1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
2570af302Sopenharmony_ci/*
3570af302Sopenharmony_ci * ====================================================
4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5570af302Sopenharmony_ci *
6570af302Sopenharmony_ci * Developed at SunSoft, a Sun Microsystems, Inc. business.
7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this
8570af302Sopenharmony_ci * software is freely granted, provided that this notice
9570af302Sopenharmony_ci * is preserved.
10570af302Sopenharmony_ci * ====================================================
11570af302Sopenharmony_ci */
12570af302Sopenharmony_ci/*
13570af302Sopenharmony_ci * Return the base 10 logarithm of x.  See log.c for most comments.
14570af302Sopenharmony_ci *
15570af302Sopenharmony_ci * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
16570af302Sopenharmony_ci * as in log.c, then combine and scale in extra precision:
17570af302Sopenharmony_ci *    log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
18570af302Sopenharmony_ci */
19570af302Sopenharmony_ci
20570af302Sopenharmony_ci#include <math.h>
21570af302Sopenharmony_ci#include <stdint.h>
22570af302Sopenharmony_ci
23570af302Sopenharmony_cistatic const double
24570af302Sopenharmony_ciivln10hi  = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
25570af302Sopenharmony_ciivln10lo  = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
26570af302Sopenharmony_cilog10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
27570af302Sopenharmony_cilog10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
28570af302Sopenharmony_ciLg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
29570af302Sopenharmony_ciLg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
30570af302Sopenharmony_ciLg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
31570af302Sopenharmony_ciLg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
32570af302Sopenharmony_ciLg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
33570af302Sopenharmony_ciLg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
34570af302Sopenharmony_ciLg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
35570af302Sopenharmony_ci
36570af302Sopenharmony_cidouble log10(double x)
37570af302Sopenharmony_ci{
38570af302Sopenharmony_ci	union {double f; uint64_t i;} u = {x};
39570af302Sopenharmony_ci	double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
40570af302Sopenharmony_ci	uint32_t hx;
41570af302Sopenharmony_ci	int k;
42570af302Sopenharmony_ci
43570af302Sopenharmony_ci	hx = u.i>>32;
44570af302Sopenharmony_ci	k = 0;
45570af302Sopenharmony_ci	if (hx < 0x00100000 || hx>>31) {
46570af302Sopenharmony_ci		if (u.i<<1 == 0)
47570af302Sopenharmony_ci			return -1/(x*x);  /* log(+-0)=-inf */
48570af302Sopenharmony_ci		if (hx>>31)
49570af302Sopenharmony_ci			return (x-x)/0.0; /* log(-#) = NaN */
50570af302Sopenharmony_ci		/* subnormal number, scale x up */
51570af302Sopenharmony_ci		k -= 54;
52570af302Sopenharmony_ci		x *= 0x1p54;
53570af302Sopenharmony_ci		u.f = x;
54570af302Sopenharmony_ci		hx = u.i>>32;
55570af302Sopenharmony_ci	} else if (hx >= 0x7ff00000) {
56570af302Sopenharmony_ci		return x;
57570af302Sopenharmony_ci	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
58570af302Sopenharmony_ci		return 0;
59570af302Sopenharmony_ci
60570af302Sopenharmony_ci	/* reduce x into [sqrt(2)/2, sqrt(2)] */
61570af302Sopenharmony_ci	hx += 0x3ff00000 - 0x3fe6a09e;
62570af302Sopenharmony_ci	k += (int)(hx>>20) - 0x3ff;
63570af302Sopenharmony_ci	hx = (hx&0x000fffff) + 0x3fe6a09e;
64570af302Sopenharmony_ci	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
65570af302Sopenharmony_ci	x = u.f;
66570af302Sopenharmony_ci
67570af302Sopenharmony_ci	f = x - 1.0;
68570af302Sopenharmony_ci	hfsq = 0.5*f*f;
69570af302Sopenharmony_ci	s = f/(2.0+f);
70570af302Sopenharmony_ci	z = s*s;
71570af302Sopenharmony_ci	w = z*z;
72570af302Sopenharmony_ci	t1 = w*(Lg2+w*(Lg4+w*Lg6));
73570af302Sopenharmony_ci	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
74570af302Sopenharmony_ci	R = t2 + t1;
75570af302Sopenharmony_ci
76570af302Sopenharmony_ci	/* See log2.c for details. */
77570af302Sopenharmony_ci	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
78570af302Sopenharmony_ci	hi = f - hfsq;
79570af302Sopenharmony_ci	u.f = hi;
80570af302Sopenharmony_ci	u.i &= (uint64_t)-1<<32;
81570af302Sopenharmony_ci	hi = u.f;
82570af302Sopenharmony_ci	lo = f - hi - hfsq + s*(hfsq+R);
83570af302Sopenharmony_ci
84570af302Sopenharmony_ci	/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
85570af302Sopenharmony_ci	val_hi = hi*ivln10hi;
86570af302Sopenharmony_ci	dk = k;
87570af302Sopenharmony_ci	y = dk*log10_2hi;
88570af302Sopenharmony_ci	val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
89570af302Sopenharmony_ci
90570af302Sopenharmony_ci	/*
91570af302Sopenharmony_ci	 * Extra precision in for adding y is not strictly needed
92570af302Sopenharmony_ci	 * since there is no very large cancellation near x = sqrt(2) or
93570af302Sopenharmony_ci	 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
94570af302Sopenharmony_ci	 * with some parallelism and it reduces the error for many args.
95570af302Sopenharmony_ci	 */
96570af302Sopenharmony_ci	w = y + val_hi;
97570af302Sopenharmony_ci	val_lo += (y - w) + val_hi;
98570af302Sopenharmony_ci	val_hi = w;
99570af302Sopenharmony_ci
100570af302Sopenharmony_ci	return val_lo + val_hi;
101570af302Sopenharmony_ci}
102