1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */ 2570af302Sopenharmony_ci/* 3570af302Sopenharmony_ci * ==================================================== 4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5570af302Sopenharmony_ci * 6570af302Sopenharmony_ci * Developed at SunPro, a Sun Microsystems, Inc. business. 7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this 8570af302Sopenharmony_ci * software is freely granted, provided that this notice 9570af302Sopenharmony_ci * is preserved. 10570af302Sopenharmony_ci * ==================================================== 11570af302Sopenharmony_ci */ 12570af302Sopenharmony_ci/* double erf(double x) 13570af302Sopenharmony_ci * double erfc(double x) 14570af302Sopenharmony_ci * x 15570af302Sopenharmony_ci * 2 |\ 16570af302Sopenharmony_ci * erf(x) = --------- | exp(-t*t)dt 17570af302Sopenharmony_ci * sqrt(pi) \| 18570af302Sopenharmony_ci * 0 19570af302Sopenharmony_ci * 20570af302Sopenharmony_ci * erfc(x) = 1-erf(x) 21570af302Sopenharmony_ci * Note that 22570af302Sopenharmony_ci * erf(-x) = -erf(x) 23570af302Sopenharmony_ci * erfc(-x) = 2 - erfc(x) 24570af302Sopenharmony_ci * 25570af302Sopenharmony_ci * Method: 26570af302Sopenharmony_ci * 1. For |x| in [0, 0.84375] 27570af302Sopenharmony_ci * erf(x) = x + x*R(x^2) 28570af302Sopenharmony_ci * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] 29570af302Sopenharmony_ci * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] 30570af302Sopenharmony_ci * where R = P/Q where P is an odd poly of degree 8 and 31570af302Sopenharmony_ci * Q is an odd poly of degree 10. 32570af302Sopenharmony_ci * -57.90 33570af302Sopenharmony_ci * | R - (erf(x)-x)/x | <= 2 34570af302Sopenharmony_ci * 35570af302Sopenharmony_ci * 36570af302Sopenharmony_ci * Remark. The formula is derived by noting 37570af302Sopenharmony_ci * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) 38570af302Sopenharmony_ci * and that 39570af302Sopenharmony_ci * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 40570af302Sopenharmony_ci * is close to one. The interval is chosen because the fix 41570af302Sopenharmony_ci * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is 42570af302Sopenharmony_ci * near 0.6174), and by some experiment, 0.84375 is chosen to 43570af302Sopenharmony_ci * guarantee the error is less than one ulp for erf. 44570af302Sopenharmony_ci * 45570af302Sopenharmony_ci * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and 46570af302Sopenharmony_ci * c = 0.84506291151 rounded to single (24 bits) 47570af302Sopenharmony_ci * erf(x) = sign(x) * (c + P1(s)/Q1(s)) 48570af302Sopenharmony_ci * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 49570af302Sopenharmony_ci * 1+(c+P1(s)/Q1(s)) if x < 0 50570af302Sopenharmony_ci * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 51570af302Sopenharmony_ci * Remark: here we use the taylor series expansion at x=1. 52570af302Sopenharmony_ci * erf(1+s) = erf(1) + s*Poly(s) 53570af302Sopenharmony_ci * = 0.845.. + P1(s)/Q1(s) 54570af302Sopenharmony_ci * That is, we use rational approximation to approximate 55570af302Sopenharmony_ci * erf(1+s) - (c = (single)0.84506291151) 56570af302Sopenharmony_ci * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] 57570af302Sopenharmony_ci * where 58570af302Sopenharmony_ci * P1(s) = degree 6 poly in s 59570af302Sopenharmony_ci * Q1(s) = degree 6 poly in s 60570af302Sopenharmony_ci * 61570af302Sopenharmony_ci * 3. For x in [1.25,1/0.35(~2.857143)], 62570af302Sopenharmony_ci * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) 63570af302Sopenharmony_ci * erf(x) = 1 - erfc(x) 64570af302Sopenharmony_ci * where 65570af302Sopenharmony_ci * R1(z) = degree 7 poly in z, (z=1/x^2) 66570af302Sopenharmony_ci * S1(z) = degree 8 poly in z 67570af302Sopenharmony_ci * 68570af302Sopenharmony_ci * 4. For x in [1/0.35,28] 69570af302Sopenharmony_ci * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 70570af302Sopenharmony_ci * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 71570af302Sopenharmony_ci * = 2.0 - tiny (if x <= -6) 72570af302Sopenharmony_ci * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else 73570af302Sopenharmony_ci * erf(x) = sign(x)*(1.0 - tiny) 74570af302Sopenharmony_ci * where 75570af302Sopenharmony_ci * R2(z) = degree 6 poly in z, (z=1/x^2) 76570af302Sopenharmony_ci * S2(z) = degree 7 poly in z 77570af302Sopenharmony_ci * 78570af302Sopenharmony_ci * Note1: 79570af302Sopenharmony_ci * To compute exp(-x*x-0.5625+R/S), let s be a single 80570af302Sopenharmony_ci * precision number and s := x; then 81570af302Sopenharmony_ci * -x*x = -s*s + (s-x)*(s+x) 82570af302Sopenharmony_ci * exp(-x*x-0.5626+R/S) = 83570af302Sopenharmony_ci * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); 84570af302Sopenharmony_ci * Note2: 85570af302Sopenharmony_ci * Here 4 and 5 make use of the asymptotic series 86570af302Sopenharmony_ci * exp(-x*x) 87570af302Sopenharmony_ci * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) 88570af302Sopenharmony_ci * x*sqrt(pi) 89570af302Sopenharmony_ci * We use rational approximation to approximate 90570af302Sopenharmony_ci * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 91570af302Sopenharmony_ci * Here is the error bound for R1/S1 and R2/S2 92570af302Sopenharmony_ci * |R1/S1 - f(x)| < 2**(-62.57) 93570af302Sopenharmony_ci * |R2/S2 - f(x)| < 2**(-61.52) 94570af302Sopenharmony_ci * 95570af302Sopenharmony_ci * 5. For inf > x >= 28 96570af302Sopenharmony_ci * erf(x) = sign(x) *(1 - tiny) (raise inexact) 97570af302Sopenharmony_ci * erfc(x) = tiny*tiny (raise underflow) if x > 0 98570af302Sopenharmony_ci * = 2 - tiny if x<0 99570af302Sopenharmony_ci * 100570af302Sopenharmony_ci * 7. Special case: 101570af302Sopenharmony_ci * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, 102570af302Sopenharmony_ci * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 103570af302Sopenharmony_ci * erfc/erf(NaN) is NaN 104570af302Sopenharmony_ci */ 105570af302Sopenharmony_ci 106570af302Sopenharmony_ci#include "libm.h" 107570af302Sopenharmony_ci 108570af302Sopenharmony_cistatic const double 109570af302Sopenharmony_cierx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ 110570af302Sopenharmony_ci/* 111570af302Sopenharmony_ci * Coefficients for approximation to erf on [0,0.84375] 112570af302Sopenharmony_ci */ 113570af302Sopenharmony_ciefx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ 114570af302Sopenharmony_cipp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ 115570af302Sopenharmony_cipp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ 116570af302Sopenharmony_cipp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ 117570af302Sopenharmony_cipp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ 118570af302Sopenharmony_cipp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ 119570af302Sopenharmony_ciqq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ 120570af302Sopenharmony_ciqq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ 121570af302Sopenharmony_ciqq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ 122570af302Sopenharmony_ciqq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ 123570af302Sopenharmony_ciqq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ 124570af302Sopenharmony_ci/* 125570af302Sopenharmony_ci * Coefficients for approximation to erf in [0.84375,1.25] 126570af302Sopenharmony_ci */ 127570af302Sopenharmony_cipa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ 128570af302Sopenharmony_cipa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ 129570af302Sopenharmony_cipa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ 130570af302Sopenharmony_cipa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ 131570af302Sopenharmony_cipa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ 132570af302Sopenharmony_cipa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ 133570af302Sopenharmony_cipa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ 134570af302Sopenharmony_ciqa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ 135570af302Sopenharmony_ciqa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ 136570af302Sopenharmony_ciqa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ 137570af302Sopenharmony_ciqa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ 138570af302Sopenharmony_ciqa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ 139570af302Sopenharmony_ciqa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ 140570af302Sopenharmony_ci/* 141570af302Sopenharmony_ci * Coefficients for approximation to erfc in [1.25,1/0.35] 142570af302Sopenharmony_ci */ 143570af302Sopenharmony_cira0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ 144570af302Sopenharmony_cira1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ 145570af302Sopenharmony_cira2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ 146570af302Sopenharmony_cira3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ 147570af302Sopenharmony_cira4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ 148570af302Sopenharmony_cira5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ 149570af302Sopenharmony_cira6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ 150570af302Sopenharmony_cira7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ 151570af302Sopenharmony_cisa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ 152570af302Sopenharmony_cisa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ 153570af302Sopenharmony_cisa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ 154570af302Sopenharmony_cisa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ 155570af302Sopenharmony_cisa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ 156570af302Sopenharmony_cisa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ 157570af302Sopenharmony_cisa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ 158570af302Sopenharmony_cisa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ 159570af302Sopenharmony_ci/* 160570af302Sopenharmony_ci * Coefficients for approximation to erfc in [1/.35,28] 161570af302Sopenharmony_ci */ 162570af302Sopenharmony_cirb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ 163570af302Sopenharmony_cirb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ 164570af302Sopenharmony_cirb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ 165570af302Sopenharmony_cirb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ 166570af302Sopenharmony_cirb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ 167570af302Sopenharmony_cirb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ 168570af302Sopenharmony_cirb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ 169570af302Sopenharmony_cisb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ 170570af302Sopenharmony_cisb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ 171570af302Sopenharmony_cisb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ 172570af302Sopenharmony_cisb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ 173570af302Sopenharmony_cisb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ 174570af302Sopenharmony_cisb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ 175570af302Sopenharmony_cisb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ 176570af302Sopenharmony_ci 177570af302Sopenharmony_cistatic double erfc1(double x) 178570af302Sopenharmony_ci{ 179570af302Sopenharmony_ci double_t s,P,Q; 180570af302Sopenharmony_ci 181570af302Sopenharmony_ci s = fabs(x) - 1; 182570af302Sopenharmony_ci P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 183570af302Sopenharmony_ci Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 184570af302Sopenharmony_ci return 1 - erx - P/Q; 185570af302Sopenharmony_ci} 186570af302Sopenharmony_ci 187570af302Sopenharmony_cistatic double erfc2(uint32_t ix, double x) 188570af302Sopenharmony_ci{ 189570af302Sopenharmony_ci double_t s,R,S; 190570af302Sopenharmony_ci double z; 191570af302Sopenharmony_ci 192570af302Sopenharmony_ci if (ix < 0x3ff40000) /* |x| < 1.25 */ 193570af302Sopenharmony_ci return erfc1(x); 194570af302Sopenharmony_ci 195570af302Sopenharmony_ci x = fabs(x); 196570af302Sopenharmony_ci s = 1/(x*x); 197570af302Sopenharmony_ci if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */ 198570af302Sopenharmony_ci R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 199570af302Sopenharmony_ci ra5+s*(ra6+s*ra7)))))); 200570af302Sopenharmony_ci S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 201570af302Sopenharmony_ci sa5+s*(sa6+s*(sa7+s*sa8))))))); 202570af302Sopenharmony_ci } else { /* |x| > 1/.35 */ 203570af302Sopenharmony_ci R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 204570af302Sopenharmony_ci rb5+s*rb6))))); 205570af302Sopenharmony_ci S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 206570af302Sopenharmony_ci sb5+s*(sb6+s*sb7)))))); 207570af302Sopenharmony_ci } 208570af302Sopenharmony_ci z = x; 209570af302Sopenharmony_ci SET_LOW_WORD(z,0); 210570af302Sopenharmony_ci return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x; 211570af302Sopenharmony_ci} 212570af302Sopenharmony_ci 213570af302Sopenharmony_cidouble erf(double x) 214570af302Sopenharmony_ci{ 215570af302Sopenharmony_ci double r,s,z,y; 216570af302Sopenharmony_ci uint32_t ix; 217570af302Sopenharmony_ci int sign; 218570af302Sopenharmony_ci 219570af302Sopenharmony_ci GET_HIGH_WORD(ix, x); 220570af302Sopenharmony_ci sign = ix>>31; 221570af302Sopenharmony_ci ix &= 0x7fffffff; 222570af302Sopenharmony_ci if (ix >= 0x7ff00000) { 223570af302Sopenharmony_ci /* erf(nan)=nan, erf(+-inf)=+-1 */ 224570af302Sopenharmony_ci return 1-2*sign + 1/x; 225570af302Sopenharmony_ci } 226570af302Sopenharmony_ci if (ix < 0x3feb0000) { /* |x| < 0.84375 */ 227570af302Sopenharmony_ci if (ix < 0x3e300000) { /* |x| < 2**-28 */ 228570af302Sopenharmony_ci /* avoid underflow */ 229570af302Sopenharmony_ci return 0.125*(8*x + efx8*x); 230570af302Sopenharmony_ci } 231570af302Sopenharmony_ci z = x*x; 232570af302Sopenharmony_ci r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 233570af302Sopenharmony_ci s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 234570af302Sopenharmony_ci y = r/s; 235570af302Sopenharmony_ci return x + x*y; 236570af302Sopenharmony_ci } 237570af302Sopenharmony_ci if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */ 238570af302Sopenharmony_ci y = 1 - erfc2(ix,x); 239570af302Sopenharmony_ci else 240570af302Sopenharmony_ci y = 1 - 0x1p-1022; 241570af302Sopenharmony_ci return sign ? -y : y; 242570af302Sopenharmony_ci} 243570af302Sopenharmony_ci 244570af302Sopenharmony_cidouble erfc(double x) 245570af302Sopenharmony_ci{ 246570af302Sopenharmony_ci double r,s,z,y; 247570af302Sopenharmony_ci uint32_t ix; 248570af302Sopenharmony_ci int sign; 249570af302Sopenharmony_ci 250570af302Sopenharmony_ci GET_HIGH_WORD(ix, x); 251570af302Sopenharmony_ci sign = ix>>31; 252570af302Sopenharmony_ci ix &= 0x7fffffff; 253570af302Sopenharmony_ci if (ix >= 0x7ff00000) { 254570af302Sopenharmony_ci /* erfc(nan)=nan, erfc(+-inf)=0,2 */ 255570af302Sopenharmony_ci return 2*sign + 1/x; 256570af302Sopenharmony_ci } 257570af302Sopenharmony_ci if (ix < 0x3feb0000) { /* |x| < 0.84375 */ 258570af302Sopenharmony_ci if (ix < 0x3c700000) /* |x| < 2**-56 */ 259570af302Sopenharmony_ci return 1.0 - x; 260570af302Sopenharmony_ci z = x*x; 261570af302Sopenharmony_ci r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 262570af302Sopenharmony_ci s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 263570af302Sopenharmony_ci y = r/s; 264570af302Sopenharmony_ci if (sign || ix < 0x3fd00000) { /* x < 1/4 */ 265570af302Sopenharmony_ci return 1.0 - (x+x*y); 266570af302Sopenharmony_ci } 267570af302Sopenharmony_ci return 0.5 - (x - 0.5 + x*y); 268570af302Sopenharmony_ci } 269570af302Sopenharmony_ci if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */ 270570af302Sopenharmony_ci return sign ? 2 - erfc2(ix,x) : erfc2(ix,x); 271570af302Sopenharmony_ci } 272570af302Sopenharmony_ci return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022; 273570af302Sopenharmony_ci} 274