CAPI void* U_EXPORT2
804uhash_iremove(UHashtable *hash,
805              int32_t key) {
806    UHashTok keyholder;
807    keyholder.integer = key;
808    return _uhash_remove(hash, keyholder).pointer;
809}
810
811U_CAPI int32_t U_EXPORT2
812uhash_removei(UHashtable *hash,
813              const void* key) {
814    UHashTok keyholder;
815    keyholder.pointer = (void*) key;
816    return _uhash_remove(hash, keyholder).integer;
817}
818
819U_CAPI int32_t U_EXPORT2
820uhash_iremovei(UHashtable *hash,
821               int32_t key) {
822    UHashTok keyholder;
823    keyholder.integer = key;
824    return _uhash_remove(hash, keyholder).integer;
825}
826
827U_CAPI void U_EXPORT2
828uhash_removeAll(UHashtable *hash) {
829    int32_t pos = UHASH_FIRST;
830    const UHashElement *e;
831    U_ASSERT(hash != nullptr);
832    if (hash->count != 0) {
833        while ((e = uhash_nextElement(hash, &pos)) != nullptr) {
834            uhash_removeElement(hash, e);
835        }
836    }
837    U_ASSERT(hash->count == 0);
838}
839
840U_CAPI UBool U_EXPORT2
841uhash_containsKey(const UHashtable *hash, const void *key) {
842    UHashTok keyholder;
843    keyholder.pointer = (void *)key;
844    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
845    return !IS_EMPTY_OR_DELETED(e->hashcode);
846}
847
848/**
849 * Returns true if the UHashtable contains an item with this integer key.
850 *
851 * @param hash The target UHashtable.
852 * @param key An integer key stored in a hashtable
853 * @return true if the key is found.
854 */
855U_CAPI UBool U_EXPORT2
856uhash_icontainsKey(const UHashtable *hash, int32_t key) {
857    UHashTok keyholder;
858    keyholder.integer = key;
859    const UHashElement *e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
860    return !IS_EMPTY_OR_DELETED(e->hashcode);
861}
862
863U_CAPI const UHashElement* U_EXPORT2
864uhash_find(const UHashtable *hash, const void* key) {
865    UHashTok keyholder;
866    const UHashElement *e;
867    keyholder.pointer = (void*) key;
868    e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
869    return IS_EMPTY_OR_DELETED(e->hashcode) ? nullptr : e;
870}
871
872U_CAPI const UHashElement* U_EXPORT2
873uhash_nextElement(const UHashtable *hash, int32_t *pos) {
874    /* Walk through the array until we find an element that is not
875     * EMPTY and not DELETED.
876     */
877    int32_t i;
878    U_ASSERT(hash != nullptr);
879    for (i = *pos + 1; i < hash->length; ++i) {
880        if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
881            *pos = i;
882            return &(hash->elements[i]);
883        }
884    }
885
886    /* No more elements */
887    return nullptr;
888}
889
890U_CAPI void* U_EXPORT2
891uhash_removeElement(UHashtable *hash, const UHashElement* e) {
892    U_ASSERT(hash != nullptr);
893    U_ASSERT(e != nullptr);
894    if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
895        UHashElement *nce = (UHashElement *)e;
896        return _uhash_internalRemoveElement(hash, nce).pointer;
897    }
898    return nullptr;
899}
900
901/********************************************************************
902 * UHashTok convenience
903 ********************************************************************/
904
905/**
906 * Return a UHashTok for an integer.
907 */
908/*U_CAPI UHashTok U_EXPORT2
909uhash_toki(int32_t i) {
910    UHashTok tok;
911    tok.integer = i;
912    return tok;
913}*/
914
915/**
916 * Return a UHashTok for a pointer.
917 */
918/*U_CAPI UHashTok U_EXPORT2
919uhash_tokp(void* p) {
920    UHashTok tok;
921    tok.pointer = p;
922    return tok;
923}*/
924
925/********************************************************************
926 * PUBLIC Key Hash Functions
927 ********************************************************************/
928
929U_CAPI int32_t U_EXPORT2
930uhash_hashUChars(const UHashTok key) {
931    const char16_t *s = (const char16_t *)key.pointer;
932    return s == nullptr ? 0 : ustr_hashUCharsN(s, u_strlen(s));
933}
934
935U_CAPI int32_t U_EXPORT2
936uhash_hashChars(const UHashTok key) {
937    const char *s = (const char *)key.pointer;
938    return s == nullptr ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s))));
939}
940
941U_CAPI int32_t U_EXPORT2
942uhash_hashIChars(const UHashTok key) {
943    const char *s = (const char *)key.pointer;
944    return s == nullptr ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s)));
945}
946
947U_CAPI UBool U_EXPORT2
948uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
949    int32_t count1, count2, pos, i;
950
951    if(hash1==hash2){
952        return true;
953    }
954
955    /*
956     * Make sure that we are comparing 2 valid hashes of the same type
957     * with valid comparison functions.
958     * Without valid comparison functions, a binary comparison
959     * of the hash values will yield random results on machines
960     * with 64-bit pointers and 32-bit integer hashes.
961     * A valueComparator is normally optional.
962     */
963    if (hash1==nullptr || hash2==nullptr ||
964        hash1->keyComparator != hash2->keyComparator ||
965        hash1->valueComparator != hash2->valueComparator ||
966        hash1->valueComparator == nullptr)
967    {
968        /*
969        Normally we would return an error here about incompatible hash tables,
970        but we return false instead.
971        */
972        return false;
973    }
974
975    count1 = uhash_count(hash1);
976    count2 = uhash_count(hash2);
977    if(count1!=count2){
978        return false;
979    }
980
981    pos=UHASH_FIRST;
982    for(i=0; i<count1; i++){
983        const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
984        const UHashTok key1 = elem1->key;
985        const UHashTok val1 = elem1->value;
986        /* here the keys are not compared, instead the key form hash1 is used to fetch
987         * value from hash2. If the hashes are equal then then both hashes should
988         * contain equal values for the same key!
989         */
990        const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
991        const UHashTok val2 = elem2->value;
992        if(hash1->valueComparator(val1, val2)==false){
993            return false;
994        }
995    }
996    return true;
997}
998
999/********************************************************************
1000 * PUBLIC Comparator Functions
1001 ********************************************************************/
1002
1003U_CAPI UBool U_EXPORT2
1004uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
1005    const char16_t *p1 = (const char16_t*) key1.pointer;
1006    const char16_t *p2 = (const char16_t*) key2.pointer;
1007    if (p1 == p2) {
1008        return true;
1009    }
1010    if (p1 == nullptr || p2 == nullptr) {
1011        return false;
1012    }
1013    while (*p1 != 0 && *p1 == *p2) {
1014        ++p1;
1015        ++p2;
1016    }
1017    return (UBool)(*p1 == *p2);
1018}
1019
1020U_CAPI UBool U_EXPORT2
1021uhash_compareChars(const UHashTok key1, const UHashTok key2) {
1022    const char *p1 = (const char*) key1.pointer;
1023    const char *p2 = (const char*) key2.pointer;
1024    if (p1 == p2) {
1025        return true;
1026    }
1027    if (p1 == nullptr || p2 == nullptr) {
1028        return false;
1029    }
1030    while (*p1 != 0 && *p1 == *p2) {
1031        ++p1;
1032        ++p2;
1033    }
1034    return (UBool)(*p1 == *p2);
1035}
1036
1037U_CAPI UBool U_EXPORT2
1038uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
1039    const char *p1 = (const char*) key1.pointer;
1040    const char *p2 = (const char*) key2.pointer;
1041    if (p1 == p2) {
1042        return true;
1043    }
1044    if (p1 == nullptr || p2 == nullptr) {
1045        return false;
1046    }
1047    while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
1048        ++p1;
1049        ++p2;
1050    }
1051    return (UBool)(*p1 == *p2);
1052}
1053
1054/********************************************************************
1055 * PUBLIC int32_t Support Functions
1056 ********************************************************************/
1057
1058U_CAPI int32_t U_EXPORT2
1059uhash_hashLong(const UHashTok key) {
1060    return key.integer;
1061}
1062
1063U_CAPI UBool U_EXPORT2
1064uhash_compareLong(const UHashTok key1, const UHashTok key2) {
1065    return (UBool)(key1.integer == key2.integer);
1066}
1067