1// © 2016 and later: Unicode, Inc. and others. 2// License & terms of use: http://www.unicode.org/copyright.html 3/* 4********************************************************************** 5* Copyright (C) 2000-2016, International Business Machines 6* Corporation and others. All Rights Reserved. 7********************************************************************** 8* file name: ucnv_lmb.cpp 9* encoding: UTF-8 10* tab size: 4 (not used) 11* indentation:4 12* 13* created on: 2000feb09 14* created by: Brendan Murray 15* extensively hacked up by: Jim Snyder-Grant 16* 17* Modification History: 18* 19* Date Name Description 20* 21* 06/20/2000 helena OS/400 port changes; mostly typecast. 22* 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers. 23* Add comments to document LMBCS format and implementation 24* restructured order & breakdown of functions 25* 06/28/2000 helena Major rewrite for the callback API changes. 26*/ 27 28#include "unicode/utypes.h" 29 30#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION 31 32#include "unicode/ucnv_err.h" 33#include "unicode/ucnv.h" 34#include "unicode/uset.h" 35#include "cmemory.h" 36#include "cstring.h" 37#include "uassert.h" 38#include "ucnv_imp.h" 39#include "ucnv_bld.h" 40#include "ucnv_cnv.h" 41 42#ifdef EBCDIC_RTL 43 #include "ascii_a.h" 44#endif 45 46/* 47 LMBCS 48 49 (Lotus Multi-Byte Character Set) 50 51 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes 52 databases and in Lotus 1-2-3 files. Programmers who work with the APIs 53 into these products will sometimes need to deal with strings in this format. 54 55 The code in this file provides an implementation for an ICU converter of 56 LMBCS to and from Unicode. 57 58 Since the LMBCS character set is only sparsely documented in existing 59 printed or online material, we have added extensive annotation to this 60 file to serve as a guide to understanding LMBCS. 61 62 LMBCS was originally designed with these four sometimes-competing design goals: 63 64 -Provide encodings for the characters in 12 existing national standards 65 (plus a few other characters) 66 -Minimal memory footprint 67 -Maximal speed of conversion into the existing national character sets 68 -No need to track a changing state as you interpret a string. 69 70 71 All of the national character sets LMBCS was trying to encode are 'ANSI' 72 based, in that the bytes from 0x20 - 0x7F are almost exactly the 73 same common Latin unaccented characters and symbols in all character sets. 74 75 So, in order to help meet the speed & memory design goals, the common ANSI 76 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS. 77 78 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as 79 follows: 80 81 [G] D1 [D2] 82 83 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2 84 data bytes. The maximum size of a LMBCS character is 3 bytes: 85*/ 86#define ULMBCS_CHARSIZE_MAX 3 87/* 88 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes. 89 We often have to figure out if byte values are below or above this, so we 90 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control 91 characters just above & below the common lower-ANSI range */ 92#define ULMBCS_C0END 0x1F 93#define ULMBCS_C1START 0x80 94/* 95 Since LMBCS is always dealing in byte units. we create a local type here for 96 dealing with these units of LMBCS code units: 97 98*/ 99typedef uint8_t ulmbcs_byte_t; 100 101/* 102 Most of the values less than 0x20 are reserved in LMBCS to announce 103 which national character standard is being used for the 'D' bytes. 104 In the comments we show the common name and the IBM character-set ID 105 for these character-set announcers: 106*/ 107 108#define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */ 109#define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */ 110#define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */ 111#define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */ 112#define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */ 113#define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */ 114#define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */ 115#define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */ 116#define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */ 117#define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */ 118#define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */ 119#define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */ 120 121/* 122 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS 123 character is one of those 12 values, you can interpret the remaining bytes of 124 that character as coming from one of those character sets. Since the lower 125 ANSI bytes already are represented in single bytes, using one of the character 126 set announcers is used to announce a character that starts with a byte of 127 0x80 or greater. 128 129 The character sets are arranged so that the single byte sets all appear 130 before the multi-byte character sets. When we need to tell whether a 131 group byte is for a single byte char set or not we use this define: */ 132 133#define ULMBCS_DOUBLEOPTGROUP_START 0x10 134 135/* 136However, to fully understand LMBCS, you must also understand a series of 137exceptions & optimizations made in service of the design goals. 138 139First, those of you who are character set mavens may have noticed that 140the 'double-byte' character sets are actually multi-byte character sets 141that can have 1 or two bytes, even in the upper-ascii range. To force 142each group byte to introduce a fixed-width encoding (to make it faster to 143count characters), we use a convention of doubling up on the group byte 144to introduce any single-byte character > 0x80 in an otherwise double-byte 145character set. So, for example, the LMBCS sequence x10 x10 xAE is the 146same as '0xAE' in the Japanese code page 943. 147 148Next, you will notice that the list of group bytes has some gaps. 149These are used in various ways. 150 151We reserve a few special single byte values for common control 152characters. These are in the same place as their ANSI equivalents for speed. 153*/ 154 155#define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */ 156#define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */ 157#define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */ 158 159/* Then, 1-2-3 reserved a special single-byte character to put at the 160beginning of internal 'system' range names: */ 161 162#define ULMBCS_123SYSTEMRANGE 0x19 163 164/* Then we needed a place to put all the other ansi control characters 165that must be moved to different values because LMBCS reserves those 166values for other purposes. To represent the control characters, we start 167with a first byte of 0xF & add the control character value as the 168second byte */ 169#define ULMBCS_GRP_CTRL 0x0F 170 171/* For the C0 controls (less than 0x20), we add 0x20 to preserve the 172useful doctrine that any byte less than 0x20 in a LMBCS char must be 173the first byte of a character:*/ 174#define ULMBCS_CTRLOFFSET 0x20 175 176/* 177Where to put the characters that aren't part of any of the 12 national 178character sets? The first thing that was done, in the earlier years of 179LMBCS, was to use up the spaces of the form 180 181 [G] D1, 182 183 where 'G' was one of the single-byte character groups, and 184 D1 was less than 0x80. These sequences are gathered together 185 into a Lotus-invented doublebyte character set to represent a 186 lot of stray values. Internally, in this implementation, we track this 187 as group '0', as a place to tuck this exceptions list.*/ 188 189#define ULMBCS_GRP_EXCEPT 0x00 190/* 191 Finally, as the durability and usefulness of UNICODE became clear, 192 LOTUS added a new group 0x14 to hold Unicode values not otherwise 193 represented in LMBCS: */ 194#define ULMBCS_GRP_UNICODE 0x14 195/* The two bytes appearing after a 0x14 are interpreted as UFT-16 BE 196(Big-Endian) characters. The exception comes when the UTF16 197representation would have a zero as the second byte. In that case, 198'F6' is used in its place, and the bytes are swapped. (This prevents 199LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK: 2000xF6xx is in the middle of the Private Use Area.)*/ 201#define ULMBCS_UNICOMPATZERO 0xF6 202 203/* It is also useful in our code to have a constant for the size of 204a LMBCS char that holds a literal Unicode value */ 205#define ULMBCS_UNICODE_SIZE 3 206 207/* 208To squish the LMBCS representations down even further, and to make 209translations even faster,sometimes the optimization group byte can be dropped 210from a LMBCS character. This is decided on a process-by-process basis. The 211group byte that is dropped is called the 'optimization group'. 212 213For Notes, the optimzation group is always 0x1.*/ 214#define ULMBCS_DEFAULTOPTGROUP 0x1 215/* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3 216file. 217 218 In any case, when using ICU, you either pass in the 219optimization group as part of the name of the converter (LMBCS-1, LMBCS-2, 220etc.). Using plain 'LMBCS' as the name of the converter will give you 221LMBCS-1. 222 223 224*** Implementation strategy *** 225 226 227Because of the extensive use of other character sets, the LMBCS converter 228keeps a mapping between optimization groups and IBM character sets, so that 229ICU converters can be created and used as needed. */ 230 231/* As you can see, even though any byte below 0x20 could be an optimization 232byte, only those at 0x13 or below can map to an actual converter. To limit 233some loops and searches, we define a value for that last group converter:*/ 234 235#define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */ 236 237static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = { 238 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */ 239 /* 0x0001 */ "ibm-850", 240 /* 0x0002 */ "ibm-851", 241 /* 0x0003 */ "windows-1255", 242 /* 0x0004 */ "windows-1256", 243 /* 0x0005 */ "windows-1251", 244 /* 0x0006 */ "ibm-852", 245 /* 0x0007 */ nullptr, /* Unused */ 246 /* 0x0008 */ "windows-1254", 247 /* 0x0009 */ nullptr, /* Control char HT */ 248 /* 0x000A */ nullptr, /* Control char LF */ 249 /* 0x000B */ "windows-874", 250 /* 0x000C */ nullptr, /* Unused */ 251 /* 0x000D */ nullptr, /* Control char CR */ 252 /* 0x000E */ nullptr, /* Unused */ 253 /* 0x000F */ nullptr, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */ 254 /* 0x0010 */ "windows-932", 255 /* 0x0011 */ "windows-949", 256 /* 0x0012 */ "windows-950", 257 /* 0x0013 */ "windows-936" 258 259 /* The rest are null, including the 0x0014 Unicode compatibility region 260 and 0x0019, the 1-2-3 system range control char */ 261}; 262 263 264/* That's approximately all the data that's needed for translating 265 LMBCS to Unicode. 266 267 268However, to translate Unicode to LMBCS, we need some more support. 269 270That's because there are often more than one possible mappings from a Unicode 271code point back into LMBCS. The first thing we do is look up into a table 272to figure out if there are more than one possible mappings. This table, 273arranged by Unicode values (including ranges) either lists which group 274to use, or says that it could go into one or more of the SBCS sets, or 275into one or more of the DBCS sets. (If the character exists in both DBCS & 276SBCS, the table will place it in the SBCS sets, to make the LMBCS code point 277length as small as possible. Here's the two special markers we use to indicate 278ambiguous mappings: */ 279 280#define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one 281 LMBCS sbcs native encoding 282 (example: most accented latin) */ 283#define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one 284 LMBCS mbcs native encoding 285 (example: Unihan) */ 286#define ULMBCS_AMBIGUOUS_ALL 0x82 287/* And here's a simple way to see if a group falls in an appropriate range */ 288#define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \ 289 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \ 290 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \ 291 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \ 292 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \ 293 ((agroup) == ULMBCS_AMBIGUOUS_ALL) 294 295 296/* The table & some code to use it: */ 297 298 299static const struct _UniLMBCSGrpMap 300{ 301 const char16_t uniStartRange; 302 const char16_t uniEndRange; 303 const ulmbcs_byte_t GrpType; 304} UniLMBCSGrpMap[] 305= 306{ 307 308 {0x0001, 0x001F, ULMBCS_GRP_CTRL}, 309 {0x0080, 0x009F, ULMBCS_GRP_CTRL}, 310 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS}, 311 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL}, 312 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS}, 313 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL}, 314 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS}, 315 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL}, 316 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS}, 317 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL}, 318 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS}, 319 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL}, 320 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS}, 321 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL}, 322 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS}, 323 {0x01CE, 0x01CE, ULMBCS_GRP_TW }, 324 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS}, 325 {0x02BA, 0x02BA, ULMBCS_GRP_CN}, 326 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS}, 327 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS}, 328 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS}, 329 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS}, 330 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL}, 331 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS}, 332 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL}, 333 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS}, 334 {0x0400, 0x0400, ULMBCS_GRP_RU}, 335 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL}, 336 {0x0402, 0x040F, ULMBCS_GRP_RU}, 337 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL}, 338 {0x0432, 0x044E, ULMBCS_GRP_RU}, 339 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL}, 340 {0x0450, 0x0491, ULMBCS_GRP_RU}, 341 {0x05B0, 0x05F2, ULMBCS_GRP_HE}, 342 {0x060C, 0x06AF, ULMBCS_GRP_AR}, 343 {0x0E01, 0x0E5B, ULMBCS_GRP_TH}, 344 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS}, 345 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS}, 346 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS}, 347 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS}, 348 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS}, 349 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS}, 350 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL}, 351 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS}, 352 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL}, 353 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS}, 354 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL}, 355 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS}, 356 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS}, 357 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL}, 358 {0x2027, 0x2027, ULMBCS_GRP_TW}, 359 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL}, 360 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS}, 361 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS}, 362 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS}, 363 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS}, 364 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS}, 365 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT}, 366 {0x2074, 0x2074, ULMBCS_GRP_KO}, 367 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT}, 368 {0x2081, 0x2084, ULMBCS_GRP_KO}, 369 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS}, 370 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS}, 371 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS}, 372 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/ 373 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS}, 374 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS}, 375 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS}, 376 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS}, 377 {0x2153, 0x2154, ULMBCS_GRP_KO}, 378 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT}, 379 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS}, 380 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL}, 381 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT}, 382 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS}, 383 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT}, 384 {0x21B8, 0x21B9, ULMBCS_GRP_CN}, 385 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT}, 386 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS}, 387 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT}, 388 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS}, 389 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT}, 390 {0x21E7, 0x21E7, ULMBCS_GRP_CN}, 391 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS}, 392 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT}, 393 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS}, 394 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS}, 395 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT}, 396 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS}, 397 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT}, 398 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS}, 399 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS}, 400 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT}, 401 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS}, 402 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT}, 403 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS}, 404 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT}, 405 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS}, 406 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS}, 407 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS}, 408 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT}, 409 {0x224C, 0x224C, ULMBCS_GRP_TW}, 410 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS}, 411 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS}, 412 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT}, 413 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS}, 414 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS}, 415 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT}, 416 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS}, 417 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT}, 418 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS}, 419 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT}, 420 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT}, 421 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS}, 422 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT}, 423 {0x2318, 0x2321, ULMBCS_GRP_CN}, 424 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS}, 425 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS}, 426 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS}, 427 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL}, 428 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS}, 429 {0x2504, 0x2505, ULMBCS_GRP_TW}, 430 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL}, 431 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT}, 432 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS}, 433 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL}, 434 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS}, 435 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS}, 436 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS}, 437 {0x266F, 0x266F, ULMBCS_GRP_JA}, 438 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS}, 439 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS}, 440 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT}, 441 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS}, 442 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS}, 443 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS}, 444 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE} 445}; 446 447static ulmbcs_byte_t 448FindLMBCSUniRange(char16_t uniChar) 449{ 450 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap; 451 452 while (uniChar > pTable->uniEndRange) 453 { 454 pTable++; 455 } 456 457 if (uniChar >= pTable->uniStartRange) 458 { 459 return pTable->GrpType; 460 } 461 return ULMBCS_GRP_UNICODE; 462} 463 464/* 465We also ask the creator of a converter to send in a preferred locale 466that we can use in resolving ambiguous mappings. They send the locale 467in as a string, and we map it, if possible, to one of the 468LMBCS groups. We use this table, and the associated code, to 469do the lookup: */ 470 471/************************************************** 472 This table maps locale ID's to LMBCS opt groups. 473 The default return is group 0x01. Note that for 474 performance reasons, the table is sorted in 475 increasing alphabetic order, with the notable 476 exception of zhTW. This is to force the check 477 for Traditonal Chinese before dropping back to 478 Simplified. 479 480 Note too that the Latin-1 groups have been 481 commented out because it's the default, and 482 this shortens the table, allowing a serial 483 search to go quickly. 484 *************************************************/ 485 486static const struct _LocaleLMBCSGrpMap 487{ 488 const char *LocaleID; 489 const ulmbcs_byte_t OptGroup; 490} LocaleLMBCSGrpMap[] = 491{ 492 {"ar", ULMBCS_GRP_AR}, 493 {"be", ULMBCS_GRP_RU}, 494 {"bg", ULMBCS_GRP_L2}, 495 /* {"ca", ULMBCS_GRP_L1}, */ 496 {"cs", ULMBCS_GRP_L2}, 497 /* {"da", ULMBCS_GRP_L1}, */ 498 /* {"de", ULMBCS_GRP_L1}, */ 499 {"el", ULMBCS_GRP_GR}, 500 /* {"en", ULMBCS_GRP_L1}, */ 501 /* {"es", ULMBCS_GRP_L1}, */ 502 /* {"et", ULMBCS_GRP_L1}, */ 503 /* {"fi", ULMBCS_GRP_L1}, */ 504 /* {"fr", ULMBCS_GRP_L1}, */ 505 {"he", ULMBCS_GRP_HE}, 506 {"hu", ULMBCS_GRP_L2}, 507 /* {"is", ULMBCS_GRP_L1}, */ 508 /* {"it", ULMBCS_GRP_L1}, */ 509 {"iw", ULMBCS_GRP_HE}, 510 {"ja", ULMBCS_GRP_JA}, 511 {"ko", ULMBCS_GRP_KO}, 512 /* {"lt", ULMBCS_GRP_L1}, */ 513 /* {"lv", ULMBCS_GRP_L1}, */ 514 {"mk", ULMBCS_GRP_RU}, 515 /* {"nl", ULMBCS_GRP_L1}, */ 516 /* {"no", ULMBCS_GRP_L1}, */ 517 {"pl", ULMBCS_GRP_L2}, 518 /* {"pt", ULMBCS_GRP_L1}, */ 519 {"ro", ULMBCS_GRP_L2}, 520 {"ru", ULMBCS_GRP_RU}, 521 {"sh", ULMBCS_GRP_L2}, 522 {"sk", ULMBCS_GRP_L2}, 523 {"sl", ULMBCS_GRP_L2}, 524 {"sq", ULMBCS_GRP_L2}, 525 {"sr", ULMBCS_GRP_RU}, 526 /* {"sv", ULMBCS_GRP_L1}, */ 527 {"th", ULMBCS_GRP_TH}, 528 {"tr", ULMBCS_GRP_TR}, 529 {"uk", ULMBCS_GRP_RU}, 530 /* {"vi", ULMBCS_GRP_L1}, */ 531 {"zhTW", ULMBCS_GRP_TW}, 532 {"zh", ULMBCS_GRP_CN}, 533 {nullptr, ULMBCS_GRP_L1} 534}; 535 536 537static ulmbcs_byte_t 538FindLMBCSLocale(const char *LocaleID) 539{ 540 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap; 541 542 if ((!LocaleID) || (!*LocaleID)) 543 { 544 return 0; 545 } 546 547 while (pTable->LocaleID) 548 { 549 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */ 550 { 551 /* First char matches - check whole name, for entry-length */ 552 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0) 553 return pTable->OptGroup; 554 } 555 else 556 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */ 557 break; 558 pTable++; 559 } 560 return ULMBCS_GRP_L1; 561} 562 563 564/* 565 Before we get to the main body of code, here's how we hook up to the rest 566 of ICU. ICU converters are required to define a structure that includes 567 some function pointers, and some common data, in the style of a C++ 568 vtable. There is also room in there for converter-specific data. LMBCS 569 uses that converter-specific data to keep track of the 12 subconverters 570 we use, the optimization group, and the group (if any) that matches the 571 locale. We have one structure instantiated for each of the 12 possible 572 optimization groups. To avoid typos & to avoid boring the reader, we 573 put the declarations of these structures and functions into macros. To see 574 the definitions of these structures, see unicode\ucnv_bld.h 575*/ 576 577typedef struct 578 { 579 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */ 580 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */ 581 uint8_t localeConverterIndex; /* reasonable locale match for index */ 582 } 583UConverterDataLMBCS; 584 585U_CDECL_BEGIN 586static void U_CALLCONV _LMBCSClose(UConverter * _this); 587U_CDECL_END 588 589#define DECLARE_LMBCS_DATA(n) \ 590static const UConverterImpl _LMBCSImpl##n={\ 591 UCNV_LMBCS_##n,\ 592 nullptr,nullptr,\ 593 _LMBCSOpen##n,\ 594 _LMBCSClose,\ 595 nullptr,\ 596 _LMBCSToUnicodeWithOffsets,\ 597 _LMBCSToUnicodeWithOffsets,\ 598 _LMBCSFromUnicode,\ 599 _LMBCSFromUnicode,\ 600 nullptr,\ 601 nullptr,\ 602 nullptr,\ 603 nullptr,\ 604 _LMBCSSafeClone,\ 605 ucnv_getCompleteUnicodeSet,\ 606 nullptr,\ 607 nullptr\ 608};\ 609static const UConverterStaticData _LMBCSStaticData##n={\ 610 sizeof(UConverterStaticData),\ 611 "LMBCS-" #n,\ 612 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\ 613 { 0x3f, 0, 0, 0 },1,false,false,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \ 614};\ 615const UConverterSharedData _LMBCSData##n= \ 616 UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n); 617 618 /* The only function we needed to duplicate 12 times was the 'open' 619function, which will do basically the same thing except set a different 620optimization group. So, we put the common stuff into a worker function, 621and set up another macro to stamp out the 12 open functions:*/ 622#define DEFINE_LMBCS_OPEN(n) \ 623static void U_CALLCONV \ 624 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \ 625{ _LMBCSOpenWorker(_this, pArgs, err, n); } 626 627 628 629/* Here's the open worker & the common close function */ 630static void 631_LMBCSOpenWorker(UConverter* _this, 632 UConverterLoadArgs *pArgs, 633 UErrorCode* err, 634 ulmbcs_byte_t OptGroup) 635{ 636 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS)); 637 _this->extraInfo = extraInfo; 638 if(extraInfo != nullptr) 639 { 640 UConverterNamePieces stackPieces; 641 UConverterLoadArgs stackArgs= UCNV_LOAD_ARGS_INITIALIZER; 642 ulmbcs_byte_t i; 643 644 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS)); 645 646 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable; 647 648 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++) 649 { 650 if(OptGroupByteToCPName[i] != nullptr) { 651 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err); 652 } 653 } 654 655 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) { 656 _LMBCSClose(_this); 657 return; 658 } 659 extraInfo->OptGroup = OptGroup; 660 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale); 661 } 662 else 663 { 664 *err = U_MEMORY_ALLOCATION_ERROR; 665 } 666} 667 668U_CDECL_BEGIN 669static void U_CALLCONV 670_LMBCSClose(UConverter * _this) 671{ 672 if (_this->extraInfo != nullptr) 673 { 674 ulmbcs_byte_t Ix; 675 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo; 676 677 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++) 678 { 679 if (extraInfo->OptGrpConverter[Ix] != nullptr) 680 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]); 681 } 682 if (!_this->isExtraLocal) { 683 uprv_free (_this->extraInfo); 684 _this->extraInfo = nullptr; 685 } 686 } 687} 688 689typedef struct LMBCSClone { 690 UConverter cnv; 691 UConverterDataLMBCS lmbcs; 692} LMBCSClone; 693 694static UConverter * U_CALLCONV 695_LMBCSSafeClone(const UConverter *cnv, 696 void *stackBuffer, 697 int32_t *pBufferSize, 698 UErrorCode *status) { 699 (void)status; 700 LMBCSClone *newLMBCS; 701 UConverterDataLMBCS *extraInfo; 702 int32_t i; 703 704 if(*pBufferSize<=0) { 705 *pBufferSize=(int32_t)sizeof(LMBCSClone); 706 return nullptr; 707 } 708 709 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo; 710 newLMBCS=(LMBCSClone *)stackBuffer; 711 712 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ 713 714 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS)); 715 716 /* share the subconverters */ 717 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) { 718 if(extraInfo->OptGrpConverter[i] != nullptr) { 719 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]); 720 } 721 } 722 723 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs; 724 newLMBCS->cnv.isExtraLocal = true; 725 return &newLMBCS->cnv; 726} 727 728/* 729 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117) 730 * which added all code points except for U+F6xx 731 * because those cannot be represented in the Unicode group. 732 * However, it turns out that windows-950 has roundtrips for all of U+F6xx 733 * which means that LMBCS can convert all Unicode code points after all. 734 * We now simply use ucnv_getCompleteUnicodeSet(). 735 * 736 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216) 737 */ 738 739/* 740 Here's the basic helper function that we use when converting from 741 Unicode to LMBCS, and we suspect that a Unicode character will fit into 742 one of the 12 groups. The return value is the number of bytes written 743 starting at pStartLMBCS (if any). 744*/ 745 746static size_t 747LMBCSConversionWorker ( 748 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */ 749 ulmbcs_byte_t group, /* The group to try */ 750 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */ 751 char16_t * pUniChar, /* The input unicode character */ 752 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */ 753 UBool * groups_tried /* output: track any unsuccessful groups */ 754) 755{ 756 ulmbcs_byte_t * pLMBCS = pStartLMBCS; 757 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group]; 758 759 int bytesConverted; 760 uint32_t value; 761 ulmbcs_byte_t firstByte; 762 763 U_ASSERT(xcnv); 764 U_ASSERT(group<ULMBCS_GRP_UNICODE); 765 766 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, false); 767 768 /* get the first result byte */ 769 if(bytesConverted > 0) { 770 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8)); 771 } else { 772 /* most common failure mode is an unassigned character */ 773 groups_tried[group] = true; 774 return 0; 775 } 776 777 *lastConverterIndex = group; 778 779 /* All initial byte values in lower ascii range should have been caught by now, 780 except with the exception group. 781 */ 782 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT)); 783 784 /* use converted data: first write 0, 1 or two group bytes */ 785 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group) 786 { 787 *pLMBCS++ = group; 788 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START) 789 { 790 *pLMBCS++ = group; 791 } 792 } 793 794 /* don't emit control chars */ 795 if ( bytesConverted == 1 && firstByte < 0x20 ) 796 return 0; 797 798 799 /* then move over the converted data */ 800 switch(bytesConverted) 801 { 802 case 4: 803 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24); 804 U_FALLTHROUGH; 805 case 3: 806 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16); 807 U_FALLTHROUGH; 808 case 2: 809 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8); 810 U_FALLTHROUGH; 811 case 1: 812 *pLMBCS++ = (ulmbcs_byte_t)value; 813 U_FALLTHROUGH; 814 default: 815 /* will never occur */ 816 break; 817 } 818 819 return (pLMBCS - pStartLMBCS); 820} 821 822 823/* This is a much simpler version of above, when we 824know we are writing LMBCS using the Unicode group 825*/ 826static size_t 827LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, char16_t uniChar) 828{ 829 /* encode into LMBCS Unicode range */ 830 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF); 831 uint8_t HighCh = (uint8_t)(uniChar >> 8); 832 833 *pLMBCS++ = ULMBCS_GRP_UNICODE; 834 835 if (LowCh == 0) 836 { 837 *pLMBCS++ = ULMBCS_UNICOMPATZERO; 838 *pLMBCS++ = HighCh; 839 } 840 else 841 { 842 *pLMBCS++ = HighCh; 843 *pLMBCS++ = LowCh; 844 } 845 return ULMBCS_UNICODE_SIZE; 846} 847 848 849 850/* The main Unicode to LMBCS conversion function */ 851static void U_CALLCONV 852_LMBCSFromUnicode(UConverterFromUnicodeArgs* args, 853 UErrorCode* err) 854{ 855 ulmbcs_byte_t lastConverterIndex = 0; 856 char16_t uniChar; 857 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX]; 858 ulmbcs_byte_t * pLMBCS; 859 int32_t bytes_written; 860 UBool groups_tried[ULMBCS_GRP_LAST+1]; 861 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 862 int sourceIndex = 0; 863 864 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS) 865 If that succeeds, see if it will all fit into the target & copy it over 866 if it does. 867 868 We try conversions in the following order: 869 870 1. Single-byte ascii & special fixed control chars (&null) 871 2. Look up group in table & try that (could be 872 A) Unicode group 873 B) control group, 874 C) national encoding, 875 or ambiguous SBCS or MBCS group (on to step 4...) 876 877 3. If its ambiguous, try this order: 878 A) The optimization group 879 B) The locale group 880 C) The last group that succeeded with this string. 881 D) every other group that's relevant (single or double) 882 E) If its single-byte ambiguous, try the exceptions group 883 884 4. And as a grand fallback: Unicode 885 */ 886 887 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 888 ulmbcs_byte_t OldConverterIndex = 0; 889 890 while (args->source < args->sourceLimit && !U_FAILURE(*err)) 891 { 892 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 893 OldConverterIndex = extraInfo->localeConverterIndex; 894 895 if (args->target >= args->targetLimit) 896 { 897 *err = U_BUFFER_OVERFLOW_ERROR; 898 break; 899 } 900 uniChar = *(args->source); 901 bytes_written = 0; 902 pLMBCS = LMBCS; 903 904 /* check cases in rough order of how common they are, for speed */ 905 906 /* single byte matches: strategy 1 */ 907 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 908 if((uniChar>=0x80) && (uniChar<=0xff) 909 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7) 910 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8)) 911 { 912 extraInfo->localeConverterIndex = ULMBCS_GRP_L1; 913 } 914 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) || 915 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR || 916 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE 917 ) 918 { 919 *pLMBCS++ = (ulmbcs_byte_t ) uniChar; 920 bytes_written = 1; 921 } 922 923 924 if (!bytes_written) 925 { 926 /* Check by UNICODE range (Strategy 2) */ 927 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar); 928 929 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */ 930 { 931 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar); 932 933 bytes_written = (int32_t)(pLMBCS - LMBCS); 934 } 935 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */ 936 { 937 /* Handle control characters here */ 938 if (uniChar <= ULMBCS_C0END) 939 { 940 *pLMBCS++ = ULMBCS_GRP_CTRL; 941 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar); 942 } 943 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET) 944 { 945 *pLMBCS++ = ULMBCS_GRP_CTRL; 946 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF); 947 } 948 bytes_written = (int32_t)(pLMBCS - LMBCS); 949 } 950 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */ 951 { 952 /* a specific converter has been identified - use it */ 953 bytes_written = (int32_t)LMBCSConversionWorker ( 954 extraInfo, group, pLMBCS, &uniChar, 955 &lastConverterIndex, groups_tried); 956 } 957 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */ 958 { 959 uprv_memset(groups_tried, 0, sizeof(groups_tried)); 960 961 /* check for non-default optimization group (Strategy 3A )*/ 962 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup))) 963 { 964 /*zhujin: upgrade, merge #39299 here (Lotus) */ 965 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/ 966 967 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START) 968 { 969 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 970 ULMBCS_GRP_L1, pLMBCS, &uniChar, 971 &lastConverterIndex, groups_tried); 972 973 if(!bytes_written) 974 { 975 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 976 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, 977 &lastConverterIndex, groups_tried); 978 } 979 if(!bytes_written) 980 { 981 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 982 extraInfo->localeConverterIndex, pLMBCS, &uniChar, 983 &lastConverterIndex, groups_tried); 984 } 985 } 986 else 987 { 988 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 989 extraInfo->localeConverterIndex, pLMBCS, &uniChar, 990 &lastConverterIndex, groups_tried); 991 } 992 } 993 /* check for locale optimization group (Strategy 3B) */ 994 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex))) 995 { 996 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 997 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried); 998 } 999 /* check for last optimization group used for this string (Strategy 3C) */ 1000 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex))) 1001 { 1002 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 1003 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried); 1004 } 1005 if (!bytes_written) 1006 { 1007 /* just check every possible matching converter (Strategy 3D) */ 1008 ulmbcs_byte_t grp_start; 1009 ulmbcs_byte_t grp_end; 1010 ulmbcs_byte_t grp_ix; 1011 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) 1012 ? ULMBCS_DOUBLEOPTGROUP_START 1013 : ULMBCS_GRP_L1); 1014 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) 1015 ? ULMBCS_GRP_LAST 1016 : ULMBCS_GRP_TH); 1017 if(group == ULMBCS_AMBIGUOUS_ALL) 1018 { 1019 grp_start = ULMBCS_GRP_L1; 1020 grp_end = ULMBCS_GRP_LAST; 1021 } 1022 for (grp_ix = grp_start; 1023 grp_ix <= grp_end && !bytes_written; 1024 grp_ix++) 1025 { 1026 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix]) 1027 { 1028 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 1029 grp_ix, pLMBCS, &uniChar, 1030 &lastConverterIndex, groups_tried); 1031 } 1032 } 1033 /* a final conversion fallback to the exceptions group if its likely 1034 to be single byte (Strategy 3E) */ 1035 if (!bytes_written && grp_start == ULMBCS_GRP_L1) 1036 { 1037 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 1038 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, 1039 &lastConverterIndex, groups_tried); 1040 } 1041 } 1042 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/ 1043 if (!bytes_written) 1044 { 1045 1046 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar); 1047 bytes_written = (int32_t)(pLMBCS - LMBCS); 1048 } 1049 } 1050 } 1051 1052 /* we have a translation. increment source and write as much as possible to target */ 1053 args->source++; 1054 pLMBCS = LMBCS; 1055 while (args->target < args->targetLimit && bytes_written--) 1056 { 1057 *(args->target)++ = *pLMBCS++; 1058 if (args->offsets) 1059 { 1060 *(args->offsets)++ = sourceIndex; 1061 } 1062 } 1063 sourceIndex++; 1064 if (bytes_written > 0) 1065 { 1066 /* write any bytes that didn't fit in target to the error buffer, 1067 common code will move this to target if we get called back with 1068 enough target room 1069 */ 1070 uint8_t * pErrorBuffer = args->converter->charErrorBuffer; 1071 *err = U_BUFFER_OVERFLOW_ERROR; 1072 args->converter->charErrorBufferLength = (int8_t)bytes_written; 1073 while (bytes_written--) 1074 { 1075 *pErrorBuffer++ = *pLMBCS++; 1076 } 1077 } 1078 /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 1079 extraInfo->localeConverterIndex = OldConverterIndex; 1080 } 1081} 1082 1083 1084/* Now, the Unicode from LMBCS section */ 1085 1086 1087/* A function to call when we are looking at the Unicode group byte in LMBCS */ 1088static char16_t 1089GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */ 1090{ 1091 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/ 1092 uint8_t LowCh = *(*ppLMBCSin)++; 1093 1094 if (HighCh == ULMBCS_UNICOMPATZERO ) 1095 { 1096 HighCh = LowCh; 1097 LowCh = 0; /* zero-byte in LSB special character */ 1098 } 1099 return (char16_t)((HighCh << 8) | LowCh); 1100} 1101 1102 1103 1104/* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index' 1105 bytes left in source up to sourceLimit.Errors appropriately if not. 1106 If we reach the limit, then update the source pointer to there to consume 1107 all input as required by ICU converter semantics. 1108*/ 1109 1110#define CHECK_SOURCE_LIMIT(index) UPRV_BLOCK_MACRO_BEGIN { \ 1111 if (args->source+index > args->sourceLimit) { \ 1112 *err = U_TRUNCATED_CHAR_FOUND; \ 1113 args->source = args->sourceLimit; \ 1114 return 0xffff; \ 1115 } \ 1116} UPRV_BLOCK_MACRO_END 1117 1118/* Return the Unicode representation for the current LMBCS character */ 1119 1120static UChar32 U_CALLCONV 1121_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args, 1122 UErrorCode* err) 1123{ 1124 UChar32 uniChar = 0; /* an output UNICODE char */ 1125 ulmbcs_byte_t CurByte; /* A byte from the input stream */ 1126 1127 /* error check */ 1128 if (args->source >= args->sourceLimit) 1129 { 1130 *err = U_ILLEGAL_ARGUMENT_ERROR; 1131 return 0xffff; 1132 } 1133 /* Grab first byte & save address for error recovery */ 1134 CurByte = *((ulmbcs_byte_t *) (args->source++)); 1135 1136 /* 1137 * at entry of each if clause: 1138 * 1. 'CurByte' points at the first byte of a LMBCS character 1139 * 2. '*source'points to the next byte of the source stream after 'CurByte' 1140 * 1141 * the job of each if clause is: 1142 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte) 1143 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately 1144 */ 1145 1146 /* First lets check the simple fixed values. */ 1147 1148 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */ 1149 || (CurByte == 0) 1150 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR 1151 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE) 1152 { 1153 uniChar = CurByte; 1154 } 1155 else 1156 { 1157 UConverterDataLMBCS * extraInfo; 1158 ulmbcs_byte_t group; 1159 UConverterSharedData *cnv; 1160 1161 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */ 1162 { 1163 ulmbcs_byte_t C0C1byte; 1164 CHECK_SOURCE_LIMIT(1); 1165 C0C1byte = *(args->source)++; 1166 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte; 1167 } 1168 else 1169 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */ 1170 { 1171 CHECK_SOURCE_LIMIT(2); 1172 1173 /* don't check for error indicators fffe/ffff below */ 1174 return GetUniFromLMBCSUni(&(args->source)); 1175 } 1176 else if (CurByte <= ULMBCS_CTRLOFFSET) 1177 { 1178 group = CurByte; /* group byte is in the source */ 1179 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 1180 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == nullptr) 1181 { 1182 /* this is not a valid group byte - no converter*/ 1183 *err = U_INVALID_CHAR_FOUND; 1184 } 1185 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */ 1186 { 1187 1188 CHECK_SOURCE_LIMIT(2); 1189 1190 /* check for LMBCS doubled-group-byte case */ 1191 if (*args->source == group) { 1192 /* single byte */ 1193 ++args->source; 1194 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, false); 1195 ++args->source; 1196 } else { 1197 /* double byte */ 1198 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, false); 1199 args->source += 2; 1200 } 1201 } 1202 else { /* single byte conversion */ 1203 CHECK_SOURCE_LIMIT(1); 1204 CurByte = *(args->source)++; 1205 1206 if (CurByte >= ULMBCS_C1START) 1207 { 1208 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte); 1209 } 1210 else 1211 { 1212 /* The non-optimizable oddballs where there is an explicit byte 1213 * AND the second byte is not in the upper ascii range 1214 */ 1215 char bytes[2]; 1216 1217 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 1218 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT]; 1219 1220 /* Lookup value must include opt group */ 1221 bytes[0] = group; 1222 bytes[1] = CurByte; 1223 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, false); 1224 } 1225 } 1226 } 1227 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */ 1228 { 1229 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 1230 group = extraInfo->OptGroup; 1231 cnv = extraInfo->OptGrpConverter[group]; 1232 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */ 1233 { 1234 if (!ucnv_MBCSIsLeadByte(cnv, CurByte)) 1235 { 1236 CHECK_SOURCE_LIMIT(0); 1237 1238 /* let the MBCS conversion consume CurByte again */ 1239 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, false); 1240 } 1241 else 1242 { 1243 CHECK_SOURCE_LIMIT(1); 1244 /* let the MBCS conversion consume CurByte again */ 1245 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, false); 1246 ++args->source; 1247 } 1248 } 1249 else /* single byte conversion */ 1250 { 1251 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte); 1252 } 1253 } 1254 } 1255 return uniChar; 1256} 1257 1258 1259/* The exported function that converts lmbcs to one or more 1260 UChars - currently UTF-16 1261*/ 1262static void U_CALLCONV 1263_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args, 1264 UErrorCode* err) 1265{ 1266 char LMBCS [ULMBCS_CHARSIZE_MAX]; 1267 char16_t uniChar; /* one output UNICODE char */ 1268 const char * saveSource; /* beginning of current code point */ 1269 const char * pStartLMBCS = args->source; /* beginning of whole string */ 1270 const char * errSource = nullptr; /* pointer to actual input in case an error occurs */ 1271 int8_t savebytes = 0; 1272 1273 /* Process from source to limit, or until error */ 1274 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target) 1275 { 1276 saveSource = args->source; /* beginning of current code point */ 1277 1278 if (args->converter->toULength) /* reassemble char from previous call */ 1279 { 1280 const char *saveSourceLimit; 1281 size_t size_old = args->converter->toULength; 1282 1283 /* limit from source is either remainder of temp buffer, or user limit on source */ 1284 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old; 1285 size_t size_new_maybe_2 = args->sourceLimit - args->source; 1286 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2; 1287 1288 1289 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old); 1290 uprv_memcpy(LMBCS + size_old, args->source, size_new); 1291 saveSourceLimit = args->sourceLimit; 1292 args->source = errSource = LMBCS; 1293 args->sourceLimit = LMBCS+size_old+size_new; 1294 savebytes = (int8_t)(size_old+size_new); 1295 uniChar = (char16_t) _LMBCSGetNextUCharWorker(args, err); 1296 args->source = saveSource + ((args->source - LMBCS) - size_old); 1297 args->sourceLimit = saveSourceLimit; 1298 1299 if (*err == U_TRUNCATED_CHAR_FOUND) 1300 { 1301 /* evil special case: source buffers so small a char spans more than 2 buffers */ 1302 args->converter->toULength = savebytes; 1303 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes); 1304 args->source = args->sourceLimit; 1305 *err = U_ZERO_ERROR; 1306 return; 1307 } 1308 else 1309 { 1310 /* clear the partial-char marker */ 1311 args->converter->toULength = 0; 1312 } 1313 } 1314 else 1315 { 1316 errSource = saveSource; 1317 uniChar = (char16_t) _LMBCSGetNextUCharWorker(args, err); 1318 savebytes = (int8_t)(args->source - saveSource); 1319 } 1320 if (U_SUCCESS(*err)) 1321 { 1322 if (uniChar < 0xfffe) 1323 { 1324 *(args->target)++ = uniChar; 1325 if(args->offsets) 1326 { 1327 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS); 1328 } 1329 } 1330 else if (uniChar == 0xfffe) 1331 { 1332 *err = U_INVALID_CHAR_FOUND; 1333 } 1334 else /* if (uniChar == 0xffff) */ 1335 { 1336 *err = U_ILLEGAL_CHAR_FOUND; 1337 } 1338 } 1339 } 1340 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */ 1341 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target) 1342 { 1343 *err = U_BUFFER_OVERFLOW_ERROR; 1344 } 1345 else if (U_FAILURE(*err)) 1346 { 1347 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */ 1348 args->converter->toULength = savebytes; 1349 if (savebytes > 0) { 1350 uprv_memcpy(args->converter->toUBytes, errSource, savebytes); 1351 } 1352 if (*err == U_TRUNCATED_CHAR_FOUND) { 1353 *err = U_ZERO_ERROR; 1354 } 1355 } 1356} 1357 1358/* And now, the macroized declarations of data & functions: */ 1359DEFINE_LMBCS_OPEN(1) 1360DEFINE_LMBCS_OPEN(2) 1361DEFINE_LMBCS_OPEN(3) 1362DEFINE_LMBCS_OPEN(4) 1363DEFINE_LMBCS_OPEN(5) 1364DEFINE_LMBCS_OPEN(6) 1365DEFINE_LMBCS_OPEN(8) 1366DEFINE_LMBCS_OPEN(11) 1367DEFINE_LMBCS_OPEN(16) 1368DEFINE_LMBCS_OPEN(17) 1369DEFINE_LMBCS_OPEN(18) 1370DEFINE_LMBCS_OPEN(19) 1371 1372 1373DECLARE_LMBCS_DATA(1) 1374DECLARE_LMBCS_DATA(2) 1375DECLARE_LMBCS_DATA(3) 1376DECLARE_LMBCS_DATA(4) 1377DECLARE_LMBCS_DATA(5) 1378DECLARE_LMBCS_DATA(6) 1379DECLARE_LMBCS_DATA(8) 1380DECLARE_LMBCS_DATA(11) 1381DECLARE_LMBCS_DATA(16) 1382DECLARE_LMBCS_DATA(17) 1383DECLARE_LMBCS_DATA(18) 1384DECLARE_LMBCS_DATA(19) 1385 1386U_CDECL_END 1387 1388#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ 1389