1// Copyright 2005, Google Inc. 2// All rights reserved. 3// 4// Redistribution and use in source and binary forms, with or without 5// modification, are permitted provided that the following conditions are 6// met: 7// 8// * Redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer. 10// * Redistributions in binary form must reproduce the above 11// copyright notice, this list of conditions and the following disclaimer 12// in the documentation and/or other materials provided with the 13// distribution. 14// * Neither the name of Google Inc. nor the names of its 15// contributors may be used to endorse or promote products derived from 16// this software without specific prior written permission. 17// 18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30// The Google C++ Testing and Mocking Framework (Google Test) 31// 32// This header file declares functions and macros used internally by 33// Google Test. They are subject to change without notice. 34 35// IWYU pragma: private, include "gtest/gtest.h" 36// IWYU pragma: friend gtest/.* 37// IWYU pragma: friend gmock/.* 38 39#ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 40#define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 41 42#include "gtest/internal/gtest-port.h" 43 44#ifdef GTEST_OS_LINUX 45#include <stdlib.h> 46#include <sys/types.h> 47#include <sys/wait.h> 48#include <unistd.h> 49#endif // GTEST_OS_LINUX 50 51#if GTEST_HAS_EXCEPTIONS 52#include <stdexcept> 53#endif 54 55#include <ctype.h> 56#include <float.h> 57#include <string.h> 58 59#include <cstdint> 60#include <functional> 61#include <limits> 62#include <map> 63#include <set> 64#include <string> 65#include <type_traits> 66#include <utility> 67#include <vector> 68 69#include "gtest/gtest-message.h" 70#include "gtest/internal/gtest-filepath.h" 71#include "gtest/internal/gtest-string.h" 72#include "gtest/internal/gtest-type-util.h" 73 74// Due to C++ preprocessor weirdness, we need double indirection to 75// concatenate two tokens when one of them is __LINE__. Writing 76// 77// foo ## __LINE__ 78// 79// will result in the token foo__LINE__, instead of foo followed by 80// the current line number. For more details, see 81// https://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 82#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) 83#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar 84 85// Stringifies its argument. 86// Work around a bug in visual studio which doesn't accept code like this: 87// 88// #define GTEST_STRINGIFY_(name) #name 89// #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ... 90// MACRO(, x, y) 91// 92// Complaining about the argument to GTEST_STRINGIFY_ being empty. 93// This is allowed by the spec. 94#define GTEST_STRINGIFY_HELPER_(name, ...) #name 95#define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, ) 96 97namespace proto2 { 98class MessageLite; 99} 100 101namespace testing { 102 103// Forward declarations. 104 105class AssertionResult; // Result of an assertion. 106class Message; // Represents a failure message. 107class Test; // Represents a test. 108class TestInfo; // Information about a test. 109class TestPartResult; // Result of a test part. 110class UnitTest; // A collection of test suites. 111 112template <typename T> 113::std::string PrintToString(const T& value); 114 115namespace internal { 116 117struct TraceInfo; // Information about a trace point. 118class TestInfoImpl; // Opaque implementation of TestInfo 119class UnitTestImpl; // Opaque implementation of UnitTest 120 121// The text used in failure messages to indicate the start of the 122// stack trace. 123GTEST_API_ extern const char kStackTraceMarker[]; 124 125// An IgnoredValue object can be implicitly constructed from ANY value. 126class IgnoredValue { 127 struct Sink {}; 128 129 public: 130 // This constructor template allows any value to be implicitly 131 // converted to IgnoredValue. The object has no data member and 132 // doesn't try to remember anything about the argument. We 133 // deliberately omit the 'explicit' keyword in order to allow the 134 // conversion to be implicit. 135 // Disable the conversion if T already has a magical conversion operator. 136 // Otherwise we get ambiguity. 137 template <typename T, 138 typename std::enable_if<!std::is_convertible<T, Sink>::value, 139 int>::type = 0> 140 IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) 141}; 142 143// Appends the user-supplied message to the Google-Test-generated message. 144GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg, 145 const Message& user_msg); 146 147#if GTEST_HAS_EXCEPTIONS 148 149GTEST_DISABLE_MSC_WARNINGS_PUSH_( 150 4275 /* an exported class was derived from a class that was not exported */) 151 152// This exception is thrown by (and only by) a failed Google Test 153// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions 154// are enabled). We derive it from std::runtime_error, which is for 155// errors presumably detectable only at run time. Since 156// std::runtime_error inherits from std::exception, many testing 157// frameworks know how to extract and print the message inside it. 158class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { 159 public: 160 explicit GoogleTestFailureException(const TestPartResult& failure); 161}; 162 163GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 164 165#endif // GTEST_HAS_EXCEPTIONS 166 167namespace edit_distance { 168// Returns the optimal edits to go from 'left' to 'right'. 169// All edits cost the same, with replace having lower priority than 170// add/remove. 171// Simple implementation of the Wagner-Fischer algorithm. 172// See https://en.wikipedia.org/wiki/Wagner-Fischer_algorithm 173enum EditType { kMatch, kAdd, kRemove, kReplace }; 174GTEST_API_ std::vector<EditType> CalculateOptimalEdits( 175 const std::vector<size_t>& left, const std::vector<size_t>& right); 176 177// Same as above, but the input is represented as strings. 178GTEST_API_ std::vector<EditType> CalculateOptimalEdits( 179 const std::vector<std::string>& left, 180 const std::vector<std::string>& right); 181 182// Create a diff of the input strings in Unified diff format. 183GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, 184 const std::vector<std::string>& right, 185 size_t context = 2); 186 187} // namespace edit_distance 188 189// Constructs and returns the message for an equality assertion 190// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. 191// 192// The first four parameters are the expressions used in the assertion 193// and their values, as strings. For example, for ASSERT_EQ(foo, bar) 194// where foo is 5 and bar is 6, we have: 195// 196// expected_expression: "foo" 197// actual_expression: "bar" 198// expected_value: "5" 199// actual_value: "6" 200// 201// The ignoring_case parameter is true if and only if the assertion is a 202// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will 203// be inserted into the message. 204GTEST_API_ AssertionResult EqFailure(const char* expected_expression, 205 const char* actual_expression, 206 const std::string& expected_value, 207 const std::string& actual_value, 208 bool ignoring_case); 209 210// Constructs a failure message for Boolean assertions such as EXPECT_TRUE. 211GTEST_API_ std::string GetBoolAssertionFailureMessage( 212 const AssertionResult& assertion_result, const char* expression_text, 213 const char* actual_predicate_value, const char* expected_predicate_value); 214 215// This template class represents an IEEE floating-point number 216// (either single-precision or double-precision, depending on the 217// template parameters). 218// 219// The purpose of this class is to do more sophisticated number 220// comparison. (Due to round-off error, etc, it's very unlikely that 221// two floating-points will be equal exactly. Hence a naive 222// comparison by the == operation often doesn't work.) 223// 224// Format of IEEE floating-point: 225// 226// The most-significant bit being the leftmost, an IEEE 227// floating-point looks like 228// 229// sign_bit exponent_bits fraction_bits 230// 231// Here, sign_bit is a single bit that designates the sign of the 232// number. 233// 234// For float, there are 8 exponent bits and 23 fraction bits. 235// 236// For double, there are 11 exponent bits and 52 fraction bits. 237// 238// More details can be found at 239// https://en.wikipedia.org/wiki/IEEE_floating-point_standard. 240// 241// Template parameter: 242// 243// RawType: the raw floating-point type (either float or double) 244template <typename RawType> 245class FloatingPoint { 246 public: 247 // Defines the unsigned integer type that has the same size as the 248 // floating point number. 249 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; 250 251 // Constants. 252 253 // # of bits in a number. 254 static const size_t kBitCount = 8 * sizeof(RawType); 255 256 // # of fraction bits in a number. 257 static const size_t kFractionBitCount = 258 std::numeric_limits<RawType>::digits - 1; 259 260 // # of exponent bits in a number. 261 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; 262 263 // The mask for the sign bit. 264 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); 265 266 // The mask for the fraction bits. 267 static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> 268 (kExponentBitCount + 1); 269 270 // The mask for the exponent bits. 271 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); 272 273 // How many ULP's (Units in the Last Place) we want to tolerate when 274 // comparing two numbers. The larger the value, the more error we 275 // allow. A 0 value means that two numbers must be exactly the same 276 // to be considered equal. 277 // 278 // The maximum error of a single floating-point operation is 0.5 279 // units in the last place. On Intel CPU's, all floating-point 280 // calculations are done with 80-bit precision, while double has 64 281 // bits. Therefore, 4 should be enough for ordinary use. 282 // 283 // See the following article for more details on ULP: 284 // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ 285 static const uint32_t kMaxUlps = 4; 286 287 // Constructs a FloatingPoint from a raw floating-point number. 288 // 289 // On an Intel CPU, passing a non-normalized NAN (Not a Number) 290 // around may change its bits, although the new value is guaranteed 291 // to be also a NAN. Therefore, don't expect this constructor to 292 // preserve the bits in x when x is a NAN. 293 explicit FloatingPoint(const RawType& x) { u_.value_ = x; } 294 295 // Static methods 296 297 // Reinterprets a bit pattern as a floating-point number. 298 // 299 // This function is needed to test the AlmostEquals() method. 300 static RawType ReinterpretBits(const Bits bits) { 301 FloatingPoint fp(0); 302 fp.u_.bits_ = bits; 303 return fp.u_.value_; 304 } 305 306 // Returns the floating-point number that represent positive infinity. 307 static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } 308 309 // Non-static methods 310 311 // Returns the bits that represents this number. 312 const Bits& bits() const { return u_.bits_; } 313 314 // Returns the exponent bits of this number. 315 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } 316 317 // Returns the fraction bits of this number. 318 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } 319 320 // Returns the sign bit of this number. 321 Bits sign_bit() const { return kSignBitMask & u_.bits_; } 322 323 // Returns true if and only if this is NAN (not a number). 324 bool is_nan() const { 325 // It's a NAN if the exponent bits are all ones and the fraction 326 // bits are not entirely zeros. 327 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); 328 } 329 330 // Returns true if and only if this number is at most kMaxUlps ULP's away 331 // from rhs. In particular, this function: 332 // 333 // - returns false if either number is (or both are) NAN. 334 // - treats really large numbers as almost equal to infinity. 335 // - thinks +0.0 and -0.0 are 0 DLP's apart. 336 bool AlmostEquals(const FloatingPoint& rhs) const { 337 // The IEEE standard says that any comparison operation involving 338 // a NAN must return false. 339 if (is_nan() || rhs.is_nan()) return false; 340 341 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <= 342 kMaxUlps; 343 } 344 345 private: 346 // The data type used to store the actual floating-point number. 347 union FloatingPointUnion { 348 RawType value_; // The raw floating-point number. 349 Bits bits_; // The bits that represent the number. 350 }; 351 352 // Converts an integer from the sign-and-magnitude representation to 353 // the biased representation. More precisely, let N be 2 to the 354 // power of (kBitCount - 1), an integer x is represented by the 355 // unsigned number x + N. 356 // 357 // For instance, 358 // 359 // -N + 1 (the most negative number representable using 360 // sign-and-magnitude) is represented by 1; 361 // 0 is represented by N; and 362 // N - 1 (the biggest number representable using 363 // sign-and-magnitude) is represented by 2N - 1. 364 // 365 // Read https://en.wikipedia.org/wiki/Signed_number_representations 366 // for more details on signed number representations. 367 static Bits SignAndMagnitudeToBiased(const Bits& sam) { 368 if (kSignBitMask & sam) { 369 // sam represents a negative number. 370 return ~sam + 1; 371 } else { 372 // sam represents a positive number. 373 return kSignBitMask | sam; 374 } 375 } 376 377 // Given two numbers in the sign-and-magnitude representation, 378 // returns the distance between them as an unsigned number. 379 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1, 380 const Bits& sam2) { 381 const Bits biased1 = SignAndMagnitudeToBiased(sam1); 382 const Bits biased2 = SignAndMagnitudeToBiased(sam2); 383 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); 384 } 385 386 FloatingPointUnion u_; 387}; 388 389// Typedefs the instances of the FloatingPoint template class that we 390// care to use. 391typedef FloatingPoint<float> Float; 392typedef FloatingPoint<double> Double; 393 394// In order to catch the mistake of putting tests that use different 395// test fixture classes in the same test suite, we need to assign 396// unique IDs to fixture classes and compare them. The TypeId type is 397// used to hold such IDs. The user should treat TypeId as an opaque 398// type: the only operation allowed on TypeId values is to compare 399// them for equality using the == operator. 400typedef const void* TypeId; 401 402template <typename T> 403class TypeIdHelper { 404 public: 405 // dummy_ must not have a const type. Otherwise an overly eager 406 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge 407 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". 408 static bool dummy_; 409}; 410 411template <typename T> 412bool TypeIdHelper<T>::dummy_ = false; 413 414// GetTypeId<T>() returns the ID of type T. Different values will be 415// returned for different types. Calling the function twice with the 416// same type argument is guaranteed to return the same ID. 417template <typename T> 418TypeId GetTypeId() { 419 // The compiler is required to allocate a different 420 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate 421 // the template. Therefore, the address of dummy_ is guaranteed to 422 // be unique. 423 return &(TypeIdHelper<T>::dummy_); 424} 425 426// Returns the type ID of ::testing::Test. Always call this instead 427// of GetTypeId< ::testing::Test>() to get the type ID of 428// ::testing::Test, as the latter may give the wrong result due to a 429// suspected linker bug when compiling Google Test as a Mac OS X 430// framework. 431GTEST_API_ TypeId GetTestTypeId(); 432 433// Defines the abstract factory interface that creates instances 434// of a Test object. 435class TestFactoryBase { 436 public: 437 virtual ~TestFactoryBase() = default; 438 439 // Creates a test instance to run. The instance is both created and destroyed 440 // within TestInfoImpl::Run() 441 virtual Test* CreateTest() = 0; 442 443 protected: 444 TestFactoryBase() {} 445 446 private: 447 TestFactoryBase(const TestFactoryBase&) = delete; 448 TestFactoryBase& operator=(const TestFactoryBase&) = delete; 449}; 450 451// This class provides implementation of TestFactoryBase interface. 452// It is used in TEST and TEST_F macros. 453template <class TestClass> 454class TestFactoryImpl : public TestFactoryBase { 455 public: 456 Test* CreateTest() override { return new TestClass; } 457}; 458 459#ifdef GTEST_OS_WINDOWS 460 461// Predicate-formatters for implementing the HRESULT checking macros 462// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} 463// We pass a long instead of HRESULT to avoid causing an 464// include dependency for the HRESULT type. 465GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, 466 long hr); // NOLINT 467GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, 468 long hr); // NOLINT 469 470#endif // GTEST_OS_WINDOWS 471 472// Types of SetUpTestSuite() and TearDownTestSuite() functions. 473using SetUpTestSuiteFunc = void (*)(); 474using TearDownTestSuiteFunc = void (*)(); 475 476struct CodeLocation { 477 CodeLocation(const std::string& a_file, int a_line) 478 : file(a_file), line(a_line) {} 479 480 std::string file; 481 int line; 482}; 483 484// Helper to identify which setup function for TestCase / TestSuite to call. 485// Only one function is allowed, either TestCase or TestSute but not both. 486 487// Utility functions to help SuiteApiResolver 488using SetUpTearDownSuiteFuncType = void (*)(); 489 490inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( 491 SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { 492 return a == def ? nullptr : a; 493} 494 495template <typename T> 496// Note that SuiteApiResolver inherits from T because 497// SetUpTestSuite()/TearDownTestSuite() could be protected. This way 498// SuiteApiResolver can access them. 499struct SuiteApiResolver : T { 500 // testing::Test is only forward declared at this point. So we make it a 501 // dependent class for the compiler to be OK with it. 502 using Test = 503 typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; 504 505 static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename, 506 int line_num) { 507#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 508 SetUpTearDownSuiteFuncType test_case_fp = 509 GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); 510 SetUpTearDownSuiteFuncType test_suite_fp = 511 GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); 512 513 GTEST_CHECK_(!test_case_fp || !test_suite_fp) 514 << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " 515 "make sure there is only one present at " 516 << filename << ":" << line_num; 517 518 return test_case_fp != nullptr ? test_case_fp : test_suite_fp; 519#else 520 (void)(filename); 521 (void)(line_num); 522 return &T::SetUpTestSuite; 523#endif 524 } 525 526 static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename, 527 int line_num) { 528#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 529 SetUpTearDownSuiteFuncType test_case_fp = 530 GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); 531 SetUpTearDownSuiteFuncType test_suite_fp = 532 GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); 533 534 GTEST_CHECK_(!test_case_fp || !test_suite_fp) 535 << "Test can not provide both TearDownTestSuite and TearDownTestCase," 536 " please make sure there is only one present at" 537 << filename << ":" << line_num; 538 539 return test_case_fp != nullptr ? test_case_fp : test_suite_fp; 540#else 541 (void)(filename); 542 (void)(line_num); 543 return &T::TearDownTestSuite; 544#endif 545 } 546}; 547 548// Creates a new TestInfo object and registers it with Google Test; 549// returns the created object. 550// 551// Arguments: 552// 553// test_suite_name: name of the test suite 554// name: name of the test 555// type_param: the name of the test's type parameter, or NULL if 556// this is not a typed or a type-parameterized test. 557// value_param: text representation of the test's value parameter, 558// or NULL if this is not a type-parameterized test. 559// code_location: code location where the test is defined 560// fixture_class_id: ID of the test fixture class 561// set_up_tc: pointer to the function that sets up the test suite 562// tear_down_tc: pointer to the function that tears down the test suite 563// factory: pointer to the factory that creates a test object. 564// The newly created TestInfo instance will assume 565// ownership of the factory object. 566GTEST_API_ TestInfo* MakeAndRegisterTestInfo( 567 const char* test_suite_name, const char* name, const char* type_param, 568 const char* value_param, CodeLocation code_location, 569 TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, 570 TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); 571 572// If *pstr starts with the given prefix, modifies *pstr to be right 573// past the prefix and returns true; otherwise leaves *pstr unchanged 574// and returns false. None of pstr, *pstr, and prefix can be NULL. 575GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); 576 577GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ 578/* class A needs to have dll-interface to be used by clients of class B */) 579 580// State of the definition of a type-parameterized test suite. 581class GTEST_API_ TypedTestSuitePState { 582 public: 583 TypedTestSuitePState() : registered_(false) {} 584 585 // Adds the given test name to defined_test_names_ and return true 586 // if the test suite hasn't been registered; otherwise aborts the 587 // program. 588 bool AddTestName(const char* file, int line, const char* case_name, 589 const char* test_name) { 590 if (registered_) { 591 fprintf(stderr, 592 "%s Test %s must be defined before " 593 "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n", 594 FormatFileLocation(file, line).c_str(), test_name, case_name); 595 fflush(stderr); 596 posix::Abort(); 597 } 598 registered_tests_.insert( 599 ::std::make_pair(test_name, CodeLocation(file, line))); 600 return true; 601 } 602 603 bool TestExists(const std::string& test_name) const { 604 return registered_tests_.count(test_name) > 0; 605 } 606 607 const CodeLocation& GetCodeLocation(const std::string& test_name) const { 608 RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); 609 GTEST_CHECK_(it != registered_tests_.end()); 610 return it->second; 611 } 612 613 // Verifies that registered_tests match the test names in 614 // defined_test_names_; returns registered_tests if successful, or 615 // aborts the program otherwise. 616 const char* VerifyRegisteredTestNames(const char* test_suite_name, 617 const char* file, int line, 618 const char* registered_tests); 619 620 private: 621 typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap; 622 623 bool registered_; 624 RegisteredTestsMap registered_tests_; 625}; 626 627// Legacy API is deprecated but still available 628#ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 629using TypedTestCasePState = TypedTestSuitePState; 630#endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ 631 632GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 633 634// Skips to the first non-space char after the first comma in 'str'; 635// returns NULL if no comma is found in 'str'. 636inline const char* SkipComma(const char* str) { 637 const char* comma = strchr(str, ','); 638 if (comma == nullptr) { 639 return nullptr; 640 } 641 while (IsSpace(*(++comma))) { 642 } 643 return comma; 644} 645 646// Returns the prefix of 'str' before the first comma in it; returns 647// the entire string if it contains no comma. 648inline std::string GetPrefixUntilComma(const char* str) { 649 const char* comma = strchr(str, ','); 650 return comma == nullptr ? str : std::string(str, comma); 651} 652 653// Splits a given string on a given delimiter, populating a given 654// vector with the fields. 655void SplitString(const ::std::string& str, char delimiter, 656 ::std::vector<::std::string>* dest); 657 658// The default argument to the template below for the case when the user does 659// not provide a name generator. 660struct DefaultNameGenerator { 661 template <typename T> 662 static std::string GetName(int i) { 663 return StreamableToString(i); 664 } 665}; 666 667template <typename Provided = DefaultNameGenerator> 668struct NameGeneratorSelector { 669 typedef Provided type; 670}; 671 672template <typename NameGenerator> 673void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {} 674 675template <typename NameGenerator, typename Types> 676void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { 677 result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); 678 GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, 679 i + 1); 680} 681 682template <typename NameGenerator, typename Types> 683std::vector<std::string> GenerateNames() { 684 std::vector<std::string> result; 685 GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); 686 return result; 687} 688 689// TypeParameterizedTest<Fixture, TestSel, Types>::Register() 690// registers a list of type-parameterized tests with Google Test. The 691// return value is insignificant - we just need to return something 692// such that we can call this function in a namespace scope. 693// 694// Implementation note: The GTEST_TEMPLATE_ macro declares a template 695// template parameter. It's defined in gtest-type-util.h. 696template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> 697class TypeParameterizedTest { 698 public: 699 // 'index' is the index of the test in the type list 'Types' 700 // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, 701 // Types). Valid values for 'index' are [0, N - 1] where N is the 702 // length of Types. 703 static bool Register(const char* prefix, const CodeLocation& code_location, 704 const char* case_name, const char* test_names, int index, 705 const std::vector<std::string>& type_names = 706 GenerateNames<DefaultNameGenerator, Types>()) { 707 typedef typename Types::Head Type; 708 typedef Fixture<Type> FixtureClass; 709 typedef typename GTEST_BIND_(TestSel, Type) TestClass; 710 711 // First, registers the first type-parameterized test in the type 712 // list. 713 MakeAndRegisterTestInfo( 714 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + 715 "/" + type_names[static_cast<size_t>(index)]) 716 .c_str(), 717 StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), 718 GetTypeName<Type>().c_str(), 719 nullptr, // No value parameter. 720 code_location, GetTypeId<FixtureClass>(), 721 SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite( 722 code_location.file.c_str(), code_location.line), 723 SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite( 724 code_location.file.c_str(), code_location.line), 725 new TestFactoryImpl<TestClass>); 726 727 // Next, recurses (at compile time) with the tail of the type list. 728 return TypeParameterizedTest<Fixture, TestSel, 729 typename Types::Tail>::Register(prefix, 730 code_location, 731 case_name, 732 test_names, 733 index + 1, 734 type_names); 735 } 736}; 737 738// The base case for the compile time recursion. 739template <GTEST_TEMPLATE_ Fixture, class TestSel> 740class TypeParameterizedTest<Fixture, TestSel, internal::None> { 741 public: 742 static bool Register(const char* /*prefix*/, const CodeLocation&, 743 const char* /*case_name*/, const char* /*test_names*/, 744 int /*index*/, 745 const std::vector<std::string>& = 746 std::vector<std::string>() /*type_names*/) { 747 return true; 748 } 749}; 750 751GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name, 752 CodeLocation code_location); 753GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation( 754 const char* case_name); 755 756// TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() 757// registers *all combinations* of 'Tests' and 'Types' with Google 758// Test. The return value is insignificant - we just need to return 759// something such that we can call this function in a namespace scope. 760template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> 761class TypeParameterizedTestSuite { 762 public: 763 static bool Register(const char* prefix, CodeLocation code_location, 764 const TypedTestSuitePState* state, const char* case_name, 765 const char* test_names, 766 const std::vector<std::string>& type_names = 767 GenerateNames<DefaultNameGenerator, Types>()) { 768 RegisterTypeParameterizedTestSuiteInstantiation(case_name); 769 std::string test_name = 770 StripTrailingSpaces(GetPrefixUntilComma(test_names)); 771 if (!state->TestExists(test_name)) { 772 fprintf(stderr, "Failed to get code location for test %s.%s at %s.", 773 case_name, test_name.c_str(), 774 FormatFileLocation(code_location.file.c_str(), code_location.line) 775 .c_str()); 776 fflush(stderr); 777 posix::Abort(); 778 } 779 const CodeLocation& test_location = state->GetCodeLocation(test_name); 780 781 typedef typename Tests::Head Head; 782 783 // First, register the first test in 'Test' for each type in 'Types'. 784 TypeParameterizedTest<Fixture, Head, Types>::Register( 785 prefix, test_location, case_name, test_names, 0, type_names); 786 787 // Next, recurses (at compile time) with the tail of the test list. 788 return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, 789 Types>::Register(prefix, code_location, 790 state, case_name, 791 SkipComma(test_names), 792 type_names); 793 } 794}; 795 796// The base case for the compile time recursion. 797template <GTEST_TEMPLATE_ Fixture, typename Types> 798class TypeParameterizedTestSuite<Fixture, internal::None, Types> { 799 public: 800 static bool Register(const char* /*prefix*/, const CodeLocation&, 801 const TypedTestSuitePState* /*state*/, 802 const char* /*case_name*/, const char* /*test_names*/, 803 const std::vector<std::string>& = 804 std::vector<std::string>() /*type_names*/) { 805 return true; 806 } 807}; 808 809// Returns the current OS stack trace as an std::string. 810// 811// The maximum number of stack frames to be included is specified by 812// the gtest_stack_trace_depth flag. The skip_count parameter 813// specifies the number of top frames to be skipped, which doesn't 814// count against the number of frames to be included. 815// 816// For example, if Foo() calls Bar(), which in turn calls 817// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in 818// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. 819GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count); 820 821// Helpers for suppressing warnings on unreachable code or constant 822// condition. 823 824// Always returns true. 825GTEST_API_ bool AlwaysTrue(); 826 827// Always returns false. 828inline bool AlwaysFalse() { return !AlwaysTrue(); } 829 830// Helper for suppressing false warning from Clang on a const char* 831// variable declared in a conditional expression always being NULL in 832// the else branch. 833struct GTEST_API_ ConstCharPtr { 834 ConstCharPtr(const char* str) : value(str) {} 835 operator bool() const { return true; } 836 const char* value; 837}; 838 839// Helper for declaring std::string within 'if' statement 840// in pre C++17 build environment. 841struct TrueWithString { 842 TrueWithString() = default; 843 explicit TrueWithString(const char* str) : value(str) {} 844 explicit TrueWithString(const std::string& str) : value(str) {} 845 explicit operator bool() const { return true; } 846 std::string value; 847}; 848 849// A simple Linear Congruential Generator for generating random 850// numbers with a uniform distribution. Unlike rand() and srand(), it 851// doesn't use global state (and therefore can't interfere with user 852// code). Unlike rand_r(), it's portable. An LCG isn't very random, 853// but it's good enough for our purposes. 854class GTEST_API_ Random { 855 public: 856 static const uint32_t kMaxRange = 1u << 31; 857 858 explicit Random(uint32_t seed) : state_(seed) {} 859 860 void Reseed(uint32_t seed) { state_ = seed; } 861 862 // Generates a random number from [0, range). Crashes if 'range' is 863 // 0 or greater than kMaxRange. 864 uint32_t Generate(uint32_t range); 865 866 private: 867 uint32_t state_; 868 Random(const Random&) = delete; 869 Random& operator=(const Random&) = delete; 870}; 871 872// Turns const U&, U&, const U, and U all into U. 873#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ 874 typename std::remove_const<typename std::remove_reference<T>::type>::type 875 876// HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant 877// that's true if and only if T has methods DebugString() and ShortDebugString() 878// that return std::string. 879template <typename T> 880class HasDebugStringAndShortDebugString { 881 private: 882 template <typename C> 883 static auto CheckDebugString(C*) -> typename std::is_same< 884 std::string, decltype(std::declval<const C>().DebugString())>::type; 885 template <typename> 886 static std::false_type CheckDebugString(...); 887 888 template <typename C> 889 static auto CheckShortDebugString(C*) -> typename std::is_same< 890 std::string, decltype(std::declval<const C>().ShortDebugString())>::type; 891 template <typename> 892 static std::false_type CheckShortDebugString(...); 893 894 using HasDebugStringType = decltype(CheckDebugString<T>(nullptr)); 895 using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr)); 896 897 public: 898 static constexpr bool value = 899 HasDebugStringType::value && HasShortDebugStringType::value; 900}; 901 902#ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL 903template <typename T> 904constexpr bool HasDebugStringAndShortDebugString<T>::value; 905#endif 906 907// When the compiler sees expression IsContainerTest<C>(0), if C is an 908// STL-style container class, the first overload of IsContainerTest 909// will be viable (since both C::iterator* and C::const_iterator* are 910// valid types and NULL can be implicitly converted to them). It will 911// be picked over the second overload as 'int' is a perfect match for 912// the type of argument 0. If C::iterator or C::const_iterator is not 913// a valid type, the first overload is not viable, and the second 914// overload will be picked. Therefore, we can determine whether C is 915// a container class by checking the type of IsContainerTest<C>(0). 916// The value of the expression is insignificant. 917// 918// In C++11 mode we check the existence of a const_iterator and that an 919// iterator is properly implemented for the container. 920// 921// For pre-C++11 that we look for both C::iterator and C::const_iterator. 922// The reason is that C++ injects the name of a class as a member of the 923// class itself (e.g. you can refer to class iterator as either 924// 'iterator' or 'iterator::iterator'). If we look for C::iterator 925// only, for example, we would mistakenly think that a class named 926// iterator is an STL container. 927// 928// Also note that the simpler approach of overloading 929// IsContainerTest(typename C::const_iterator*) and 930// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. 931typedef int IsContainer; 932template <class C, 933 class Iterator = decltype(::std::declval<const C&>().begin()), 934 class = decltype(::std::declval<const C&>().end()), 935 class = decltype(++::std::declval<Iterator&>()), 936 class = decltype(*::std::declval<Iterator>()), 937 class = typename C::const_iterator> 938IsContainer IsContainerTest(int /* dummy */) { 939 return 0; 940} 941 942typedef char IsNotContainer; 943template <class C> 944IsNotContainer IsContainerTest(long /* dummy */) { 945 return '\0'; 946} 947 948// Trait to detect whether a type T is a hash table. 949// The heuristic used is that the type contains an inner type `hasher` and does 950// not contain an inner type `reverse_iterator`. 951// If the container is iterable in reverse, then order might actually matter. 952template <typename T> 953struct IsHashTable { 954 private: 955 template <typename U> 956 static char test(typename U::hasher*, typename U::reverse_iterator*); 957 template <typename U> 958 static int test(typename U::hasher*, ...); 959 template <typename U> 960 static char test(...); 961 962 public: 963 static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); 964}; 965 966template <typename T> 967const bool IsHashTable<T>::value; 968 969template <typename C, 970 bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> 971struct IsRecursiveContainerImpl; 972 973template <typename C> 974struct IsRecursiveContainerImpl<C, false> : public std::false_type {}; 975 976// Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to 977// obey the same inconsistencies as the IsContainerTest, namely check if 978// something is a container is relying on only const_iterator in C++11 and 979// is relying on both const_iterator and iterator otherwise 980template <typename C> 981struct IsRecursiveContainerImpl<C, true> { 982 using value_type = decltype(*std::declval<typename C::const_iterator>()); 983 using type = 984 std::is_same<typename std::remove_const< 985 typename std::remove_reference<value_type>::type>::type, 986 C>; 987}; 988 989// IsRecursiveContainer<Type> is a unary compile-time predicate that 990// evaluates whether C is a recursive container type. A recursive container 991// type is a container type whose value_type is equal to the container type 992// itself. An example for a recursive container type is 993// boost::filesystem::path, whose iterator has a value_type that is equal to 994// boost::filesystem::path. 995template <typename C> 996struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; 997 998// Utilities for native arrays. 999 1000// ArrayEq() compares two k-dimensional native arrays using the 1001// elements' operator==, where k can be any integer >= 0. When k is 1002// 0, ArrayEq() degenerates into comparing a single pair of values. 1003 1004template <typename T, typename U> 1005bool ArrayEq(const T* lhs, size_t size, const U* rhs); 1006 1007// This generic version is used when k is 0. 1008template <typename T, typename U> 1009inline bool ArrayEq(const T& lhs, const U& rhs) { 1010 return lhs == rhs; 1011} 1012 1013// This overload is used when k >= 1. 1014template <typename T, typename U, size_t N> 1015inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) { 1016 return internal::ArrayEq(lhs, N, rhs); 1017} 1018 1019// This helper reduces code bloat. If we instead put its logic inside 1020// the previous ArrayEq() function, arrays with different sizes would 1021// lead to different copies of the template code. 1022template <typename T, typename U> 1023bool ArrayEq(const T* lhs, size_t size, const U* rhs) { 1024 for (size_t i = 0; i != size; i++) { 1025 if (!internal::ArrayEq(lhs[i], rhs[i])) return false; 1026 } 1027 return true; 1028} 1029 1030// Finds the first element in the iterator range [begin, end) that 1031// equals elem. Element may be a native array type itself. 1032template <typename Iter, typename Element> 1033Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { 1034 for (Iter it = begin; it != end; ++it) { 1035 if (internal::ArrayEq(*it, elem)) return it; 1036 } 1037 return end; 1038} 1039 1040// CopyArray() copies a k-dimensional native array using the elements' 1041// operator=, where k can be any integer >= 0. When k is 0, 1042// CopyArray() degenerates into copying a single value. 1043 1044template <typename T, typename U> 1045void CopyArray(const T* from, size_t size, U* to); 1046 1047// This generic version is used when k is 0. 1048template <typename T, typename U> 1049inline void CopyArray(const T& from, U* to) { 1050 *to = from; 1051} 1052 1053// This overload is used when k >= 1. 1054template <typename T, typename U, size_t N> 1055inline void CopyArray(const T (&from)[N], U (*to)[N]) { 1056 internal::CopyArray(from, N, *to); 1057} 1058 1059// This helper reduces code bloat. If we instead put its logic inside 1060// the previous CopyArray() function, arrays with different sizes 1061// would lead to different copies of the template code. 1062template <typename T, typename U> 1063void CopyArray(const T* from, size_t size, U* to) { 1064 for (size_t i = 0; i != size; i++) { 1065 internal::CopyArray(from[i], to + i); 1066 } 1067} 1068 1069// The relation between an NativeArray object (see below) and the 1070// native array it represents. 1071// We use 2 different structs to allow non-copyable types to be used, as long 1072// as RelationToSourceReference() is passed. 1073struct RelationToSourceReference {}; 1074struct RelationToSourceCopy {}; 1075 1076// Adapts a native array to a read-only STL-style container. Instead 1077// of the complete STL container concept, this adaptor only implements 1078// members useful for Google Mock's container matchers. New members 1079// should be added as needed. To simplify the implementation, we only 1080// support Element being a raw type (i.e. having no top-level const or 1081// reference modifier). It's the client's responsibility to satisfy 1082// this requirement. Element can be an array type itself (hence 1083// multi-dimensional arrays are supported). 1084template <typename Element> 1085class NativeArray { 1086 public: 1087 // STL-style container typedefs. 1088 typedef Element value_type; 1089 typedef Element* iterator; 1090 typedef const Element* const_iterator; 1091 1092 // Constructs from a native array. References the source. 1093 NativeArray(const Element* array, size_t count, RelationToSourceReference) { 1094 InitRef(array, count); 1095 } 1096 1097 // Constructs from a native array. Copies the source. 1098 NativeArray(const Element* array, size_t count, RelationToSourceCopy) { 1099 InitCopy(array, count); 1100 } 1101 1102 // Copy constructor. 1103 NativeArray(const NativeArray& rhs) { 1104 (this->*rhs.clone_)(rhs.array_, rhs.size_); 1105 } 1106 1107 ~NativeArray() { 1108 if (clone_ != &NativeArray::InitRef) delete[] array_; 1109 } 1110 1111 // STL-style container methods. 1112 size_t size() const { return size_; } 1113 const_iterator begin() const { return array_; } 1114 const_iterator end() const { return array_ + size_; } 1115 bool operator==(const NativeArray& rhs) const { 1116 return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin()); 1117 } 1118 1119 private: 1120 static_assert(!std::is_const<Element>::value, "Type must not be const"); 1121 static_assert(!std::is_reference<Element>::value, 1122 "Type must not be a reference"); 1123 1124 // Initializes this object with a copy of the input. 1125 void InitCopy(const Element* array, size_t a_size) { 1126 Element* const copy = new Element[a_size]; 1127 CopyArray(array, a_size, copy); 1128 array_ = copy; 1129 size_ = a_size; 1130 clone_ = &NativeArray::InitCopy; 1131 } 1132 1133 // Initializes this object with a reference of the input. 1134 void InitRef(const Element* array, size_t a_size) { 1135 array_ = array; 1136 size_ = a_size; 1137 clone_ = &NativeArray::InitRef; 1138 } 1139 1140 const Element* array_; 1141 size_t size_; 1142 void (NativeArray::*clone_)(const Element*, size_t); 1143}; 1144 1145// Backport of std::index_sequence. 1146template <size_t... Is> 1147struct IndexSequence { 1148 using type = IndexSequence; 1149}; 1150 1151// Double the IndexSequence, and one if plus_one is true. 1152template <bool plus_one, typename T, size_t sizeofT> 1153struct DoubleSequence; 1154template <size_t... I, size_t sizeofT> 1155struct DoubleSequence<true, IndexSequence<I...>, sizeofT> { 1156 using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>; 1157}; 1158template <size_t... I, size_t sizeofT> 1159struct DoubleSequence<false, IndexSequence<I...>, sizeofT> { 1160 using type = IndexSequence<I..., (sizeofT + I)...>; 1161}; 1162 1163// Backport of std::make_index_sequence. 1164// It uses O(ln(N)) instantiation depth. 1165template <size_t N> 1166struct MakeIndexSequenceImpl 1167 : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type, 1168 N / 2>::type {}; 1169 1170template <> 1171struct MakeIndexSequenceImpl<0> : IndexSequence<> {}; 1172 1173template <size_t N> 1174using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type; 1175 1176template <typename... T> 1177using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type; 1178 1179template <size_t> 1180struct Ignore { 1181 Ignore(...); // NOLINT 1182}; 1183 1184template <typename> 1185struct ElemFromListImpl; 1186template <size_t... I> 1187struct ElemFromListImpl<IndexSequence<I...>> { 1188 // We make Ignore a template to solve a problem with MSVC. 1189 // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but 1190 // MSVC doesn't understand how to deal with that pack expansion. 1191 // Use `0 * I` to have a single instantiation of Ignore. 1192 template <typename R> 1193 static R Apply(Ignore<0 * I>..., R (*)(), ...); 1194}; 1195 1196template <size_t N, typename... T> 1197struct ElemFromList { 1198 using type = 1199 decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply( 1200 static_cast<T (*)()>(nullptr)...)); 1201}; 1202 1203struct FlatTupleConstructTag {}; 1204 1205template <typename... T> 1206class FlatTuple; 1207 1208template <typename Derived, size_t I> 1209struct FlatTupleElemBase; 1210 1211template <typename... T, size_t I> 1212struct FlatTupleElemBase<FlatTuple<T...>, I> { 1213 using value_type = typename ElemFromList<I, T...>::type; 1214 FlatTupleElemBase() = default; 1215 template <typename Arg> 1216 explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t) 1217 : value(std::forward<Arg>(t)) {} 1218 value_type value; 1219}; 1220 1221template <typename Derived, typename Idx> 1222struct FlatTupleBase; 1223 1224template <size_t... Idx, typename... T> 1225struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>> 1226 : FlatTupleElemBase<FlatTuple<T...>, Idx>... { 1227 using Indices = IndexSequence<Idx...>; 1228 FlatTupleBase() = default; 1229 template <typename... Args> 1230 explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args) 1231 : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{}, 1232 std::forward<Args>(args))... {} 1233 1234 template <size_t I> 1235 const typename ElemFromList<I, T...>::type& Get() const { 1236 return FlatTupleElemBase<FlatTuple<T...>, I>::value; 1237 } 1238 1239 template <size_t I> 1240 typename ElemFromList<I, T...>::type& Get() { 1241 return FlatTupleElemBase<FlatTuple<T...>, I>::value; 1242 } 1243 1244 template <typename F> 1245 auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) { 1246 return std::forward<F>(f)(Get<Idx>()...); 1247 } 1248 1249 template <typename F> 1250 auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) { 1251 return std::forward<F>(f)(Get<Idx>()...); 1252 } 1253}; 1254 1255// Analog to std::tuple but with different tradeoffs. 1256// This class minimizes the template instantiation depth, thus allowing more 1257// elements than std::tuple would. std::tuple has been seen to require an 1258// instantiation depth of more than 10x the number of elements in some 1259// implementations. 1260// FlatTuple and ElemFromList are not recursive and have a fixed depth 1261// regardless of T... 1262// MakeIndexSequence, on the other hand, it is recursive but with an 1263// instantiation depth of O(ln(N)). 1264template <typename... T> 1265class FlatTuple 1266 : private FlatTupleBase<FlatTuple<T...>, 1267 typename MakeIndexSequence<sizeof...(T)>::type> { 1268 using Indices = typename FlatTupleBase< 1269 FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices; 1270 1271 public: 1272 FlatTuple() = default; 1273 template <typename... Args> 1274 explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args) 1275 : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {} 1276 1277 using FlatTuple::FlatTupleBase::Apply; 1278 using FlatTuple::FlatTupleBase::Get; 1279}; 1280 1281// Utility functions to be called with static_assert to induce deprecation 1282// warnings. 1283GTEST_INTERNAL_DEPRECATED( 1284 "INSTANTIATE_TEST_CASE_P is deprecated, please use " 1285 "INSTANTIATE_TEST_SUITE_P") 1286constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } 1287 1288GTEST_INTERNAL_DEPRECATED( 1289 "TYPED_TEST_CASE_P is deprecated, please use " 1290 "TYPED_TEST_SUITE_P") 1291constexpr bool TypedTestCase_P_IsDeprecated() { return true; } 1292 1293GTEST_INTERNAL_DEPRECATED( 1294 "TYPED_TEST_CASE is deprecated, please use " 1295 "TYPED_TEST_SUITE") 1296constexpr bool TypedTestCaseIsDeprecated() { return true; } 1297 1298GTEST_INTERNAL_DEPRECATED( 1299 "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " 1300 "REGISTER_TYPED_TEST_SUITE_P") 1301constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } 1302 1303GTEST_INTERNAL_DEPRECATED( 1304 "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " 1305 "INSTANTIATE_TYPED_TEST_SUITE_P") 1306constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } 1307 1308} // namespace internal 1309} // namespace testing 1310 1311namespace std { 1312// Some standard library implementations use `struct tuple_size` and some use 1313// `class tuple_size`. Clang warns about the mismatch. 1314// https://reviews.llvm.org/D55466 1315#ifdef __clang__ 1316#pragma clang diagnostic push 1317#pragma clang diagnostic ignored "-Wmismatched-tags" 1318#endif 1319template <typename... Ts> 1320struct tuple_size<testing::internal::FlatTuple<Ts...>> 1321 : std::integral_constant<size_t, sizeof...(Ts)> {}; 1322#ifdef __clang__ 1323#pragma clang diagnostic pop 1324#endif 1325} // namespace std 1326 1327#define GTEST_MESSAGE_AT_(file, line, message, result_type) \ 1328 ::testing::internal::AssertHelper(result_type, file, line, message) = \ 1329 ::testing::Message() 1330 1331#define GTEST_MESSAGE_(message, result_type) \ 1332 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) 1333 1334#define GTEST_FATAL_FAILURE_(message) \ 1335 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) 1336 1337#define GTEST_NONFATAL_FAILURE_(message) \ 1338 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) 1339 1340#define GTEST_SUCCESS_(message) \ 1341 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) 1342 1343#define GTEST_SKIP_(message) \ 1344 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) 1345 1346// Suppress MSVC warning 4072 (unreachable code) for the code following 1347// statement if it returns or throws (or doesn't return or throw in some 1348// situations). 1349// NOTE: The "else" is important to keep this expansion to prevent a top-level 1350// "else" from attaching to our "if". 1351#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ 1352 if (::testing::internal::AlwaysTrue()) { \ 1353 statement; \ 1354 } else /* NOLINT */ \ 1355 static_assert(true, "") // User must have a semicolon after expansion. 1356 1357#if GTEST_HAS_EXCEPTIONS 1358 1359namespace testing { 1360namespace internal { 1361 1362class NeverThrown { 1363 public: 1364 const char* what() const noexcept { 1365 return "this exception should never be thrown"; 1366 } 1367}; 1368 1369} // namespace internal 1370} // namespace testing 1371 1372#if GTEST_HAS_RTTI 1373 1374#define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e)) 1375 1376#else // GTEST_HAS_RTTI 1377 1378#define GTEST_EXCEPTION_TYPE_(e) \ 1379 std::string { "an std::exception-derived error" } 1380 1381#endif // GTEST_HAS_RTTI 1382 1383#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \ 1384 catch (typename std::conditional< \ 1385 std::is_same<typename std::remove_cv<typename std::remove_reference< \ 1386 expected_exception>::type>::type, \ 1387 std::exception>::value, \ 1388 const ::testing::internal::NeverThrown&, const std::exception&>::type \ 1389 e) { \ 1390 gtest_msg.value = "Expected: " #statement \ 1391 " throws an exception of type " #expected_exception \ 1392 ".\n Actual: it throws "; \ 1393 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \ 1394 gtest_msg.value += " with description \""; \ 1395 gtest_msg.value += e.what(); \ 1396 gtest_msg.value += "\"."; \ 1397 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1398 } 1399 1400#else // GTEST_HAS_EXCEPTIONS 1401 1402#define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) 1403 1404#endif // GTEST_HAS_EXCEPTIONS 1405 1406#define GTEST_TEST_THROW_(statement, expected_exception, fail) \ 1407 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1408 if (::testing::internal::TrueWithString gtest_msg{}) { \ 1409 bool gtest_caught_expected = false; \ 1410 try { \ 1411 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1412 } catch (expected_exception const&) { \ 1413 gtest_caught_expected = true; \ 1414 } \ 1415 GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception) \ 1416 catch (...) { \ 1417 gtest_msg.value = "Expected: " #statement \ 1418 " throws an exception of type " #expected_exception \ 1419 ".\n Actual: it throws a different type."; \ 1420 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1421 } \ 1422 if (!gtest_caught_expected) { \ 1423 gtest_msg.value = "Expected: " #statement \ 1424 " throws an exception of type " #expected_exception \ 1425 ".\n Actual: it throws nothing."; \ 1426 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 1427 } \ 1428 } else /*NOLINT*/ \ 1429 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__) \ 1430 : fail(gtest_msg.value.c_str()) 1431 1432#if GTEST_HAS_EXCEPTIONS 1433 1434#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \ 1435 catch (std::exception const& e) { \ 1436 gtest_msg.value = "it throws "; \ 1437 gtest_msg.value += GTEST_EXCEPTION_TYPE_(e); \ 1438 gtest_msg.value += " with description \""; \ 1439 gtest_msg.value += e.what(); \ 1440 gtest_msg.value += "\"."; \ 1441 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ 1442 } 1443 1444#else // GTEST_HAS_EXCEPTIONS 1445 1446#define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() 1447 1448#endif // GTEST_HAS_EXCEPTIONS 1449 1450#define GTEST_TEST_NO_THROW_(statement, fail) \ 1451 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1452 if (::testing::internal::TrueWithString gtest_msg{}) { \ 1453 try { \ 1454 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1455 } \ 1456 GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \ 1457 catch (...) { \ 1458 gtest_msg.value = "it throws."; \ 1459 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ 1460 } \ 1461 } else \ 1462 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__) \ 1463 : fail(("Expected: " #statement " doesn't throw an exception.\n" \ 1464 " Actual: " + \ 1465 gtest_msg.value) \ 1466 .c_str()) 1467 1468#define GTEST_TEST_ANY_THROW_(statement, fail) \ 1469 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1470 if (::testing::internal::AlwaysTrue()) { \ 1471 bool gtest_caught_any = false; \ 1472 try { \ 1473 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1474 } catch (...) { \ 1475 gtest_caught_any = true; \ 1476 } \ 1477 if (!gtest_caught_any) { \ 1478 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ 1479 } \ 1480 } else \ 1481 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__) \ 1482 : fail("Expected: " #statement \ 1483 " throws an exception.\n" \ 1484 " Actual: it doesn't.") 1485 1486// Implements Boolean test assertions such as EXPECT_TRUE. expression can be 1487// either a boolean expression or an AssertionResult. text is a textual 1488// representation of expression as it was passed into the EXPECT_TRUE. 1489#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ 1490 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1491 if (const ::testing::AssertionResult gtest_ar_ = \ 1492 ::testing::AssertionResult(expression)) \ 1493 ; \ 1494 else \ 1495 fail(::testing::internal::GetBoolAssertionFailureMessage( \ 1496 gtest_ar_, text, #actual, #expected) \ 1497 .c_str()) 1498 1499#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ 1500 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 1501 if (::testing::internal::AlwaysTrue()) { \ 1502 const ::testing::internal::HasNewFatalFailureHelper \ 1503 gtest_fatal_failure_checker; \ 1504 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 1505 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ 1506 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ 1507 } \ 1508 } else /* NOLINT */ \ 1509 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__) \ 1510 : fail("Expected: " #statement \ 1511 " doesn't generate new fatal " \ 1512 "failures in the current thread.\n" \ 1513 " Actual: it does.") 1514 1515// Expands to the name of the class that implements the given test. 1516#define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1517 test_suite_name##_##test_name##_Test 1518 1519// Helper macro for defining tests. 1520#define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ 1521 static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1, \ 1522 "test_suite_name must not be empty"); \ 1523 static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1, \ 1524 "test_name must not be empty"); \ 1525 class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1526 : public parent_class { \ 1527 public: \ 1528 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default; \ 1529 ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \ 1530 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1531 (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete; \ 1532 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \ 1533 const GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1534 test_name) &) = delete; /* NOLINT */ \ 1535 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ 1536 (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \ 1537 GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=( \ 1538 GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1539 test_name) &&) noexcept = delete; /* NOLINT */ \ 1540 \ 1541 private: \ 1542 void TestBody() override; \ 1543 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ 1544 }; \ 1545 \ 1546 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ 1547 test_name)::test_info_ = \ 1548 ::testing::internal::MakeAndRegisterTestInfo( \ 1549 #test_suite_name, #test_name, nullptr, nullptr, \ 1550 ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ 1551 ::testing::internal::SuiteApiResolver< \ 1552 parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \ 1553 ::testing::internal::SuiteApiResolver< \ 1554 parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \ 1555 new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ 1556 test_suite_name, test_name)>); \ 1557 void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() 1558 1559#endif // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 1560