1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
2570af302Sopenharmony_ci/*
3570af302Sopenharmony_ci * ====================================================
4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5570af302Sopenharmony_ci *
6570af302Sopenharmony_ci * Developed at SunPro, a Sun Microsystems, Inc. business.
7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this
8570af302Sopenharmony_ci * software is freely granted, provided that this notice
9570af302Sopenharmony_ci * is preserved.
10570af302Sopenharmony_ci * ====================================================
11570af302Sopenharmony_ci */
12570af302Sopenharmony_ci/* double erf(double x)
13570af302Sopenharmony_ci * double erfc(double x)
14570af302Sopenharmony_ci *                           x
15570af302Sopenharmony_ci *                    2      |\
16570af302Sopenharmony_ci *     erf(x)  =  ---------  | exp(-t*t)dt
17570af302Sopenharmony_ci *                 sqrt(pi) \|
18570af302Sopenharmony_ci *                           0
19570af302Sopenharmony_ci *
20570af302Sopenharmony_ci *     erfc(x) =  1-erf(x)
21570af302Sopenharmony_ci *  Note that
22570af302Sopenharmony_ci *              erf(-x) = -erf(x)
23570af302Sopenharmony_ci *              erfc(-x) = 2 - erfc(x)
24570af302Sopenharmony_ci *
25570af302Sopenharmony_ci * Method:
26570af302Sopenharmony_ci *      1. For |x| in [0, 0.84375]
27570af302Sopenharmony_ci *          erf(x)  = x + x*R(x^2)
28570af302Sopenharmony_ci *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
29570af302Sopenharmony_ci *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
30570af302Sopenharmony_ci *         where R = P/Q where P is an odd poly of degree 8 and
31570af302Sopenharmony_ci *         Q is an odd poly of degree 10.
32570af302Sopenharmony_ci *                                               -57.90
33570af302Sopenharmony_ci *                      | R - (erf(x)-x)/x | <= 2
34570af302Sopenharmony_ci *
35570af302Sopenharmony_ci *
36570af302Sopenharmony_ci *         Remark. The formula is derived by noting
37570af302Sopenharmony_ci *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
38570af302Sopenharmony_ci *         and that
39570af302Sopenharmony_ci *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
40570af302Sopenharmony_ci *         is close to one. The interval is chosen because the fix
41570af302Sopenharmony_ci *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
42570af302Sopenharmony_ci *         near 0.6174), and by some experiment, 0.84375 is chosen to
43570af302Sopenharmony_ci *         guarantee the error is less than one ulp for erf.
44570af302Sopenharmony_ci *
45570af302Sopenharmony_ci *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
46570af302Sopenharmony_ci *         c = 0.84506291151 rounded to single (24 bits)
47570af302Sopenharmony_ci *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
48570af302Sopenharmony_ci *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
49570af302Sopenharmony_ci *                        1+(c+P1(s)/Q1(s))    if x < 0
50570af302Sopenharmony_ci *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
51570af302Sopenharmony_ci *         Remark: here we use the taylor series expansion at x=1.
52570af302Sopenharmony_ci *              erf(1+s) = erf(1) + s*Poly(s)
53570af302Sopenharmony_ci *                       = 0.845.. + P1(s)/Q1(s)
54570af302Sopenharmony_ci *         That is, we use rational approximation to approximate
55570af302Sopenharmony_ci *                      erf(1+s) - (c = (single)0.84506291151)
56570af302Sopenharmony_ci *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
57570af302Sopenharmony_ci *         where
58570af302Sopenharmony_ci *              P1(s) = degree 6 poly in s
59570af302Sopenharmony_ci *              Q1(s) = degree 6 poly in s
60570af302Sopenharmony_ci *
61570af302Sopenharmony_ci *      3. For x in [1.25,1/0.35(~2.857143)],
62570af302Sopenharmony_ci *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
63570af302Sopenharmony_ci *              erf(x)  = 1 - erfc(x)
64570af302Sopenharmony_ci *         where
65570af302Sopenharmony_ci *              R1(z) = degree 7 poly in z, (z=1/x^2)
66570af302Sopenharmony_ci *              S1(z) = degree 8 poly in z
67570af302Sopenharmony_ci *
68570af302Sopenharmony_ci *      4. For x in [1/0.35,28]
69570af302Sopenharmony_ci *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
70570af302Sopenharmony_ci *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
71570af302Sopenharmony_ci *                      = 2.0 - tiny            (if x <= -6)
72570af302Sopenharmony_ci *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
73570af302Sopenharmony_ci *              erf(x)  = sign(x)*(1.0 - tiny)
74570af302Sopenharmony_ci *         where
75570af302Sopenharmony_ci *              R2(z) = degree 6 poly in z, (z=1/x^2)
76570af302Sopenharmony_ci *              S2(z) = degree 7 poly in z
77570af302Sopenharmony_ci *
78570af302Sopenharmony_ci *      Note1:
79570af302Sopenharmony_ci *         To compute exp(-x*x-0.5625+R/S), let s be a single
80570af302Sopenharmony_ci *         precision number and s := x; then
81570af302Sopenharmony_ci *              -x*x = -s*s + (s-x)*(s+x)
82570af302Sopenharmony_ci *              exp(-x*x-0.5626+R/S) =
83570af302Sopenharmony_ci *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
84570af302Sopenharmony_ci *      Note2:
85570af302Sopenharmony_ci *         Here 4 and 5 make use of the asymptotic series
86570af302Sopenharmony_ci *                        exp(-x*x)
87570af302Sopenharmony_ci *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
88570af302Sopenharmony_ci *                        x*sqrt(pi)
89570af302Sopenharmony_ci *         We use rational approximation to approximate
90570af302Sopenharmony_ci *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
91570af302Sopenharmony_ci *         Here is the error bound for R1/S1 and R2/S2
92570af302Sopenharmony_ci *              |R1/S1 - f(x)|  < 2**(-62.57)
93570af302Sopenharmony_ci *              |R2/S2 - f(x)|  < 2**(-61.52)
94570af302Sopenharmony_ci *
95570af302Sopenharmony_ci *      5. For inf > x >= 28
96570af302Sopenharmony_ci *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
97570af302Sopenharmony_ci *              erfc(x) = tiny*tiny (raise underflow) if x > 0
98570af302Sopenharmony_ci *                      = 2 - tiny if x<0
99570af302Sopenharmony_ci *
100570af302Sopenharmony_ci *      7. Special case:
101570af302Sopenharmony_ci *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
102570af302Sopenharmony_ci *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
103570af302Sopenharmony_ci *              erfc/erf(NaN) is NaN
104570af302Sopenharmony_ci */
105570af302Sopenharmony_ci
106570af302Sopenharmony_ci#include "libm.h"
107570af302Sopenharmony_ci
108570af302Sopenharmony_cistatic const double
109570af302Sopenharmony_cierx  = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
110570af302Sopenharmony_ci/*
111570af302Sopenharmony_ci * Coefficients for approximation to  erf on [0,0.84375]
112570af302Sopenharmony_ci */
113570af302Sopenharmony_ciefx8 =  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
114570af302Sopenharmony_cipp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
115570af302Sopenharmony_cipp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
116570af302Sopenharmony_cipp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
117570af302Sopenharmony_cipp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
118570af302Sopenharmony_cipp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
119570af302Sopenharmony_ciqq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
120570af302Sopenharmony_ciqq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
121570af302Sopenharmony_ciqq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
122570af302Sopenharmony_ciqq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
123570af302Sopenharmony_ciqq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
124570af302Sopenharmony_ci/*
125570af302Sopenharmony_ci * Coefficients for approximation to  erf  in [0.84375,1.25]
126570af302Sopenharmony_ci */
127570af302Sopenharmony_cipa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
128570af302Sopenharmony_cipa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
129570af302Sopenharmony_cipa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
130570af302Sopenharmony_cipa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
131570af302Sopenharmony_cipa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
132570af302Sopenharmony_cipa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
133570af302Sopenharmony_cipa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
134570af302Sopenharmony_ciqa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
135570af302Sopenharmony_ciqa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
136570af302Sopenharmony_ciqa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
137570af302Sopenharmony_ciqa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
138570af302Sopenharmony_ciqa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
139570af302Sopenharmony_ciqa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
140570af302Sopenharmony_ci/*
141570af302Sopenharmony_ci * Coefficients for approximation to  erfc in [1.25,1/0.35]
142570af302Sopenharmony_ci */
143570af302Sopenharmony_cira0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
144570af302Sopenharmony_cira1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
145570af302Sopenharmony_cira2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
146570af302Sopenharmony_cira3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
147570af302Sopenharmony_cira4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
148570af302Sopenharmony_cira5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
149570af302Sopenharmony_cira6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
150570af302Sopenharmony_cira7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
151570af302Sopenharmony_cisa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
152570af302Sopenharmony_cisa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
153570af302Sopenharmony_cisa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
154570af302Sopenharmony_cisa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
155570af302Sopenharmony_cisa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
156570af302Sopenharmony_cisa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
157570af302Sopenharmony_cisa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
158570af302Sopenharmony_cisa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
159570af302Sopenharmony_ci/*
160570af302Sopenharmony_ci * Coefficients for approximation to  erfc in [1/.35,28]
161570af302Sopenharmony_ci */
162570af302Sopenharmony_cirb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
163570af302Sopenharmony_cirb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
164570af302Sopenharmony_cirb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
165570af302Sopenharmony_cirb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
166570af302Sopenharmony_cirb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
167570af302Sopenharmony_cirb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
168570af302Sopenharmony_cirb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
169570af302Sopenharmony_cisb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
170570af302Sopenharmony_cisb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
171570af302Sopenharmony_cisb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
172570af302Sopenharmony_cisb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
173570af302Sopenharmony_cisb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
174570af302Sopenharmony_cisb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
175570af302Sopenharmony_cisb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
176570af302Sopenharmony_ci
177570af302Sopenharmony_cistatic double erfc1(double x)
178570af302Sopenharmony_ci{
179570af302Sopenharmony_ci	double_t s,P,Q;
180570af302Sopenharmony_ci
181570af302Sopenharmony_ci	s = fabs(x) - 1;
182570af302Sopenharmony_ci	P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
183570af302Sopenharmony_ci	Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
184570af302Sopenharmony_ci	return 1 - erx - P/Q;
185570af302Sopenharmony_ci}
186570af302Sopenharmony_ci
187570af302Sopenharmony_cistatic double erfc2(uint32_t ix, double x)
188570af302Sopenharmony_ci{
189570af302Sopenharmony_ci	double_t s,R,S;
190570af302Sopenharmony_ci	double z;
191570af302Sopenharmony_ci
192570af302Sopenharmony_ci	if (ix < 0x3ff40000)  /* |x| < 1.25 */
193570af302Sopenharmony_ci		return erfc1(x);
194570af302Sopenharmony_ci
195570af302Sopenharmony_ci	x = fabs(x);
196570af302Sopenharmony_ci	s = 1/(x*x);
197570af302Sopenharmony_ci	if (ix < 0x4006db6d) {  /* |x| < 1/.35 ~ 2.85714 */
198570af302Sopenharmony_ci		R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
199570af302Sopenharmony_ci		     ra5+s*(ra6+s*ra7))))));
200570af302Sopenharmony_ci		S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
201570af302Sopenharmony_ci		     sa5+s*(sa6+s*(sa7+s*sa8)))))));
202570af302Sopenharmony_ci	} else {                /* |x| > 1/.35 */
203570af302Sopenharmony_ci		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
204570af302Sopenharmony_ci		     rb5+s*rb6)))));
205570af302Sopenharmony_ci		S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
206570af302Sopenharmony_ci		     sb5+s*(sb6+s*sb7))))));
207570af302Sopenharmony_ci	}
208570af302Sopenharmony_ci	z = x;
209570af302Sopenharmony_ci	SET_LOW_WORD(z,0);
210570af302Sopenharmony_ci	return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;
211570af302Sopenharmony_ci}
212570af302Sopenharmony_ci
213570af302Sopenharmony_cidouble erf(double x)
214570af302Sopenharmony_ci{
215570af302Sopenharmony_ci	double r,s,z,y;
216570af302Sopenharmony_ci	uint32_t ix;
217570af302Sopenharmony_ci	int sign;
218570af302Sopenharmony_ci
219570af302Sopenharmony_ci	GET_HIGH_WORD(ix, x);
220570af302Sopenharmony_ci	sign = ix>>31;
221570af302Sopenharmony_ci	ix &= 0x7fffffff;
222570af302Sopenharmony_ci	if (ix >= 0x7ff00000) {
223570af302Sopenharmony_ci		/* erf(nan)=nan, erf(+-inf)=+-1 */
224570af302Sopenharmony_ci		return 1-2*sign + 1/x;
225570af302Sopenharmony_ci	}
226570af302Sopenharmony_ci	if (ix < 0x3feb0000) {  /* |x| < 0.84375 */
227570af302Sopenharmony_ci		if (ix < 0x3e300000) {  /* |x| < 2**-28 */
228570af302Sopenharmony_ci			/* avoid underflow */
229570af302Sopenharmony_ci			return 0.125*(8*x + efx8*x);
230570af302Sopenharmony_ci		}
231570af302Sopenharmony_ci		z = x*x;
232570af302Sopenharmony_ci		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
233570af302Sopenharmony_ci		s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
234570af302Sopenharmony_ci		y = r/s;
235570af302Sopenharmony_ci		return x + x*y;
236570af302Sopenharmony_ci	}
237570af302Sopenharmony_ci	if (ix < 0x40180000)  /* 0.84375 <= |x| < 6 */
238570af302Sopenharmony_ci		y = 1 - erfc2(ix,x);
239570af302Sopenharmony_ci	else
240570af302Sopenharmony_ci		y = 1 - 0x1p-1022;
241570af302Sopenharmony_ci	return sign ? -y : y;
242570af302Sopenharmony_ci}
243570af302Sopenharmony_ci
244570af302Sopenharmony_cidouble erfc(double x)
245570af302Sopenharmony_ci{
246570af302Sopenharmony_ci	double r,s,z,y;
247570af302Sopenharmony_ci	uint32_t ix;
248570af302Sopenharmony_ci	int sign;
249570af302Sopenharmony_ci
250570af302Sopenharmony_ci	GET_HIGH_WORD(ix, x);
251570af302Sopenharmony_ci	sign = ix>>31;
252570af302Sopenharmony_ci	ix &= 0x7fffffff;
253570af302Sopenharmony_ci	if (ix >= 0x7ff00000) {
254570af302Sopenharmony_ci		/* erfc(nan)=nan, erfc(+-inf)=0,2 */
255570af302Sopenharmony_ci		return 2*sign + 1/x;
256570af302Sopenharmony_ci	}
257570af302Sopenharmony_ci	if (ix < 0x3feb0000) {  /* |x| < 0.84375 */
258570af302Sopenharmony_ci		if (ix < 0x3c700000)  /* |x| < 2**-56 */
259570af302Sopenharmony_ci			return 1.0 - x;
260570af302Sopenharmony_ci		z = x*x;
261570af302Sopenharmony_ci		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
262570af302Sopenharmony_ci		s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
263570af302Sopenharmony_ci		y = r/s;
264570af302Sopenharmony_ci		if (sign || ix < 0x3fd00000) {  /* x < 1/4 */
265570af302Sopenharmony_ci			return 1.0 - (x+x*y);
266570af302Sopenharmony_ci		}
267570af302Sopenharmony_ci		return 0.5 - (x - 0.5 + x*y);
268570af302Sopenharmony_ci	}
269570af302Sopenharmony_ci	if (ix < 0x403c0000) {  /* 0.84375 <= |x| < 28 */
270570af302Sopenharmony_ci		return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
271570af302Sopenharmony_ci	}
272570af302Sopenharmony_ci	return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022;
273570af302Sopenharmony_ci}
274