1570af302Sopenharmony_ci/* 2570af302Sopenharmony_ci * Double-precision e^x function. 3570af302Sopenharmony_ci * 4570af302Sopenharmony_ci * Copyright (c) 2018, Arm Limited. 5570af302Sopenharmony_ci * SPDX-License-Identifier: MIT 6570af302Sopenharmony_ci */ 7570af302Sopenharmony_ci 8570af302Sopenharmony_ci#include <math.h> 9570af302Sopenharmony_ci#include <stdint.h> 10570af302Sopenharmony_ci#include "libm.h" 11570af302Sopenharmony_ci#include "exp_data.h" 12570af302Sopenharmony_ci 13570af302Sopenharmony_ci#define N (1 << EXP_TABLE_BITS) 14570af302Sopenharmony_ci#define InvLn2N __exp_data.invln2N 15570af302Sopenharmony_ci#define NegLn2hiN __exp_data.negln2hiN 16570af302Sopenharmony_ci#define NegLn2loN __exp_data.negln2loN 17570af302Sopenharmony_ci#define Shift __exp_data.shift 18570af302Sopenharmony_ci#define T __exp_data.tab 19570af302Sopenharmony_ci#define C2 __exp_data.poly[5 - EXP_POLY_ORDER] 20570af302Sopenharmony_ci#define C3 __exp_data.poly[6 - EXP_POLY_ORDER] 21570af302Sopenharmony_ci#define C4 __exp_data.poly[7 - EXP_POLY_ORDER] 22570af302Sopenharmony_ci#define C5 __exp_data.poly[8 - EXP_POLY_ORDER] 23570af302Sopenharmony_ci 24570af302Sopenharmony_ci/* Handle cases that may overflow or underflow when computing the result that 25570af302Sopenharmony_ci is scale*(1+TMP) without intermediate rounding. The bit representation of 26570af302Sopenharmony_ci scale is in SBITS, however it has a computed exponent that may have 27570af302Sopenharmony_ci overflown into the sign bit so that needs to be adjusted before using it as 28570af302Sopenharmony_ci a double. (int32_t)KI is the k used in the argument reduction and exponent 29570af302Sopenharmony_ci adjustment of scale, positive k here means the result may overflow and 30570af302Sopenharmony_ci negative k means the result may underflow. */ 31570af302Sopenharmony_cistatic inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki) 32570af302Sopenharmony_ci{ 33570af302Sopenharmony_ci double_t scale, y; 34570af302Sopenharmony_ci 35570af302Sopenharmony_ci if ((ki & 0x80000000) == 0) { 36570af302Sopenharmony_ci /* k > 0, the exponent of scale might have overflowed by <= 460. */ 37570af302Sopenharmony_ci sbits -= 1009ull << 52; 38570af302Sopenharmony_ci scale = asdouble(sbits); 39570af302Sopenharmony_ci y = 0x1p1009 * (scale + scale * tmp); 40570af302Sopenharmony_ci return eval_as_double(y); 41570af302Sopenharmony_ci } 42570af302Sopenharmony_ci /* k < 0, need special care in the subnormal range. */ 43570af302Sopenharmony_ci sbits += 1022ull << 52; 44570af302Sopenharmony_ci scale = asdouble(sbits); 45570af302Sopenharmony_ci y = scale + scale * tmp; 46570af302Sopenharmony_ci if (y < 1.0) { 47570af302Sopenharmony_ci /* Round y to the right precision before scaling it into the subnormal 48570af302Sopenharmony_ci range to avoid double rounding that can cause 0.5+E/2 ulp error where 49570af302Sopenharmony_ci E is the worst-case ulp error outside the subnormal range. So this 50570af302Sopenharmony_ci is only useful if the goal is better than 1 ulp worst-case error. */ 51570af302Sopenharmony_ci double_t hi, lo; 52570af302Sopenharmony_ci lo = scale - y + scale * tmp; 53570af302Sopenharmony_ci hi = 1.0 + y; 54570af302Sopenharmony_ci lo = 1.0 - hi + y + lo; 55570af302Sopenharmony_ci y = eval_as_double(hi + lo) - 1.0; 56570af302Sopenharmony_ci /* Avoid -0.0 with downward rounding. */ 57570af302Sopenharmony_ci if (WANT_ROUNDING && y == 0.0) 58570af302Sopenharmony_ci y = 0.0; 59570af302Sopenharmony_ci /* The underflow exception needs to be signaled explicitly. */ 60570af302Sopenharmony_ci fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022); 61570af302Sopenharmony_ci } 62570af302Sopenharmony_ci y = 0x1p-1022 * y; 63570af302Sopenharmony_ci return eval_as_double(y); 64570af302Sopenharmony_ci} 65570af302Sopenharmony_ci 66570af302Sopenharmony_ci/* Top 12 bits of a double (sign and exponent bits). */ 67570af302Sopenharmony_cistatic inline uint32_t top12(double x) 68570af302Sopenharmony_ci{ 69570af302Sopenharmony_ci return asuint64(x) >> 52; 70570af302Sopenharmony_ci} 71570af302Sopenharmony_ci 72570af302Sopenharmony_cidouble exp(double x) 73570af302Sopenharmony_ci{ 74570af302Sopenharmony_ci uint32_t abstop; 75570af302Sopenharmony_ci uint64_t ki, idx, top, sbits; 76570af302Sopenharmony_ci double_t kd, z, r, r2, scale, tail, tmp; 77570af302Sopenharmony_ci 78570af302Sopenharmony_ci abstop = top12(x) & 0x7ff; 79570af302Sopenharmony_ci if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) { 80570af302Sopenharmony_ci if (abstop - top12(0x1p-54) >= 0x80000000) 81570af302Sopenharmony_ci /* Avoid spurious underflow for tiny x. */ 82570af302Sopenharmony_ci /* Note: 0 is common input. */ 83570af302Sopenharmony_ci return WANT_ROUNDING ? 1.0 + x : 1.0; 84570af302Sopenharmony_ci if (abstop >= top12(1024.0)) { 85570af302Sopenharmony_ci if (asuint64(x) == asuint64(-INFINITY)) 86570af302Sopenharmony_ci return 0.0; 87570af302Sopenharmony_ci if (abstop >= top12(INFINITY)) 88570af302Sopenharmony_ci return 1.0 + x; 89570af302Sopenharmony_ci if (asuint64(x) >> 63) 90570af302Sopenharmony_ci return __math_uflow(0); 91570af302Sopenharmony_ci else 92570af302Sopenharmony_ci return __math_oflow(0); 93570af302Sopenharmony_ci } 94570af302Sopenharmony_ci /* Large x is special cased below. */ 95570af302Sopenharmony_ci abstop = 0; 96570af302Sopenharmony_ci } 97570af302Sopenharmony_ci 98570af302Sopenharmony_ci /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ 99570af302Sopenharmony_ci /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ 100570af302Sopenharmony_ci z = InvLn2N * x; 101570af302Sopenharmony_ci#if TOINT_INTRINSICS 102570af302Sopenharmony_ci kd = roundtoint(z); 103570af302Sopenharmony_ci ki = converttoint(z); 104570af302Sopenharmony_ci#elif EXP_USE_TOINT_NARROW 105570af302Sopenharmony_ci /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ 106570af302Sopenharmony_ci kd = eval_as_double(z + Shift); 107570af302Sopenharmony_ci ki = asuint64(kd) >> 16; 108570af302Sopenharmony_ci kd = (double_t)(int32_t)ki; 109570af302Sopenharmony_ci#else 110570af302Sopenharmony_ci /* z - kd is in [-1, 1] in non-nearest rounding modes. */ 111570af302Sopenharmony_ci kd = eval_as_double(z + Shift); 112570af302Sopenharmony_ci ki = asuint64(kd); 113570af302Sopenharmony_ci kd -= Shift; 114570af302Sopenharmony_ci#endif 115570af302Sopenharmony_ci r = x + kd * NegLn2hiN + kd * NegLn2loN; 116570af302Sopenharmony_ci /* 2^(k/N) ~= scale * (1 + tail). */ 117570af302Sopenharmony_ci idx = 2 * (ki % N); 118570af302Sopenharmony_ci top = ki << (52 - EXP_TABLE_BITS); 119570af302Sopenharmony_ci tail = asdouble(T[idx]); 120570af302Sopenharmony_ci /* This is only a valid scale when -1023*N < k < 1024*N. */ 121570af302Sopenharmony_ci sbits = T[idx + 1] + top; 122570af302Sopenharmony_ci /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ 123570af302Sopenharmony_ci /* Evaluation is optimized assuming superscalar pipelined execution. */ 124570af302Sopenharmony_ci r2 = r * r; 125570af302Sopenharmony_ci /* Without fma the worst case error is 0.25/N ulp larger. */ 126570af302Sopenharmony_ci /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ 127570af302Sopenharmony_ci tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); 128570af302Sopenharmony_ci if (predict_false(abstop == 0)) 129570af302Sopenharmony_ci return specialcase(tmp, sbits, ki); 130570af302Sopenharmony_ci scale = asdouble(sbits); 131570af302Sopenharmony_ci /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there 132570af302Sopenharmony_ci is no spurious underflow here even without fma. */ 133570af302Sopenharmony_ci return eval_as_double(scale + scale * tmp); 134570af302Sopenharmony_ci} 135