1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ 2570af302Sopenharmony_ci/* 3570af302Sopenharmony_ci * ==================================================== 4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5570af302Sopenharmony_ci * 6570af302Sopenharmony_ci * Developed at SunSoft, a Sun Microsystems, Inc. business. 7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this 8570af302Sopenharmony_ci * software is freely granted, provided that this notice 9570af302Sopenharmony_ci * is preserved. 10570af302Sopenharmony_ci * ==================================================== 11570af302Sopenharmony_ci * 12570af302Sopenharmony_ci */ 13570af302Sopenharmony_ci/* lgamma_r(x, signgamp) 14570af302Sopenharmony_ci * Reentrant version of the logarithm of the Gamma function 15570af302Sopenharmony_ci * with user provide pointer for the sign of Gamma(x). 16570af302Sopenharmony_ci * 17570af302Sopenharmony_ci * Method: 18570af302Sopenharmony_ci * 1. Argument Reduction for 0 < x <= 8 19570af302Sopenharmony_ci * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may 20570af302Sopenharmony_ci * reduce x to a number in [1.5,2.5] by 21570af302Sopenharmony_ci * lgamma(1+s) = log(s) + lgamma(s) 22570af302Sopenharmony_ci * for example, 23570af302Sopenharmony_ci * lgamma(7.3) = log(6.3) + lgamma(6.3) 24570af302Sopenharmony_ci * = log(6.3*5.3) + lgamma(5.3) 25570af302Sopenharmony_ci * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) 26570af302Sopenharmony_ci * 2. Polynomial approximation of lgamma around its 27570af302Sopenharmony_ci * minimun ymin=1.461632144968362245 to maintain monotonicity. 28570af302Sopenharmony_ci * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use 29570af302Sopenharmony_ci * Let z = x-ymin; 30570af302Sopenharmony_ci * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) 31570af302Sopenharmony_ci * where 32570af302Sopenharmony_ci * poly(z) is a 14 degree polynomial. 33570af302Sopenharmony_ci * 2. Rational approximation in the primary interval [2,3] 34570af302Sopenharmony_ci * We use the following approximation: 35570af302Sopenharmony_ci * s = x-2.0; 36570af302Sopenharmony_ci * lgamma(x) = 0.5*s + s*P(s)/Q(s) 37570af302Sopenharmony_ci * with accuracy 38570af302Sopenharmony_ci * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 39570af302Sopenharmony_ci * Our algorithms are based on the following observation 40570af302Sopenharmony_ci * 41570af302Sopenharmony_ci * zeta(2)-1 2 zeta(3)-1 3 42570af302Sopenharmony_ci * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... 43570af302Sopenharmony_ci * 2 3 44570af302Sopenharmony_ci * 45570af302Sopenharmony_ci * where Euler = 0.5771... is the Euler constant, which is very 46570af302Sopenharmony_ci * close to 0.5. 47570af302Sopenharmony_ci * 48570af302Sopenharmony_ci * 3. For x>=8, we have 49570af302Sopenharmony_ci * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... 50570af302Sopenharmony_ci * (better formula: 51570af302Sopenharmony_ci * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) 52570af302Sopenharmony_ci * Let z = 1/x, then we approximation 53570af302Sopenharmony_ci * f(z) = lgamma(x) - (x-0.5)(log(x)-1) 54570af302Sopenharmony_ci * by 55570af302Sopenharmony_ci * 3 5 11 56570af302Sopenharmony_ci * w = w0 + w1*z + w2*z + w3*z + ... + w6*z 57570af302Sopenharmony_ci * where 58570af302Sopenharmony_ci * |w - f(z)| < 2**-58.74 59570af302Sopenharmony_ci * 60570af302Sopenharmony_ci * 4. For negative x, since (G is gamma function) 61570af302Sopenharmony_ci * -x*G(-x)*G(x) = pi/sin(pi*x), 62570af302Sopenharmony_ci * we have 63570af302Sopenharmony_ci * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) 64570af302Sopenharmony_ci * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 65570af302Sopenharmony_ci * Hence, for x<0, signgam = sign(sin(pi*x)) and 66570af302Sopenharmony_ci * lgamma(x) = log(|Gamma(x)|) 67570af302Sopenharmony_ci * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); 68570af302Sopenharmony_ci * Note: one should avoid compute pi*(-x) directly in the 69570af302Sopenharmony_ci * computation of sin(pi*(-x)). 70570af302Sopenharmony_ci * 71570af302Sopenharmony_ci * 5. Special Cases 72570af302Sopenharmony_ci * lgamma(2+s) ~ s*(1-Euler) for tiny s 73570af302Sopenharmony_ci * lgamma(1) = lgamma(2) = 0 74570af302Sopenharmony_ci * lgamma(x) ~ -log(|x|) for tiny x 75570af302Sopenharmony_ci * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero 76570af302Sopenharmony_ci * lgamma(inf) = inf 77570af302Sopenharmony_ci * lgamma(-inf) = inf (bug for bug compatible with C99!?) 78570af302Sopenharmony_ci * 79570af302Sopenharmony_ci */ 80570af302Sopenharmony_ci 81570af302Sopenharmony_ci#include "libm.h" 82570af302Sopenharmony_ci 83570af302Sopenharmony_cistatic const double 84570af302Sopenharmony_cipi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ 85570af302Sopenharmony_cia0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ 86570af302Sopenharmony_cia1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ 87570af302Sopenharmony_cia2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ 88570af302Sopenharmony_cia3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ 89570af302Sopenharmony_cia4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ 90570af302Sopenharmony_cia5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ 91570af302Sopenharmony_cia6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ 92570af302Sopenharmony_cia7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ 93570af302Sopenharmony_cia8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ 94570af302Sopenharmony_cia9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ 95570af302Sopenharmony_cia10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ 96570af302Sopenharmony_cia11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ 97570af302Sopenharmony_citc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ 98570af302Sopenharmony_citf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ 99570af302Sopenharmony_ci/* tt = -(tail of tf) */ 100570af302Sopenharmony_citt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ 101570af302Sopenharmony_cit0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ 102570af302Sopenharmony_cit1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ 103570af302Sopenharmony_cit2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ 104570af302Sopenharmony_cit3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ 105570af302Sopenharmony_cit4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ 106570af302Sopenharmony_cit5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ 107570af302Sopenharmony_cit6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ 108570af302Sopenharmony_cit7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ 109570af302Sopenharmony_cit8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ 110570af302Sopenharmony_cit9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ 111570af302Sopenharmony_cit10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ 112570af302Sopenharmony_cit11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ 113570af302Sopenharmony_cit12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ 114570af302Sopenharmony_cit13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ 115570af302Sopenharmony_cit14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ 116570af302Sopenharmony_ciu0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ 117570af302Sopenharmony_ciu1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ 118570af302Sopenharmony_ciu2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ 119570af302Sopenharmony_ciu3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ 120570af302Sopenharmony_ciu4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ 121570af302Sopenharmony_ciu5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ 122570af302Sopenharmony_civ1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ 123570af302Sopenharmony_civ2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ 124570af302Sopenharmony_civ3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ 125570af302Sopenharmony_civ4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ 126570af302Sopenharmony_civ5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ 127570af302Sopenharmony_cis0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ 128570af302Sopenharmony_cis1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ 129570af302Sopenharmony_cis2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ 130570af302Sopenharmony_cis3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ 131570af302Sopenharmony_cis4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ 132570af302Sopenharmony_cis5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ 133570af302Sopenharmony_cis6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ 134570af302Sopenharmony_cir1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ 135570af302Sopenharmony_cir2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ 136570af302Sopenharmony_cir3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ 137570af302Sopenharmony_cir4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ 138570af302Sopenharmony_cir5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ 139570af302Sopenharmony_cir6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ 140570af302Sopenharmony_ciw0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ 141570af302Sopenharmony_ciw1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ 142570af302Sopenharmony_ciw2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ 143570af302Sopenharmony_ciw3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ 144570af302Sopenharmony_ciw4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ 145570af302Sopenharmony_ciw5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ 146570af302Sopenharmony_ciw6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ 147570af302Sopenharmony_ci 148570af302Sopenharmony_ci/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ 149570af302Sopenharmony_cistatic double sin_pi(double x) 150570af302Sopenharmony_ci{ 151570af302Sopenharmony_ci int n; 152570af302Sopenharmony_ci 153570af302Sopenharmony_ci /* spurious inexact if odd int */ 154570af302Sopenharmony_ci x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */ 155570af302Sopenharmony_ci 156570af302Sopenharmony_ci n = (int)(x*4.0); 157570af302Sopenharmony_ci n = (n+1)/2; 158570af302Sopenharmony_ci x -= n*0.5f; 159570af302Sopenharmony_ci x *= pi; 160570af302Sopenharmony_ci 161570af302Sopenharmony_ci switch (n) { 162570af302Sopenharmony_ci default: /* case 4: */ 163570af302Sopenharmony_ci case 0: return __sin(x, 0.0, 0); 164570af302Sopenharmony_ci case 1: return __cos(x, 0.0); 165570af302Sopenharmony_ci case 2: return __sin(-x, 0.0, 0); 166570af302Sopenharmony_ci case 3: return -__cos(x, 0.0); 167570af302Sopenharmony_ci } 168570af302Sopenharmony_ci} 169570af302Sopenharmony_ci 170570af302Sopenharmony_cidouble __lgamma_r(double x, int *signgamp) 171570af302Sopenharmony_ci{ 172570af302Sopenharmony_ci union {double f; uint64_t i;} u = {x}; 173570af302Sopenharmony_ci double_t t,y,z,nadj,p,p1,p2,p3,q,r,w; 174570af302Sopenharmony_ci uint32_t ix; 175570af302Sopenharmony_ci int sign,i; 176570af302Sopenharmony_ci 177570af302Sopenharmony_ci /* purge off +-inf, NaN, +-0, tiny and negative arguments */ 178570af302Sopenharmony_ci *signgamp = 1; 179570af302Sopenharmony_ci sign = u.i>>63; 180570af302Sopenharmony_ci ix = u.i>>32 & 0x7fffffff; 181570af302Sopenharmony_ci if (ix >= 0x7ff00000) 182570af302Sopenharmony_ci return x*x; 183570af302Sopenharmony_ci if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */ 184570af302Sopenharmony_ci if(sign) { 185570af302Sopenharmony_ci x = -x; 186570af302Sopenharmony_ci *signgamp = -1; 187570af302Sopenharmony_ci } 188570af302Sopenharmony_ci return -log(x); 189570af302Sopenharmony_ci } 190570af302Sopenharmony_ci if (sign) { 191570af302Sopenharmony_ci x = -x; 192570af302Sopenharmony_ci t = sin_pi(x); 193570af302Sopenharmony_ci if (t == 0.0) /* -integer */ 194570af302Sopenharmony_ci return 1.0/(x-x); 195570af302Sopenharmony_ci if (t > 0.0) 196570af302Sopenharmony_ci *signgamp = -1; 197570af302Sopenharmony_ci else 198570af302Sopenharmony_ci t = -t; 199570af302Sopenharmony_ci nadj = log(pi/(t*x)); 200570af302Sopenharmony_ci } 201570af302Sopenharmony_ci 202570af302Sopenharmony_ci /* purge off 1 and 2 */ 203570af302Sopenharmony_ci if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) 204570af302Sopenharmony_ci r = 0; 205570af302Sopenharmony_ci /* for x < 2.0 */ 206570af302Sopenharmony_ci else if (ix < 0x40000000) { 207570af302Sopenharmony_ci if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ 208570af302Sopenharmony_ci r = -log(x); 209570af302Sopenharmony_ci if (ix >= 0x3FE76944) { 210570af302Sopenharmony_ci y = 1.0 - x; 211570af302Sopenharmony_ci i = 0; 212570af302Sopenharmony_ci } else if (ix >= 0x3FCDA661) { 213570af302Sopenharmony_ci y = x - (tc-1.0); 214570af302Sopenharmony_ci i = 1; 215570af302Sopenharmony_ci } else { 216570af302Sopenharmony_ci y = x; 217570af302Sopenharmony_ci i = 2; 218570af302Sopenharmony_ci } 219570af302Sopenharmony_ci } else { 220570af302Sopenharmony_ci r = 0.0; 221570af302Sopenharmony_ci if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ 222570af302Sopenharmony_ci y = 2.0 - x; 223570af302Sopenharmony_ci i = 0; 224570af302Sopenharmony_ci } else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ 225570af302Sopenharmony_ci y = x - tc; 226570af302Sopenharmony_ci i = 1; 227570af302Sopenharmony_ci } else { 228570af302Sopenharmony_ci y = x - 1.0; 229570af302Sopenharmony_ci i = 2; 230570af302Sopenharmony_ci } 231570af302Sopenharmony_ci } 232570af302Sopenharmony_ci switch (i) { 233570af302Sopenharmony_ci case 0: 234570af302Sopenharmony_ci z = y*y; 235570af302Sopenharmony_ci p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); 236570af302Sopenharmony_ci p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); 237570af302Sopenharmony_ci p = y*p1+p2; 238570af302Sopenharmony_ci r += (p-0.5*y); 239570af302Sopenharmony_ci break; 240570af302Sopenharmony_ci case 1: 241570af302Sopenharmony_ci z = y*y; 242570af302Sopenharmony_ci w = z*y; 243570af302Sopenharmony_ci p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ 244570af302Sopenharmony_ci p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); 245570af302Sopenharmony_ci p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); 246570af302Sopenharmony_ci p = z*p1-(tt-w*(p2+y*p3)); 247570af302Sopenharmony_ci r += tf + p; 248570af302Sopenharmony_ci break; 249570af302Sopenharmony_ci case 2: 250570af302Sopenharmony_ci p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); 251570af302Sopenharmony_ci p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); 252570af302Sopenharmony_ci r += -0.5*y + p1/p2; 253570af302Sopenharmony_ci } 254570af302Sopenharmony_ci } else if (ix < 0x40200000) { /* x < 8.0 */ 255570af302Sopenharmony_ci i = (int)x; 256570af302Sopenharmony_ci y = x - (double)i; 257570af302Sopenharmony_ci p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); 258570af302Sopenharmony_ci q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); 259570af302Sopenharmony_ci r = 0.5*y+p/q; 260570af302Sopenharmony_ci z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ 261570af302Sopenharmony_ci switch (i) { 262570af302Sopenharmony_ci case 7: z *= y + 6.0; /* FALLTHRU */ 263570af302Sopenharmony_ci case 6: z *= y + 5.0; /* FALLTHRU */ 264570af302Sopenharmony_ci case 5: z *= y + 4.0; /* FALLTHRU */ 265570af302Sopenharmony_ci case 4: z *= y + 3.0; /* FALLTHRU */ 266570af302Sopenharmony_ci case 3: z *= y + 2.0; /* FALLTHRU */ 267570af302Sopenharmony_ci r += log(z); 268570af302Sopenharmony_ci break; 269570af302Sopenharmony_ci } 270570af302Sopenharmony_ci } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ 271570af302Sopenharmony_ci t = log(x); 272570af302Sopenharmony_ci z = 1.0/x; 273570af302Sopenharmony_ci y = z*z; 274570af302Sopenharmony_ci w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); 275570af302Sopenharmony_ci r = (x-0.5)*(t-1.0)+w; 276570af302Sopenharmony_ci } else /* 2**58 <= x <= inf */ 277570af302Sopenharmony_ci r = x*(log(x)-1.0); 278570af302Sopenharmony_ci if (sign) 279570af302Sopenharmony_ci r = nadj - r; 280570af302Sopenharmony_ci return r; 281570af302Sopenharmony_ci} 282570af302Sopenharmony_ci 283570af302Sopenharmony_ciweak_alias(__lgamma_r, lgamma_r); 284