1#include "pthread_impl.h" 2 3/* 4 * struct waiter 5 * 6 * Waiter objects have automatic storage on the waiting thread, and 7 * are used in building a linked list representing waiters currently 8 * waiting on the condition variable or a group of waiters woken 9 * together by a broadcast or signal; in the case of signal, this is a 10 * degenerate list of one member. 11 * 12 * Waiter lists attached to the condition variable itself are 13 * protected by the lock on the cv. Detached waiter lists are never 14 * modified again, but can only be traversed in reverse order, and are 15 * protected by the "barrier" locks in each node, which are unlocked 16 * in turn to control wake order. 17 * 18 * Since process-shared cond var semantics do not necessarily allow 19 * one thread to see another's automatic storage (they may be in 20 * different processes), the waiter list is not used for the 21 * process-shared case, but the structure is still used to store data 22 * needed by the cancellation cleanup handler. 23 */ 24 25struct waiter { 26 struct waiter *prev, *next; 27 volatile int state, barrier; 28 volatile int *notify; 29}; 30 31/* Self-synchronized-destruction-safe lock functions */ 32 33static inline void lock(volatile int *l) 34{ 35 if (a_cas(l, 0, 1)) { 36 a_cas(l, 1, 2); 37 do __wait(l, 0, 2, 1); 38 while (a_cas(l, 0, 2)); 39 } 40} 41 42static inline void unlock(volatile int *l) 43{ 44 if (a_swap(l, 0)==2) 45 __wake(l, 1, 1); 46} 47 48static inline void unlock_requeue(volatile int *l, volatile int *r, int w) 49{ 50 a_store(l, 0); 51 if (w) __wake(l, 1, 1); 52 else __syscall(SYS_futex, l, FUTEX_REQUEUE|FUTEX_PRIVATE, 0, 1, r) != -ENOSYS 53 || __syscall(SYS_futex, l, FUTEX_REQUEUE, 0, 1, r); 54} 55 56enum { 57 WAITING, 58 SIGNALED, 59 LEAVING, 60}; 61 62int __pthread_cond_timedwait(pthread_cond_t *restrict c, pthread_mutex_t *restrict m, const struct timespec *restrict ts) 63{ 64 struct waiter node = { 0 }; 65 int e, seq, clock = c->_c_clock, cs, shared=0, oldstate, tmp; 66 volatile int *fut; 67 68 if ((m->_m_type&15) && (m->_m_lock&INT_MAX) != __pthread_self()->tid) 69 return EPERM; 70 71 if (ts && ts->tv_nsec >= 1000000000UL) 72 return EINVAL; 73 74 __pthread_testcancel(); 75 76 if (c->_c_shared) { 77 shared = 1; 78 fut = &c->_c_seq; 79 seq = c->_c_seq; 80 a_inc(&c->_c_waiters); 81 } else { 82 lock(&c->_c_lock); 83 84 seq = node.barrier = 2; 85 fut = &node.barrier; 86 node.state = WAITING; 87 node.next = c->_c_head; 88 c->_c_head = &node; 89 if (!c->_c_tail) c->_c_tail = &node; 90 else node.next->prev = &node; 91 92 unlock(&c->_c_lock); 93 } 94 95 __pthread_mutex_unlock(m); 96 97 __pthread_setcancelstate(PTHREAD_CANCEL_MASKED, &cs); 98 if (cs == PTHREAD_CANCEL_DISABLE) __pthread_setcancelstate(cs, 0); 99 100 do e = __timedwait_cp(fut, seq, clock, ts, !shared); 101 while (*fut==seq && (!e || e==EINTR)); 102 if (e == EINTR) e = 0; 103 104 if (shared) { 105 /* Suppress cancellation if a signal was potentially 106 * consumed; this is a legitimate form of spurious 107 * wake even if not. */ 108 if (e == ECANCELED && c->_c_seq != seq) e = 0; 109 if (a_fetch_add(&c->_c_waiters, -1) == -0x7fffffff) 110 __wake(&c->_c_waiters, 1, 0); 111 oldstate = WAITING; 112 goto relock; 113 } 114 115 oldstate = a_cas(&node.state, WAITING, LEAVING); 116 117 if (oldstate == WAITING) { 118 /* Access to cv object is valid because this waiter was not 119 * yet signaled and a new signal/broadcast cannot return 120 * after seeing a LEAVING waiter without getting notified 121 * via the futex notify below. */ 122 123 lock(&c->_c_lock); 124 125 if (c->_c_head == &node) c->_c_head = node.next; 126 else if (node.prev) node.prev->next = node.next; 127 if (c->_c_tail == &node) c->_c_tail = node.prev; 128 else if (node.next) node.next->prev = node.prev; 129 130 unlock(&c->_c_lock); 131 132 if (node.notify) { 133 if (a_fetch_add(node.notify, -1)==1) 134 __wake(node.notify, 1, 1); 135 } 136 } else { 137 /* Lock barrier first to control wake order. */ 138 lock(&node.barrier); 139 } 140 141relock: 142 /* Errors locking the mutex override any existing error or 143 * cancellation, since the caller must see them to know the 144 * state of the mutex. */ 145 if ((tmp = pthread_mutex_lock(m))) e = tmp; 146 147 if (oldstate == WAITING) goto done; 148 149 if (!node.next && !(m->_m_type & 8)) 150 a_inc(&m->_m_waiters); 151 152 /* Unlock the barrier that's holding back the next waiter, and 153 * either wake it or requeue it to the mutex. */ 154 if (node.prev) { 155 int val = m->_m_lock; 156 if (val>0) a_cas(&m->_m_lock, val, val|0x80000000); 157 unlock_requeue(&node.prev->barrier, &m->_m_lock, m->_m_type & (8|128)); 158 } else if (!(m->_m_type & 8)) { 159 a_dec(&m->_m_waiters); 160 } 161 162 /* Since a signal was consumed, cancellation is not permitted. */ 163 if (e == ECANCELED) e = 0; 164 165done: 166 __pthread_setcancelstate(cs, 0); 167 168 if (e == ECANCELED) { 169 __pthread_testcancel(); 170 __pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, 0); 171 } 172 173 return e; 174} 175 176int __private_cond_signal(pthread_cond_t *c, int n) 177{ 178 struct waiter *p, *first=0; 179 volatile int ref = 0; 180 int cur; 181 182 lock(&c->_c_lock); 183 for (p=c->_c_tail; n && p; p=p->prev) { 184 if (a_cas(&p->state, WAITING, SIGNALED) != WAITING) { 185 ref++; 186 p->notify = &ref; 187 } else { 188 n--; 189 if (!first) first=p; 190 } 191 } 192 /* Split the list, leaving any remainder on the cv. */ 193 if (p) { 194 if (p->next) p->next->prev = 0; 195 p->next = 0; 196 } else { 197 c->_c_head = 0; 198 } 199 c->_c_tail = p; 200 unlock(&c->_c_lock); 201 202 /* Wait for any waiters in the LEAVING state to remove 203 * themselves from the list before returning or allowing 204 * signaled threads to proceed. */ 205 while ((cur = ref)) __wait(&ref, 0, cur, 1); 206 207 /* Allow first signaled waiter, if any, to proceed. */ 208 if (first) unlock(&first->barrier); 209 210 return 0; 211} 212 213weak_alias(__pthread_cond_timedwait, pthread_cond_timedwait); 214