xref: /third_party/musl/src/math/log1p.c (revision 570af302)
1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
2570af302Sopenharmony_ci/*
3570af302Sopenharmony_ci * ====================================================
4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5570af302Sopenharmony_ci *
6570af302Sopenharmony_ci * Developed at SunPro, a Sun Microsystems, Inc. business.
7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this
8570af302Sopenharmony_ci * software is freely granted, provided that this notice
9570af302Sopenharmony_ci * is preserved.
10570af302Sopenharmony_ci * ====================================================
11570af302Sopenharmony_ci */
12570af302Sopenharmony_ci/* double log1p(double x)
13570af302Sopenharmony_ci * Return the natural logarithm of 1+x.
14570af302Sopenharmony_ci *
15570af302Sopenharmony_ci * Method :
16570af302Sopenharmony_ci *   1. Argument Reduction: find k and f such that
17570af302Sopenharmony_ci *                      1+x = 2^k * (1+f),
18570af302Sopenharmony_ci *         where  sqrt(2)/2 < 1+f < sqrt(2) .
19570af302Sopenharmony_ci *
20570af302Sopenharmony_ci *      Note. If k=0, then f=x is exact. However, if k!=0, then f
21570af302Sopenharmony_ci *      may not be representable exactly. In that case, a correction
22570af302Sopenharmony_ci *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
23570af302Sopenharmony_ci *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
24570af302Sopenharmony_ci *      and add back the correction term c/u.
25570af302Sopenharmony_ci *      (Note: when x > 2**53, one can simply return log(x))
26570af302Sopenharmony_ci *
27570af302Sopenharmony_ci *   2. Approximation of log(1+f): See log.c
28570af302Sopenharmony_ci *
29570af302Sopenharmony_ci *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
30570af302Sopenharmony_ci *
31570af302Sopenharmony_ci * Special cases:
32570af302Sopenharmony_ci *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
33570af302Sopenharmony_ci *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
34570af302Sopenharmony_ci *      log1p(NaN) is that NaN with no signal.
35570af302Sopenharmony_ci *
36570af302Sopenharmony_ci * Accuracy:
37570af302Sopenharmony_ci *      according to an error analysis, the error is always less than
38570af302Sopenharmony_ci *      1 ulp (unit in the last place).
39570af302Sopenharmony_ci *
40570af302Sopenharmony_ci * Constants:
41570af302Sopenharmony_ci * The hexadecimal values are the intended ones for the following
42570af302Sopenharmony_ci * constants. The decimal values may be used, provided that the
43570af302Sopenharmony_ci * compiler will convert from decimal to binary accurately enough
44570af302Sopenharmony_ci * to produce the hexadecimal values shown.
45570af302Sopenharmony_ci *
46570af302Sopenharmony_ci * Note: Assuming log() return accurate answer, the following
47570af302Sopenharmony_ci *       algorithm can be used to compute log1p(x) to within a few ULP:
48570af302Sopenharmony_ci *
49570af302Sopenharmony_ci *              u = 1+x;
50570af302Sopenharmony_ci *              if(u==1.0) return x ; else
51570af302Sopenharmony_ci *                         return log(u)*(x/(u-1.0));
52570af302Sopenharmony_ci *
53570af302Sopenharmony_ci *       See HP-15C Advanced Functions Handbook, p.193.
54570af302Sopenharmony_ci */
55570af302Sopenharmony_ci
56570af302Sopenharmony_ci#include "libm.h"
57570af302Sopenharmony_ci
58570af302Sopenharmony_cistatic const double
59570af302Sopenharmony_ciln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
60570af302Sopenharmony_ciln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
61570af302Sopenharmony_ciLg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
62570af302Sopenharmony_ciLg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
63570af302Sopenharmony_ciLg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
64570af302Sopenharmony_ciLg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
65570af302Sopenharmony_ciLg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
66570af302Sopenharmony_ciLg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
67570af302Sopenharmony_ciLg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
68570af302Sopenharmony_ci
69570af302Sopenharmony_cidouble log1p(double x)
70570af302Sopenharmony_ci{
71570af302Sopenharmony_ci	union {double f; uint64_t i;} u = {x};
72570af302Sopenharmony_ci	double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
73570af302Sopenharmony_ci	uint32_t hx,hu;
74570af302Sopenharmony_ci	int k;
75570af302Sopenharmony_ci
76570af302Sopenharmony_ci	hx = u.i>>32;
77570af302Sopenharmony_ci	k = 1;
78570af302Sopenharmony_ci	if (hx < 0x3fda827a || hx>>31) {  /* 1+x < sqrt(2)+ */
79570af302Sopenharmony_ci		if (hx >= 0xbff00000) {  /* x <= -1.0 */
80570af302Sopenharmony_ci			if (x == -1)
81570af302Sopenharmony_ci				return x/0.0; /* log1p(-1) = -inf */
82570af302Sopenharmony_ci			return (x-x)/0.0;     /* log1p(x<-1) = NaN */
83570af302Sopenharmony_ci		}
84570af302Sopenharmony_ci		if (hx<<1 < 0x3ca00000<<1) {  /* |x| < 2**-53 */
85570af302Sopenharmony_ci			/* underflow if subnormal */
86570af302Sopenharmony_ci			if ((hx&0x7ff00000) == 0)
87570af302Sopenharmony_ci				FORCE_EVAL((float)x);
88570af302Sopenharmony_ci			return x;
89570af302Sopenharmony_ci		}
90570af302Sopenharmony_ci		if (hx <= 0xbfd2bec4) {  /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
91570af302Sopenharmony_ci			k = 0;
92570af302Sopenharmony_ci			c = 0;
93570af302Sopenharmony_ci			f = x;
94570af302Sopenharmony_ci		}
95570af302Sopenharmony_ci	} else if (hx >= 0x7ff00000)
96570af302Sopenharmony_ci		return x;
97570af302Sopenharmony_ci	if (k) {
98570af302Sopenharmony_ci		u.f = 1 + x;
99570af302Sopenharmony_ci		hu = u.i>>32;
100570af302Sopenharmony_ci		hu += 0x3ff00000 - 0x3fe6a09e;
101570af302Sopenharmony_ci		k = (int)(hu>>20) - 0x3ff;
102570af302Sopenharmony_ci		/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
103570af302Sopenharmony_ci		if (k < 54) {
104570af302Sopenharmony_ci			c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
105570af302Sopenharmony_ci			c /= u.f;
106570af302Sopenharmony_ci		} else
107570af302Sopenharmony_ci			c = 0;
108570af302Sopenharmony_ci		/* reduce u into [sqrt(2)/2, sqrt(2)] */
109570af302Sopenharmony_ci		hu = (hu&0x000fffff) + 0x3fe6a09e;
110570af302Sopenharmony_ci		u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
111570af302Sopenharmony_ci		f = u.f - 1;
112570af302Sopenharmony_ci	}
113570af302Sopenharmony_ci	hfsq = 0.5*f*f;
114570af302Sopenharmony_ci	s = f/(2.0+f);
115570af302Sopenharmony_ci	z = s*s;
116570af302Sopenharmony_ci	w = z*z;
117570af302Sopenharmony_ci	t1 = w*(Lg2+w*(Lg4+w*Lg6));
118570af302Sopenharmony_ci	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
119570af302Sopenharmony_ci	R = t2 + t1;
120570af302Sopenharmony_ci	dk = k;
121570af302Sopenharmony_ci	return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
122570af302Sopenharmony_ci}
123