1570af302Sopenharmony_ci/* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */
2570af302Sopenharmony_ci/*
3570af302Sopenharmony_ci * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4570af302Sopenharmony_ci *
5570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this software for any
6570af302Sopenharmony_ci * purpose with or without fee is hereby granted, provided that the above
7570af302Sopenharmony_ci * copyright notice and this permission notice appear in all copies.
8570af302Sopenharmony_ci *
9570af302Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10570af302Sopenharmony_ci * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11570af302Sopenharmony_ci * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12570af302Sopenharmony_ci * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13570af302Sopenharmony_ci * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14570af302Sopenharmony_ci * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15570af302Sopenharmony_ci * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16570af302Sopenharmony_ci */
17570af302Sopenharmony_ci/*
18570af302Sopenharmony_ci *      Relative error logarithm
19570af302Sopenharmony_ci *      Natural logarithm of 1+x, long double precision
20570af302Sopenharmony_ci *
21570af302Sopenharmony_ci *
22570af302Sopenharmony_ci * SYNOPSIS:
23570af302Sopenharmony_ci *
24570af302Sopenharmony_ci * long double x, y, log1pl();
25570af302Sopenharmony_ci *
26570af302Sopenharmony_ci * y = log1pl( x );
27570af302Sopenharmony_ci *
28570af302Sopenharmony_ci *
29570af302Sopenharmony_ci * DESCRIPTION:
30570af302Sopenharmony_ci *
31570af302Sopenharmony_ci * Returns the base e (2.718...) logarithm of 1+x.
32570af302Sopenharmony_ci *
33570af302Sopenharmony_ci * The argument 1+x is separated into its exponent and fractional
34570af302Sopenharmony_ci * parts.  If the exponent is between -1 and +1, the logarithm
35570af302Sopenharmony_ci * of the fraction is approximated by
36570af302Sopenharmony_ci *
37570af302Sopenharmony_ci *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
38570af302Sopenharmony_ci *
39570af302Sopenharmony_ci * Otherwise, setting  z = 2(x-1)/x+1),
40570af302Sopenharmony_ci *
41570af302Sopenharmony_ci *     log(x) = z + z^3 P(z)/Q(z).
42570af302Sopenharmony_ci *
43570af302Sopenharmony_ci *
44570af302Sopenharmony_ci * ACCURACY:
45570af302Sopenharmony_ci *
46570af302Sopenharmony_ci *                      Relative error:
47570af302Sopenharmony_ci * arithmetic   domain     # trials      peak         rms
48570af302Sopenharmony_ci *    IEEE     -1.0, 9.0    100000      8.2e-20    2.5e-20
49570af302Sopenharmony_ci */
50570af302Sopenharmony_ci
51570af302Sopenharmony_ci#include "libm.h"
52570af302Sopenharmony_ci
53570af302Sopenharmony_ci#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
54570af302Sopenharmony_cilong double log1pl(long double x)
55570af302Sopenharmony_ci{
56570af302Sopenharmony_ci	return log1p(x);
57570af302Sopenharmony_ci}
58570af302Sopenharmony_ci#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
59570af302Sopenharmony_ci/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
60570af302Sopenharmony_ci * 1/sqrt(2) <= x < sqrt(2)
61570af302Sopenharmony_ci * Theoretical peak relative error = 2.32e-20
62570af302Sopenharmony_ci */
63570af302Sopenharmony_cistatic const long double P[] = {
64570af302Sopenharmony_ci 4.5270000862445199635215E-5L,
65570af302Sopenharmony_ci 4.9854102823193375972212E-1L,
66570af302Sopenharmony_ci 6.5787325942061044846969E0L,
67570af302Sopenharmony_ci 2.9911919328553073277375E1L,
68570af302Sopenharmony_ci 6.0949667980987787057556E1L,
69570af302Sopenharmony_ci 5.7112963590585538103336E1L,
70570af302Sopenharmony_ci 2.0039553499201281259648E1L,
71570af302Sopenharmony_ci};
72570af302Sopenharmony_cistatic const long double Q[] = {
73570af302Sopenharmony_ci/* 1.0000000000000000000000E0,*/
74570af302Sopenharmony_ci 1.5062909083469192043167E1L,
75570af302Sopenharmony_ci 8.3047565967967209469434E1L,
76570af302Sopenharmony_ci 2.2176239823732856465394E2L,
77570af302Sopenharmony_ci 3.0909872225312059774938E2L,
78570af302Sopenharmony_ci 2.1642788614495947685003E2L,
79570af302Sopenharmony_ci 6.0118660497603843919306E1L,
80570af302Sopenharmony_ci};
81570af302Sopenharmony_ci
82570af302Sopenharmony_ci/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
83570af302Sopenharmony_ci * where z = 2(x-1)/(x+1)
84570af302Sopenharmony_ci * 1/sqrt(2) <= x < sqrt(2)
85570af302Sopenharmony_ci * Theoretical peak relative error = 6.16e-22
86570af302Sopenharmony_ci */
87570af302Sopenharmony_cistatic const long double R[4] = {
88570af302Sopenharmony_ci 1.9757429581415468984296E-3L,
89570af302Sopenharmony_ci-7.1990767473014147232598E-1L,
90570af302Sopenharmony_ci 1.0777257190312272158094E1L,
91570af302Sopenharmony_ci-3.5717684488096787370998E1L,
92570af302Sopenharmony_ci};
93570af302Sopenharmony_cistatic const long double S[4] = {
94570af302Sopenharmony_ci/* 1.00000000000000000000E0L,*/
95570af302Sopenharmony_ci-2.6201045551331104417768E1L,
96570af302Sopenharmony_ci 1.9361891836232102174846E2L,
97570af302Sopenharmony_ci-4.2861221385716144629696E2L,
98570af302Sopenharmony_ci};
99570af302Sopenharmony_cistatic const long double C1 = 6.9314575195312500000000E-1L;
100570af302Sopenharmony_cistatic const long double C2 = 1.4286068203094172321215E-6L;
101570af302Sopenharmony_ci
102570af302Sopenharmony_ci#define SQRTH 0.70710678118654752440L
103570af302Sopenharmony_ci
104570af302Sopenharmony_cilong double log1pl(long double xm1)
105570af302Sopenharmony_ci{
106570af302Sopenharmony_ci	long double x, y, z;
107570af302Sopenharmony_ci	int e;
108570af302Sopenharmony_ci
109570af302Sopenharmony_ci	if (isnan(xm1))
110570af302Sopenharmony_ci		return xm1;
111570af302Sopenharmony_ci	if (xm1 == INFINITY)
112570af302Sopenharmony_ci		return xm1;
113570af302Sopenharmony_ci	if (xm1 == 0.0)
114570af302Sopenharmony_ci		return xm1;
115570af302Sopenharmony_ci
116570af302Sopenharmony_ci	x = xm1 + 1.0;
117570af302Sopenharmony_ci
118570af302Sopenharmony_ci	/* Test for domain errors.  */
119570af302Sopenharmony_ci	if (x <= 0.0) {
120570af302Sopenharmony_ci		if (x == 0.0)
121570af302Sopenharmony_ci			return -1/(x*x); /* -inf with divbyzero */
122570af302Sopenharmony_ci		return 0/0.0f; /* nan with invalid */
123570af302Sopenharmony_ci	}
124570af302Sopenharmony_ci
125570af302Sopenharmony_ci	/* Separate mantissa from exponent.
126570af302Sopenharmony_ci	   Use frexp so that denormal numbers will be handled properly.  */
127570af302Sopenharmony_ci	x = frexpl(x, &e);
128570af302Sopenharmony_ci
129570af302Sopenharmony_ci	/* logarithm using log(x) = z + z^3 P(z)/Q(z),
130570af302Sopenharmony_ci	   where z = 2(x-1)/x+1)  */
131570af302Sopenharmony_ci	if (e > 2 || e < -2) {
132570af302Sopenharmony_ci		if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
133570af302Sopenharmony_ci			e -= 1;
134570af302Sopenharmony_ci			z = x - 0.5;
135570af302Sopenharmony_ci			y = 0.5 * z + 0.5;
136570af302Sopenharmony_ci		} else { /*  2 (x-1)/(x+1)   */
137570af302Sopenharmony_ci			z = x - 0.5;
138570af302Sopenharmony_ci			z -= 0.5;
139570af302Sopenharmony_ci			y = 0.5 * x  + 0.5;
140570af302Sopenharmony_ci		}
141570af302Sopenharmony_ci		x = z / y;
142570af302Sopenharmony_ci		z = x*x;
143570af302Sopenharmony_ci		z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
144570af302Sopenharmony_ci		z = z + e * C2;
145570af302Sopenharmony_ci		z = z + x;
146570af302Sopenharmony_ci		z = z + e * C1;
147570af302Sopenharmony_ci		return z;
148570af302Sopenharmony_ci	}
149570af302Sopenharmony_ci
150570af302Sopenharmony_ci	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
151570af302Sopenharmony_ci	if (x < SQRTH) {
152570af302Sopenharmony_ci		e -= 1;
153570af302Sopenharmony_ci		if (e != 0)
154570af302Sopenharmony_ci			x = 2.0 * x - 1.0;
155570af302Sopenharmony_ci		else
156570af302Sopenharmony_ci			x = xm1;
157570af302Sopenharmony_ci	} else {
158570af302Sopenharmony_ci		if (e != 0)
159570af302Sopenharmony_ci			x = x - 1.0;
160570af302Sopenharmony_ci		else
161570af302Sopenharmony_ci			x = xm1;
162570af302Sopenharmony_ci	}
163570af302Sopenharmony_ci	z = x*x;
164570af302Sopenharmony_ci	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
165570af302Sopenharmony_ci	y = y + e * C2;
166570af302Sopenharmony_ci	z = y - 0.5 * z;
167570af302Sopenharmony_ci	z = z + x;
168570af302Sopenharmony_ci	z = z + e * C1;
169570af302Sopenharmony_ci	return z;
170570af302Sopenharmony_ci}
171570af302Sopenharmony_ci#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
172570af302Sopenharmony_ci// TODO: broken implementation to make things compile
173570af302Sopenharmony_cilong double log1pl(long double x)
174570af302Sopenharmony_ci{
175570af302Sopenharmony_ci	return log1p(x);
176570af302Sopenharmony_ci}
177570af302Sopenharmony_ci#endif
178