1570af302Sopenharmony_ci/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */ 2570af302Sopenharmony_ci/* 3570af302Sopenharmony_ci * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> 4570af302Sopenharmony_ci * 5570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this software for any 6570af302Sopenharmony_ci * purpose with or without fee is hereby granted, provided that the above 7570af302Sopenharmony_ci * copyright notice and this permission notice appear in all copies. 8570af302Sopenharmony_ci * 9570af302Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10570af302Sopenharmony_ci * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11570af302Sopenharmony_ci * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12570af302Sopenharmony_ci * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13570af302Sopenharmony_ci * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14570af302Sopenharmony_ci * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15570af302Sopenharmony_ci * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16570af302Sopenharmony_ci */ 17570af302Sopenharmony_ci/* powl.c 18570af302Sopenharmony_ci * 19570af302Sopenharmony_ci * Power function, long double precision 20570af302Sopenharmony_ci * 21570af302Sopenharmony_ci * 22570af302Sopenharmony_ci * SYNOPSIS: 23570af302Sopenharmony_ci * 24570af302Sopenharmony_ci * long double x, y, z, powl(); 25570af302Sopenharmony_ci * 26570af302Sopenharmony_ci * z = powl( x, y ); 27570af302Sopenharmony_ci * 28570af302Sopenharmony_ci * 29570af302Sopenharmony_ci * DESCRIPTION: 30570af302Sopenharmony_ci * 31570af302Sopenharmony_ci * Computes x raised to the yth power. Analytically, 32570af302Sopenharmony_ci * 33570af302Sopenharmony_ci * x**y = exp( y log(x) ). 34570af302Sopenharmony_ci * 35570af302Sopenharmony_ci * Following Cody and Waite, this program uses a lookup table 36570af302Sopenharmony_ci * of 2**-i/32 and pseudo extended precision arithmetic to 37570af302Sopenharmony_ci * obtain several extra bits of accuracy in both the logarithm 38570af302Sopenharmony_ci * and the exponential. 39570af302Sopenharmony_ci * 40570af302Sopenharmony_ci * 41570af302Sopenharmony_ci * ACCURACY: 42570af302Sopenharmony_ci * 43570af302Sopenharmony_ci * The relative error of pow(x,y) can be estimated 44570af302Sopenharmony_ci * by y dl ln(2), where dl is the absolute error of 45570af302Sopenharmony_ci * the internally computed base 2 logarithm. At the ends 46570af302Sopenharmony_ci * of the approximation interval the logarithm equal 1/32 47570af302Sopenharmony_ci * and its relative error is about 1 lsb = 1.1e-19. Hence 48570af302Sopenharmony_ci * the predicted relative error in the result is 2.3e-21 y . 49570af302Sopenharmony_ci * 50570af302Sopenharmony_ci * Relative error: 51570af302Sopenharmony_ci * arithmetic domain # trials peak rms 52570af302Sopenharmony_ci * 53570af302Sopenharmony_ci * IEEE +-1000 40000 2.8e-18 3.7e-19 54570af302Sopenharmony_ci * .001 < x < 1000, with log(x) uniformly distributed. 55570af302Sopenharmony_ci * -1000 < y < 1000, y uniformly distributed. 56570af302Sopenharmony_ci * 57570af302Sopenharmony_ci * IEEE 0,8700 60000 6.5e-18 1.0e-18 58570af302Sopenharmony_ci * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. 59570af302Sopenharmony_ci * 60570af302Sopenharmony_ci * 61570af302Sopenharmony_ci * ERROR MESSAGES: 62570af302Sopenharmony_ci * 63570af302Sopenharmony_ci * message condition value returned 64570af302Sopenharmony_ci * pow overflow x**y > MAXNUM INFINITY 65570af302Sopenharmony_ci * pow underflow x**y < 1/MAXNUM 0.0 66570af302Sopenharmony_ci * pow domain x<0 and y noninteger 0.0 67570af302Sopenharmony_ci * 68570af302Sopenharmony_ci */ 69570af302Sopenharmony_ci 70570af302Sopenharmony_ci#include "libm.h" 71570af302Sopenharmony_ci 72570af302Sopenharmony_ci#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 73570af302Sopenharmony_cilong double powl(long double x, long double y) 74570af302Sopenharmony_ci{ 75570af302Sopenharmony_ci return pow(x, y); 76570af302Sopenharmony_ci} 77570af302Sopenharmony_ci#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 78570af302Sopenharmony_ci 79570af302Sopenharmony_ci/* Table size */ 80570af302Sopenharmony_ci#define NXT 32 81570af302Sopenharmony_ci 82570af302Sopenharmony_ci/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) 83570af302Sopenharmony_ci * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 84570af302Sopenharmony_ci */ 85570af302Sopenharmony_cistatic const long double P[] = { 86570af302Sopenharmony_ci 8.3319510773868690346226E-4L, 87570af302Sopenharmony_ci 4.9000050881978028599627E-1L, 88570af302Sopenharmony_ci 1.7500123722550302671919E0L, 89570af302Sopenharmony_ci 1.4000100839971580279335E0L, 90570af302Sopenharmony_ci}; 91570af302Sopenharmony_cistatic const long double Q[] = { 92570af302Sopenharmony_ci/* 1.0000000000000000000000E0L,*/ 93570af302Sopenharmony_ci 5.2500282295834889175431E0L, 94570af302Sopenharmony_ci 8.4000598057587009834666E0L, 95570af302Sopenharmony_ci 4.2000302519914740834728E0L, 96570af302Sopenharmony_ci}; 97570af302Sopenharmony_ci/* A[i] = 2^(-i/32), rounded to IEEE long double precision. 98570af302Sopenharmony_ci * If i is even, A[i] + B[i/2] gives additional accuracy. 99570af302Sopenharmony_ci */ 100570af302Sopenharmony_cistatic const long double A[33] = { 101570af302Sopenharmony_ci 1.0000000000000000000000E0L, 102570af302Sopenharmony_ci 9.7857206208770013448287E-1L, 103570af302Sopenharmony_ci 9.5760328069857364691013E-1L, 104570af302Sopenharmony_ci 9.3708381705514995065011E-1L, 105570af302Sopenharmony_ci 9.1700404320467123175367E-1L, 106570af302Sopenharmony_ci 8.9735453750155359320742E-1L, 107570af302Sopenharmony_ci 8.7812608018664974155474E-1L, 108570af302Sopenharmony_ci 8.5930964906123895780165E-1L, 109570af302Sopenharmony_ci 8.4089641525371454301892E-1L, 110570af302Sopenharmony_ci 8.2287773907698242225554E-1L, 111570af302Sopenharmony_ci 8.0524516597462715409607E-1L, 112570af302Sopenharmony_ci 7.8799042255394324325455E-1L, 113570af302Sopenharmony_ci 7.7110541270397041179298E-1L, 114570af302Sopenharmony_ci 7.5458221379671136985669E-1L, 115570af302Sopenharmony_ci 7.3841307296974965571198E-1L, 116570af302Sopenharmony_ci 7.2259040348852331001267E-1L, 117570af302Sopenharmony_ci 7.0710678118654752438189E-1L, 118570af302Sopenharmony_ci 6.9195494098191597746178E-1L, 119570af302Sopenharmony_ci 6.7712777346844636413344E-1L, 120570af302Sopenharmony_ci 6.6261832157987064729696E-1L, 121570af302Sopenharmony_ci 6.4841977732550483296079E-1L, 122570af302Sopenharmony_ci 6.3452547859586661129850E-1L, 123570af302Sopenharmony_ci 6.2092890603674202431705E-1L, 124570af302Sopenharmony_ci 6.0762367999023443907803E-1L, 125570af302Sopenharmony_ci 5.9460355750136053334378E-1L, 126570af302Sopenharmony_ci 5.8186242938878875689693E-1L, 127570af302Sopenharmony_ci 5.6939431737834582684856E-1L, 128570af302Sopenharmony_ci 5.5719337129794626814472E-1L, 129570af302Sopenharmony_ci 5.4525386633262882960438E-1L, 130570af302Sopenharmony_ci 5.3357020033841180906486E-1L, 131570af302Sopenharmony_ci 5.2213689121370692017331E-1L, 132570af302Sopenharmony_ci 5.1094857432705833910408E-1L, 133570af302Sopenharmony_ci 5.0000000000000000000000E-1L, 134570af302Sopenharmony_ci}; 135570af302Sopenharmony_cistatic const long double B[17] = { 136570af302Sopenharmony_ci 0.0000000000000000000000E0L, 137570af302Sopenharmony_ci 2.6176170809902549338711E-20L, 138570af302Sopenharmony_ci-1.0126791927256478897086E-20L, 139570af302Sopenharmony_ci 1.3438228172316276937655E-21L, 140570af302Sopenharmony_ci 1.2207982955417546912101E-20L, 141570af302Sopenharmony_ci-6.3084814358060867200133E-21L, 142570af302Sopenharmony_ci 1.3164426894366316434230E-20L, 143570af302Sopenharmony_ci-1.8527916071632873716786E-20L, 144570af302Sopenharmony_ci 1.8950325588932570796551E-20L, 145570af302Sopenharmony_ci 1.5564775779538780478155E-20L, 146570af302Sopenharmony_ci 6.0859793637556860974380E-21L, 147570af302Sopenharmony_ci-2.0208749253662532228949E-20L, 148570af302Sopenharmony_ci 1.4966292219224761844552E-20L, 149570af302Sopenharmony_ci 3.3540909728056476875639E-21L, 150570af302Sopenharmony_ci-8.6987564101742849540743E-22L, 151570af302Sopenharmony_ci-1.2327176863327626135542E-20L, 152570af302Sopenharmony_ci 0.0000000000000000000000E0L, 153570af302Sopenharmony_ci}; 154570af302Sopenharmony_ci 155570af302Sopenharmony_ci/* 2^x = 1 + x P(x), 156570af302Sopenharmony_ci * on the interval -1/32 <= x <= 0 157570af302Sopenharmony_ci */ 158570af302Sopenharmony_cistatic const long double R[] = { 159570af302Sopenharmony_ci 1.5089970579127659901157E-5L, 160570af302Sopenharmony_ci 1.5402715328927013076125E-4L, 161570af302Sopenharmony_ci 1.3333556028915671091390E-3L, 162570af302Sopenharmony_ci 9.6181291046036762031786E-3L, 163570af302Sopenharmony_ci 5.5504108664798463044015E-2L, 164570af302Sopenharmony_ci 2.4022650695910062854352E-1L, 165570af302Sopenharmony_ci 6.9314718055994530931447E-1L, 166570af302Sopenharmony_ci}; 167570af302Sopenharmony_ci 168570af302Sopenharmony_ci#define MEXP (NXT*16384.0L) 169570af302Sopenharmony_ci/* The following if denormal numbers are supported, else -MEXP: */ 170570af302Sopenharmony_ci#define MNEXP (-NXT*(16384.0L+64.0L)) 171570af302Sopenharmony_ci/* log2(e) - 1 */ 172570af302Sopenharmony_ci#define LOG2EA 0.44269504088896340735992L 173570af302Sopenharmony_ci 174570af302Sopenharmony_ci#define F W 175570af302Sopenharmony_ci#define Fa Wa 176570af302Sopenharmony_ci#define Fb Wb 177570af302Sopenharmony_ci#define G W 178570af302Sopenharmony_ci#define Ga Wa 179570af302Sopenharmony_ci#define Gb u 180570af302Sopenharmony_ci#define H W 181570af302Sopenharmony_ci#define Ha Wb 182570af302Sopenharmony_ci#define Hb Wb 183570af302Sopenharmony_ci 184570af302Sopenharmony_cistatic const long double MAXLOGL = 1.1356523406294143949492E4L; 185570af302Sopenharmony_cistatic const long double MINLOGL = -1.13994985314888605586758E4L; 186570af302Sopenharmony_cistatic const long double LOGE2L = 6.9314718055994530941723E-1L; 187570af302Sopenharmony_cistatic const long double huge = 0x1p10000L; 188570af302Sopenharmony_ci/* XXX Prevent gcc from erroneously constant folding this. */ 189570af302Sopenharmony_cistatic const volatile long double twom10000 = 0x1p-10000L; 190570af302Sopenharmony_ci 191570af302Sopenharmony_cistatic long double reducl(long double); 192570af302Sopenharmony_cistatic long double powil(long double, int); 193570af302Sopenharmony_ci 194570af302Sopenharmony_cilong double powl(long double x, long double y) 195570af302Sopenharmony_ci{ 196570af302Sopenharmony_ci /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ 197570af302Sopenharmony_ci int i, nflg, iyflg, yoddint; 198570af302Sopenharmony_ci long e; 199570af302Sopenharmony_ci volatile long double z=0; 200570af302Sopenharmony_ci long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0; 201570af302Sopenharmony_ci 202570af302Sopenharmony_ci /* make sure no invalid exception is raised by nan comparision */ 203570af302Sopenharmony_ci if (isnan(x)) { 204570af302Sopenharmony_ci if (!isnan(y) && y == 0.0) 205570af302Sopenharmony_ci return 1.0; 206570af302Sopenharmony_ci return x; 207570af302Sopenharmony_ci } 208570af302Sopenharmony_ci if (isnan(y)) { 209570af302Sopenharmony_ci if (x == 1.0) 210570af302Sopenharmony_ci return 1.0; 211570af302Sopenharmony_ci return y; 212570af302Sopenharmony_ci } 213570af302Sopenharmony_ci if (x == 1.0) 214570af302Sopenharmony_ci return 1.0; /* 1**y = 1, even if y is nan */ 215570af302Sopenharmony_ci if (y == 0.0) 216570af302Sopenharmony_ci return 1.0; /* x**0 = 1, even if x is nan */ 217570af302Sopenharmony_ci if (y == 1.0) 218570af302Sopenharmony_ci return x; 219570af302Sopenharmony_ci /* if y*log2(x) < log2(LDBL_TRUE_MIN)-1 then x^y uflows to 0 220570af302Sopenharmony_ci if y*log2(x) > -log2(LDBL_TRUE_MIN)+1 > LDBL_MAX_EXP then x^y oflows 221570af302Sopenharmony_ci if |x|!=1 then |log2(x)| > |log(x)| > LDBL_EPSILON/2 so 222570af302Sopenharmony_ci x^y oflows/uflows if |y|*LDBL_EPSILON/2 > -log2(LDBL_TRUE_MIN)+1 */ 223570af302Sopenharmony_ci if (fabsl(y) > 2*(-LDBL_MIN_EXP+LDBL_MANT_DIG+1)/LDBL_EPSILON) { 224570af302Sopenharmony_ci /* y is not an odd int */ 225570af302Sopenharmony_ci if (x == -1.0) 226570af302Sopenharmony_ci return 1.0; 227570af302Sopenharmony_ci if (y == INFINITY) { 228570af302Sopenharmony_ci if (x > 1.0 || x < -1.0) 229570af302Sopenharmony_ci return INFINITY; 230570af302Sopenharmony_ci return 0.0; 231570af302Sopenharmony_ci } 232570af302Sopenharmony_ci if (y == -INFINITY) { 233570af302Sopenharmony_ci if (x > 1.0 || x < -1.0) 234570af302Sopenharmony_ci return 0.0; 235570af302Sopenharmony_ci return INFINITY; 236570af302Sopenharmony_ci } 237570af302Sopenharmony_ci if ((x > 1.0 || x < -1.0) == (y > 0)) 238570af302Sopenharmony_ci return huge * huge; 239570af302Sopenharmony_ci return twom10000 * twom10000; 240570af302Sopenharmony_ci } 241570af302Sopenharmony_ci if (x == INFINITY) { 242570af302Sopenharmony_ci if (y > 0.0) 243570af302Sopenharmony_ci return INFINITY; 244570af302Sopenharmony_ci return 0.0; 245570af302Sopenharmony_ci } 246570af302Sopenharmony_ci 247570af302Sopenharmony_ci w = floorl(y); 248570af302Sopenharmony_ci 249570af302Sopenharmony_ci /* Set iyflg to 1 if y is an integer. */ 250570af302Sopenharmony_ci iyflg = 0; 251570af302Sopenharmony_ci if (w == y) 252570af302Sopenharmony_ci iyflg = 1; 253570af302Sopenharmony_ci 254570af302Sopenharmony_ci /* Test for odd integer y. */ 255570af302Sopenharmony_ci yoddint = 0; 256570af302Sopenharmony_ci if (iyflg) { 257570af302Sopenharmony_ci ya = fabsl(y); 258570af302Sopenharmony_ci ya = floorl(0.5 * ya); 259570af302Sopenharmony_ci yb = 0.5 * fabsl(w); 260570af302Sopenharmony_ci if( ya != yb ) 261570af302Sopenharmony_ci yoddint = 1; 262570af302Sopenharmony_ci } 263570af302Sopenharmony_ci 264570af302Sopenharmony_ci if (x == -INFINITY) { 265570af302Sopenharmony_ci if (y > 0.0) { 266570af302Sopenharmony_ci if (yoddint) 267570af302Sopenharmony_ci return -INFINITY; 268570af302Sopenharmony_ci return INFINITY; 269570af302Sopenharmony_ci } 270570af302Sopenharmony_ci if (y < 0.0) { 271570af302Sopenharmony_ci if (yoddint) 272570af302Sopenharmony_ci return -0.0; 273570af302Sopenharmony_ci return 0.0; 274570af302Sopenharmony_ci } 275570af302Sopenharmony_ci } 276570af302Sopenharmony_ci nflg = 0; /* (x<0)**(odd int) */ 277570af302Sopenharmony_ci if (x <= 0.0) { 278570af302Sopenharmony_ci if (x == 0.0) { 279570af302Sopenharmony_ci if (y < 0.0) { 280570af302Sopenharmony_ci if (signbit(x) && yoddint) 281570af302Sopenharmony_ci /* (-0.0)**(-odd int) = -inf, divbyzero */ 282570af302Sopenharmony_ci return -1.0/0.0; 283570af302Sopenharmony_ci /* (+-0.0)**(negative) = inf, divbyzero */ 284570af302Sopenharmony_ci return 1.0/0.0; 285570af302Sopenharmony_ci } 286570af302Sopenharmony_ci if (signbit(x) && yoddint) 287570af302Sopenharmony_ci return -0.0; 288570af302Sopenharmony_ci return 0.0; 289570af302Sopenharmony_ci } 290570af302Sopenharmony_ci if (iyflg == 0) 291570af302Sopenharmony_ci return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ 292570af302Sopenharmony_ci /* (x<0)**(integer) */ 293570af302Sopenharmony_ci if (yoddint) 294570af302Sopenharmony_ci nflg = 1; /* negate result */ 295570af302Sopenharmony_ci x = -x; 296570af302Sopenharmony_ci } 297570af302Sopenharmony_ci /* (+integer)**(integer) */ 298570af302Sopenharmony_ci if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) { 299570af302Sopenharmony_ci w = powil(x, (int)y); 300570af302Sopenharmony_ci return nflg ? -w : w; 301570af302Sopenharmony_ci } 302570af302Sopenharmony_ci 303570af302Sopenharmony_ci /* separate significand from exponent */ 304570af302Sopenharmony_ci x = frexpl(x, &i); 305570af302Sopenharmony_ci e = i; 306570af302Sopenharmony_ci 307570af302Sopenharmony_ci /* find significand in antilog table A[] */ 308570af302Sopenharmony_ci i = 1; 309570af302Sopenharmony_ci if (x <= A[17]) 310570af302Sopenharmony_ci i = 17; 311570af302Sopenharmony_ci if (x <= A[i+8]) 312570af302Sopenharmony_ci i += 8; 313570af302Sopenharmony_ci if (x <= A[i+4]) 314570af302Sopenharmony_ci i += 4; 315570af302Sopenharmony_ci if (x <= A[i+2]) 316570af302Sopenharmony_ci i += 2; 317570af302Sopenharmony_ci if (x >= A[1]) 318570af302Sopenharmony_ci i = -1; 319570af302Sopenharmony_ci i += 1; 320570af302Sopenharmony_ci 321570af302Sopenharmony_ci /* Find (x - A[i])/A[i] 322570af302Sopenharmony_ci * in order to compute log(x/A[i]): 323570af302Sopenharmony_ci * 324570af302Sopenharmony_ci * log(x) = log( a x/a ) = log(a) + log(x/a) 325570af302Sopenharmony_ci * 326570af302Sopenharmony_ci * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a 327570af302Sopenharmony_ci */ 328570af302Sopenharmony_ci x -= A[i]; 329570af302Sopenharmony_ci x -= B[i/2]; 330570af302Sopenharmony_ci x /= A[i]; 331570af302Sopenharmony_ci 332570af302Sopenharmony_ci /* rational approximation for log(1+v): 333570af302Sopenharmony_ci * 334570af302Sopenharmony_ci * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) 335570af302Sopenharmony_ci */ 336570af302Sopenharmony_ci z = x*x; 337570af302Sopenharmony_ci w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3)); 338570af302Sopenharmony_ci w = w - 0.5*z; 339570af302Sopenharmony_ci 340570af302Sopenharmony_ci /* Convert to base 2 logarithm: 341570af302Sopenharmony_ci * multiply by log2(e) = 1 + LOG2EA 342570af302Sopenharmony_ci */ 343570af302Sopenharmony_ci z = LOG2EA * w; 344570af302Sopenharmony_ci z += w; 345570af302Sopenharmony_ci z += LOG2EA * x; 346570af302Sopenharmony_ci z += x; 347570af302Sopenharmony_ci 348570af302Sopenharmony_ci /* Compute exponent term of the base 2 logarithm. */ 349570af302Sopenharmony_ci w = -i; 350570af302Sopenharmony_ci w /= NXT; 351570af302Sopenharmony_ci w += e; 352570af302Sopenharmony_ci /* Now base 2 log of x is w + z. */ 353570af302Sopenharmony_ci 354570af302Sopenharmony_ci /* Multiply base 2 log by y, in extended precision. */ 355570af302Sopenharmony_ci 356570af302Sopenharmony_ci /* separate y into large part ya 357570af302Sopenharmony_ci * and small part yb less than 1/NXT 358570af302Sopenharmony_ci */ 359570af302Sopenharmony_ci ya = reducl(y); 360570af302Sopenharmony_ci yb = y - ya; 361570af302Sopenharmony_ci 362570af302Sopenharmony_ci /* (w+z)(ya+yb) 363570af302Sopenharmony_ci * = w*ya + w*yb + z*y 364570af302Sopenharmony_ci */ 365570af302Sopenharmony_ci F = z * y + w * yb; 366570af302Sopenharmony_ci Fa = reducl(F); 367570af302Sopenharmony_ci Fb = F - Fa; 368570af302Sopenharmony_ci 369570af302Sopenharmony_ci G = Fa + w * ya; 370570af302Sopenharmony_ci Ga = reducl(G); 371570af302Sopenharmony_ci Gb = G - Ga; 372570af302Sopenharmony_ci 373570af302Sopenharmony_ci H = Fb + Gb; 374570af302Sopenharmony_ci Ha = reducl(H); 375570af302Sopenharmony_ci w = (Ga + Ha) * NXT; 376570af302Sopenharmony_ci 377570af302Sopenharmony_ci /* Test the power of 2 for overflow */ 378570af302Sopenharmony_ci if (w > MEXP) 379570af302Sopenharmony_ci return huge * huge; /* overflow */ 380570af302Sopenharmony_ci if (w < MNEXP) 381570af302Sopenharmony_ci return twom10000 * twom10000; /* underflow */ 382570af302Sopenharmony_ci 383570af302Sopenharmony_ci e = w; 384570af302Sopenharmony_ci Hb = H - Ha; 385570af302Sopenharmony_ci 386570af302Sopenharmony_ci if (Hb > 0.0) { 387570af302Sopenharmony_ci e += 1; 388570af302Sopenharmony_ci Hb -= 1.0/NXT; /*0.0625L;*/ 389570af302Sopenharmony_ci } 390570af302Sopenharmony_ci 391570af302Sopenharmony_ci /* Now the product y * log2(x) = Hb + e/NXT. 392570af302Sopenharmony_ci * 393570af302Sopenharmony_ci * Compute base 2 exponential of Hb, 394570af302Sopenharmony_ci * where -0.0625 <= Hb <= 0. 395570af302Sopenharmony_ci */ 396570af302Sopenharmony_ci z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */ 397570af302Sopenharmony_ci 398570af302Sopenharmony_ci /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. 399570af302Sopenharmony_ci * Find lookup table entry for the fractional power of 2. 400570af302Sopenharmony_ci */ 401570af302Sopenharmony_ci if (e < 0) 402570af302Sopenharmony_ci i = 0; 403570af302Sopenharmony_ci else 404570af302Sopenharmony_ci i = 1; 405570af302Sopenharmony_ci i = e/NXT + i; 406570af302Sopenharmony_ci e = NXT*i - e; 407570af302Sopenharmony_ci w = A[e]; 408570af302Sopenharmony_ci z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ 409570af302Sopenharmony_ci z = z + w; 410570af302Sopenharmony_ci z = scalbnl(z, i); /* multiply by integer power of 2 */ 411570af302Sopenharmony_ci 412570af302Sopenharmony_ci if (nflg) 413570af302Sopenharmony_ci z = -z; 414570af302Sopenharmony_ci return z; 415570af302Sopenharmony_ci} 416570af302Sopenharmony_ci 417570af302Sopenharmony_ci 418570af302Sopenharmony_ci/* Find a multiple of 1/NXT that is within 1/NXT of x. */ 419570af302Sopenharmony_cistatic long double reducl(long double x) 420570af302Sopenharmony_ci{ 421570af302Sopenharmony_ci long double t; 422570af302Sopenharmony_ci 423570af302Sopenharmony_ci t = x * NXT; 424570af302Sopenharmony_ci t = floorl(t); 425570af302Sopenharmony_ci t = t / NXT; 426570af302Sopenharmony_ci return t; 427570af302Sopenharmony_ci} 428570af302Sopenharmony_ci 429570af302Sopenharmony_ci/* 430570af302Sopenharmony_ci * Positive real raised to integer power, long double precision 431570af302Sopenharmony_ci * 432570af302Sopenharmony_ci * 433570af302Sopenharmony_ci * SYNOPSIS: 434570af302Sopenharmony_ci * 435570af302Sopenharmony_ci * long double x, y, powil(); 436570af302Sopenharmony_ci * int n; 437570af302Sopenharmony_ci * 438570af302Sopenharmony_ci * y = powil( x, n ); 439570af302Sopenharmony_ci * 440570af302Sopenharmony_ci * 441570af302Sopenharmony_ci * DESCRIPTION: 442570af302Sopenharmony_ci * 443570af302Sopenharmony_ci * Returns argument x>0 raised to the nth power. 444570af302Sopenharmony_ci * The routine efficiently decomposes n as a sum of powers of 445570af302Sopenharmony_ci * two. The desired power is a product of two-to-the-kth 446570af302Sopenharmony_ci * powers of x. Thus to compute the 32767 power of x requires 447570af302Sopenharmony_ci * 28 multiplications instead of 32767 multiplications. 448570af302Sopenharmony_ci * 449570af302Sopenharmony_ci * 450570af302Sopenharmony_ci * ACCURACY: 451570af302Sopenharmony_ci * 452570af302Sopenharmony_ci * Relative error: 453570af302Sopenharmony_ci * arithmetic x domain n domain # trials peak rms 454570af302Sopenharmony_ci * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 455570af302Sopenharmony_ci * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 456570af302Sopenharmony_ci * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 457570af302Sopenharmony_ci * 458570af302Sopenharmony_ci * Returns MAXNUM on overflow, zero on underflow. 459570af302Sopenharmony_ci */ 460570af302Sopenharmony_ci 461570af302Sopenharmony_cistatic long double powil(long double x, int nn) 462570af302Sopenharmony_ci{ 463570af302Sopenharmony_ci long double ww, y; 464570af302Sopenharmony_ci long double s; 465570af302Sopenharmony_ci int n, e, sign, lx; 466570af302Sopenharmony_ci 467570af302Sopenharmony_ci if (nn == 0) 468570af302Sopenharmony_ci return 1.0; 469570af302Sopenharmony_ci 470570af302Sopenharmony_ci if (nn < 0) { 471570af302Sopenharmony_ci sign = -1; 472570af302Sopenharmony_ci n = -nn; 473570af302Sopenharmony_ci } else { 474570af302Sopenharmony_ci sign = 1; 475570af302Sopenharmony_ci n = nn; 476570af302Sopenharmony_ci } 477570af302Sopenharmony_ci 478570af302Sopenharmony_ci /* Overflow detection */ 479570af302Sopenharmony_ci 480570af302Sopenharmony_ci /* Calculate approximate logarithm of answer */ 481570af302Sopenharmony_ci s = x; 482570af302Sopenharmony_ci s = frexpl( s, &lx); 483570af302Sopenharmony_ci e = (lx - 1)*n; 484570af302Sopenharmony_ci if ((e == 0) || (e > 64) || (e < -64)) { 485570af302Sopenharmony_ci s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); 486570af302Sopenharmony_ci s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L; 487570af302Sopenharmony_ci } else { 488570af302Sopenharmony_ci s = LOGE2L * e; 489570af302Sopenharmony_ci } 490570af302Sopenharmony_ci 491570af302Sopenharmony_ci if (s > MAXLOGL) 492570af302Sopenharmony_ci return huge * huge; /* overflow */ 493570af302Sopenharmony_ci 494570af302Sopenharmony_ci if (s < MINLOGL) 495570af302Sopenharmony_ci return twom10000 * twom10000; /* underflow */ 496570af302Sopenharmony_ci /* Handle tiny denormal answer, but with less accuracy 497570af302Sopenharmony_ci * since roundoff error in 1.0/x will be amplified. 498570af302Sopenharmony_ci * The precise demarcation should be the gradual underflow threshold. 499570af302Sopenharmony_ci */ 500570af302Sopenharmony_ci if (s < -MAXLOGL+2.0) { 501570af302Sopenharmony_ci x = 1.0/x; 502570af302Sopenharmony_ci sign = -sign; 503570af302Sopenharmony_ci } 504570af302Sopenharmony_ci 505570af302Sopenharmony_ci /* First bit of the power */ 506570af302Sopenharmony_ci if (n & 1) 507570af302Sopenharmony_ci y = x; 508570af302Sopenharmony_ci else 509570af302Sopenharmony_ci y = 1.0; 510570af302Sopenharmony_ci 511570af302Sopenharmony_ci ww = x; 512570af302Sopenharmony_ci n >>= 1; 513570af302Sopenharmony_ci while (n) { 514570af302Sopenharmony_ci ww = ww * ww; /* arg to the 2-to-the-kth power */ 515570af302Sopenharmony_ci if (n & 1) /* if that bit is set, then include in product */ 516570af302Sopenharmony_ci y *= ww; 517570af302Sopenharmony_ci n >>= 1; 518570af302Sopenharmony_ci } 519570af302Sopenharmony_ci 520570af302Sopenharmony_ci if (sign < 0) 521570af302Sopenharmony_ci y = 1.0/y; 522570af302Sopenharmony_ci return y; 523570af302Sopenharmony_ci} 524570af302Sopenharmony_ci#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 525570af302Sopenharmony_ci// TODO: broken implementation to make things compile 526570af302Sopenharmony_cilong double powl(long double x, long double y) 527570af302Sopenharmony_ci{ 528570af302Sopenharmony_ci return pow(x, y); 529570af302Sopenharmony_ci} 530570af302Sopenharmony_ci#endif 531