1570af302Sopenharmony_ci/*
2570af302Sopenharmony_ci * Double-precision log2(x) function.
3570af302Sopenharmony_ci *
4570af302Sopenharmony_ci * Copyright (c) 2018, Arm Limited.
5570af302Sopenharmony_ci * SPDX-License-Identifier: MIT
6570af302Sopenharmony_ci */
7570af302Sopenharmony_ci
8570af302Sopenharmony_ci#include <math.h>
9570af302Sopenharmony_ci#include <stdint.h>
10570af302Sopenharmony_ci#include "libm.h"
11570af302Sopenharmony_ci#include "log2_data.h"
12570af302Sopenharmony_ci
13570af302Sopenharmony_ci#define T __log2_data.tab
14570af302Sopenharmony_ci#define T2 __log2_data.tab2
15570af302Sopenharmony_ci#define B __log2_data.poly1
16570af302Sopenharmony_ci#define A __log2_data.poly
17570af302Sopenharmony_ci#define InvLn2hi __log2_data.invln2hi
18570af302Sopenharmony_ci#define InvLn2lo __log2_data.invln2lo
19570af302Sopenharmony_ci#define N (1 << LOG2_TABLE_BITS)
20570af302Sopenharmony_ci#define OFF 0x3fe6000000000000
21570af302Sopenharmony_ci
22570af302Sopenharmony_ci/* Top 16 bits of a double.  */
23570af302Sopenharmony_cistatic inline uint32_t top16(double x)
24570af302Sopenharmony_ci{
25570af302Sopenharmony_ci	return asuint64(x) >> 48;
26570af302Sopenharmony_ci}
27570af302Sopenharmony_ci
28570af302Sopenharmony_cidouble log2(double x)
29570af302Sopenharmony_ci{
30570af302Sopenharmony_ci	double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
31570af302Sopenharmony_ci	uint64_t ix, iz, tmp;
32570af302Sopenharmony_ci	uint32_t top;
33570af302Sopenharmony_ci	int k, i;
34570af302Sopenharmony_ci
35570af302Sopenharmony_ci	ix = asuint64(x);
36570af302Sopenharmony_ci	top = top16(x);
37570af302Sopenharmony_ci#define LO asuint64(1.0 - 0x1.5b51p-5)
38570af302Sopenharmony_ci#define HI asuint64(1.0 + 0x1.6ab2p-5)
39570af302Sopenharmony_ci	if (predict_false(ix - LO < HI - LO)) {
40570af302Sopenharmony_ci		/* Handle close to 1.0 inputs separately.  */
41570af302Sopenharmony_ci		/* Fix sign of zero with downward rounding when x==1.  */
42570af302Sopenharmony_ci		if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
43570af302Sopenharmony_ci			return 0;
44570af302Sopenharmony_ci		r = x - 1.0;
45570af302Sopenharmony_ci#if __FP_FAST_FMA
46570af302Sopenharmony_ci		hi = r * InvLn2hi;
47570af302Sopenharmony_ci		lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
48570af302Sopenharmony_ci#else
49570af302Sopenharmony_ci		double_t rhi, rlo;
50570af302Sopenharmony_ci		rhi = asdouble(asuint64(r) & -1ULL << 32);
51570af302Sopenharmony_ci		rlo = r - rhi;
52570af302Sopenharmony_ci		hi = rhi * InvLn2hi;
53570af302Sopenharmony_ci		lo = rlo * InvLn2hi + r * InvLn2lo;
54570af302Sopenharmony_ci#endif
55570af302Sopenharmony_ci		r2 = r * r; /* rounding error: 0x1p-62.  */
56570af302Sopenharmony_ci		r4 = r2 * r2;
57570af302Sopenharmony_ci		/* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
58570af302Sopenharmony_ci		p = r2 * (B[0] + r * B[1]);
59570af302Sopenharmony_ci		y = hi + p;
60570af302Sopenharmony_ci		lo += hi - y + p;
61570af302Sopenharmony_ci		lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
62570af302Sopenharmony_ci			    r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
63570af302Sopenharmony_ci		y += lo;
64570af302Sopenharmony_ci		return eval_as_double(y);
65570af302Sopenharmony_ci	}
66570af302Sopenharmony_ci	if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
67570af302Sopenharmony_ci		/* x < 0x1p-1022 or inf or nan.  */
68570af302Sopenharmony_ci		if (ix * 2 == 0)
69570af302Sopenharmony_ci			return __math_divzero(1);
70570af302Sopenharmony_ci		if (ix == asuint64(INFINITY)) /* log(inf) == inf.  */
71570af302Sopenharmony_ci			return x;
72570af302Sopenharmony_ci		if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
73570af302Sopenharmony_ci			return __math_invalid(x);
74570af302Sopenharmony_ci		/* x is subnormal, normalize it.  */
75570af302Sopenharmony_ci		ix = asuint64(x * 0x1p52);
76570af302Sopenharmony_ci		ix -= 52ULL << 52;
77570af302Sopenharmony_ci	}
78570af302Sopenharmony_ci
79570af302Sopenharmony_ci	/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
80570af302Sopenharmony_ci	   The range is split into N subintervals.
81570af302Sopenharmony_ci	   The ith subinterval contains z and c is near its center.  */
82570af302Sopenharmony_ci	tmp = ix - OFF;
83570af302Sopenharmony_ci	i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
84570af302Sopenharmony_ci	k = (int64_t)tmp >> 52; /* arithmetic shift */
85570af302Sopenharmony_ci	iz = ix - (tmp & 0xfffULL << 52);
86570af302Sopenharmony_ci	invc = T[i].invc;
87570af302Sopenharmony_ci	logc = T[i].logc;
88570af302Sopenharmony_ci	z = asdouble(iz);
89570af302Sopenharmony_ci	kd = (double_t)k;
90570af302Sopenharmony_ci
91570af302Sopenharmony_ci	/* log2(x) = log2(z/c) + log2(c) + k.  */
92570af302Sopenharmony_ci	/* r ~= z/c - 1, |r| < 1/(2*N).  */
93570af302Sopenharmony_ci#if __FP_FAST_FMA
94570af302Sopenharmony_ci	/* rounding error: 0x1p-55/N.  */
95570af302Sopenharmony_ci	r = __builtin_fma(z, invc, -1.0);
96570af302Sopenharmony_ci	t1 = r * InvLn2hi;
97570af302Sopenharmony_ci	t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
98570af302Sopenharmony_ci#else
99570af302Sopenharmony_ci	double_t rhi, rlo;
100570af302Sopenharmony_ci	/* rounding error: 0x1p-55/N + 0x1p-65.  */
101570af302Sopenharmony_ci	r = (z - T2[i].chi - T2[i].clo) * invc;
102570af302Sopenharmony_ci	rhi = asdouble(asuint64(r) & -1ULL << 32);
103570af302Sopenharmony_ci	rlo = r - rhi;
104570af302Sopenharmony_ci	t1 = rhi * InvLn2hi;
105570af302Sopenharmony_ci	t2 = rlo * InvLn2hi + r * InvLn2lo;
106570af302Sopenharmony_ci#endif
107570af302Sopenharmony_ci
108570af302Sopenharmony_ci	/* hi + lo = r/ln2 + log2(c) + k.  */
109570af302Sopenharmony_ci	t3 = kd + logc;
110570af302Sopenharmony_ci	hi = t3 + t1;
111570af302Sopenharmony_ci	lo = t3 - hi + t1 + t2;
112570af302Sopenharmony_ci
113570af302Sopenharmony_ci	/* log2(r+1) = r/ln2 + r^2*poly(r).  */
114570af302Sopenharmony_ci	/* Evaluation is optimized assuming superscalar pipelined execution.  */
115570af302Sopenharmony_ci	r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
116570af302Sopenharmony_ci	r4 = r2 * r2;
117570af302Sopenharmony_ci	/* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
118570af302Sopenharmony_ci	   ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
119570af302Sopenharmony_ci	p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
120570af302Sopenharmony_ci	y = lo + r2 * p + hi;
121570af302Sopenharmony_ci	return eval_as_double(y);
122570af302Sopenharmony_ci}
123