1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
2570af302Sopenharmony_ci/*
3570af302Sopenharmony_ci * ====================================================
4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5570af302Sopenharmony_ci *
6570af302Sopenharmony_ci * Developed at SunSoft, a Sun Microsystems, Inc. business.
7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this
8570af302Sopenharmony_ci * software is freely granted, provided that this notice
9570af302Sopenharmony_ci * is preserved.
10570af302Sopenharmony_ci * ====================================================
11570af302Sopenharmony_ci */
12570af302Sopenharmony_ci/*
13570af302Sopenharmony_ci * __rem_pio2_large(x,y,e0,nx,prec)
14570af302Sopenharmony_ci * double x[],y[]; int e0,nx,prec;
15570af302Sopenharmony_ci *
16570af302Sopenharmony_ci * __rem_pio2_large return the last three digits of N with
17570af302Sopenharmony_ci *              y = x - N*pi/2
18570af302Sopenharmony_ci * so that |y| < pi/2.
19570af302Sopenharmony_ci *
20570af302Sopenharmony_ci * The method is to compute the integer (mod 8) and fraction parts of
21570af302Sopenharmony_ci * (2/pi)*x without doing the full multiplication. In general we
22570af302Sopenharmony_ci * skip the part of the product that are known to be a huge integer (
23570af302Sopenharmony_ci * more accurately, = 0 mod 8 ). Thus the number of operations are
24570af302Sopenharmony_ci * independent of the exponent of the input.
25570af302Sopenharmony_ci *
26570af302Sopenharmony_ci * (2/pi) is represented by an array of 24-bit integers in ipio2[].
27570af302Sopenharmony_ci *
28570af302Sopenharmony_ci * Input parameters:
29570af302Sopenharmony_ci *      x[]     The input value (must be positive) is broken into nx
30570af302Sopenharmony_ci *              pieces of 24-bit integers in double precision format.
31570af302Sopenharmony_ci *              x[i] will be the i-th 24 bit of x. The scaled exponent
32570af302Sopenharmony_ci *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
33570af302Sopenharmony_ci *              match x's up to 24 bits.
34570af302Sopenharmony_ci *
35570af302Sopenharmony_ci *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
36570af302Sopenharmony_ci *                      e0 = ilogb(z)-23
37570af302Sopenharmony_ci *                      z  = scalbn(z,-e0)
38570af302Sopenharmony_ci *              for i = 0,1,2
39570af302Sopenharmony_ci *                      x[i] = floor(z)
40570af302Sopenharmony_ci *                      z    = (z-x[i])*2**24
41570af302Sopenharmony_ci *
42570af302Sopenharmony_ci *
43570af302Sopenharmony_ci *      y[]     ouput result in an array of double precision numbers.
44570af302Sopenharmony_ci *              The dimension of y[] is:
45570af302Sopenharmony_ci *                      24-bit  precision       1
46570af302Sopenharmony_ci *                      53-bit  precision       2
47570af302Sopenharmony_ci *                      64-bit  precision       2
48570af302Sopenharmony_ci *                      113-bit precision       3
49570af302Sopenharmony_ci *              The actual value is the sum of them. Thus for 113-bit
50570af302Sopenharmony_ci *              precison, one may have to do something like:
51570af302Sopenharmony_ci *
52570af302Sopenharmony_ci *              long double t,w,r_head, r_tail;
53570af302Sopenharmony_ci *              t = (long double)y[2] + (long double)y[1];
54570af302Sopenharmony_ci *              w = (long double)y[0];
55570af302Sopenharmony_ci *              r_head = t+w;
56570af302Sopenharmony_ci *              r_tail = w - (r_head - t);
57570af302Sopenharmony_ci *
58570af302Sopenharmony_ci *      e0      The exponent of x[0]. Must be <= 16360 or you need to
59570af302Sopenharmony_ci *              expand the ipio2 table.
60570af302Sopenharmony_ci *
61570af302Sopenharmony_ci *      nx      dimension of x[]
62570af302Sopenharmony_ci *
63570af302Sopenharmony_ci *      prec    an integer indicating the precision:
64570af302Sopenharmony_ci *                      0       24  bits (single)
65570af302Sopenharmony_ci *                      1       53  bits (double)
66570af302Sopenharmony_ci *                      2       64  bits (extended)
67570af302Sopenharmony_ci *                      3       113 bits (quad)
68570af302Sopenharmony_ci *
69570af302Sopenharmony_ci * External function:
70570af302Sopenharmony_ci *      double scalbn(), floor();
71570af302Sopenharmony_ci *
72570af302Sopenharmony_ci *
73570af302Sopenharmony_ci * Here is the description of some local variables:
74570af302Sopenharmony_ci *
75570af302Sopenharmony_ci *      jk      jk+1 is the initial number of terms of ipio2[] needed
76570af302Sopenharmony_ci *              in the computation. The minimum and recommended value
77570af302Sopenharmony_ci *              for jk is 3,4,4,6 for single, double, extended, and quad.
78570af302Sopenharmony_ci *              jk+1 must be 2 larger than you might expect so that our
79570af302Sopenharmony_ci *              recomputation test works. (Up to 24 bits in the integer
80570af302Sopenharmony_ci *              part (the 24 bits of it that we compute) and 23 bits in
81570af302Sopenharmony_ci *              the fraction part may be lost to cancelation before we
82570af302Sopenharmony_ci *              recompute.)
83570af302Sopenharmony_ci *
84570af302Sopenharmony_ci *      jz      local integer variable indicating the number of
85570af302Sopenharmony_ci *              terms of ipio2[] used.
86570af302Sopenharmony_ci *
87570af302Sopenharmony_ci *      jx      nx - 1
88570af302Sopenharmony_ci *
89570af302Sopenharmony_ci *      jv      index for pointing to the suitable ipio2[] for the
90570af302Sopenharmony_ci *              computation. In general, we want
91570af302Sopenharmony_ci *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
92570af302Sopenharmony_ci *              is an integer. Thus
93570af302Sopenharmony_ci *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
94570af302Sopenharmony_ci *              Hence jv = max(0,(e0-3)/24).
95570af302Sopenharmony_ci *
96570af302Sopenharmony_ci *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
97570af302Sopenharmony_ci *
98570af302Sopenharmony_ci *      q[]     double array with integral value, representing the
99570af302Sopenharmony_ci *              24-bits chunk of the product of x and 2/pi.
100570af302Sopenharmony_ci *
101570af302Sopenharmony_ci *      q0      the corresponding exponent of q[0]. Note that the
102570af302Sopenharmony_ci *              exponent for q[i] would be q0-24*i.
103570af302Sopenharmony_ci *
104570af302Sopenharmony_ci *      PIo2[]  double precision array, obtained by cutting pi/2
105570af302Sopenharmony_ci *              into 24 bits chunks.
106570af302Sopenharmony_ci *
107570af302Sopenharmony_ci *      f[]     ipio2[] in floating point
108570af302Sopenharmony_ci *
109570af302Sopenharmony_ci *      iq[]    integer array by breaking up q[] in 24-bits chunk.
110570af302Sopenharmony_ci *
111570af302Sopenharmony_ci *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
112570af302Sopenharmony_ci *
113570af302Sopenharmony_ci *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
114570af302Sopenharmony_ci *              it also indicates the *sign* of the result.
115570af302Sopenharmony_ci *
116570af302Sopenharmony_ci */
117570af302Sopenharmony_ci/*
118570af302Sopenharmony_ci * Constants:
119570af302Sopenharmony_ci * The hexadecimal values are the intended ones for the following
120570af302Sopenharmony_ci * constants. The decimal values may be used, provided that the
121570af302Sopenharmony_ci * compiler will convert from decimal to binary accurately enough
122570af302Sopenharmony_ci * to produce the hexadecimal values shown.
123570af302Sopenharmony_ci */
124570af302Sopenharmony_ci
125570af302Sopenharmony_ci#include "libm.h"
126570af302Sopenharmony_ci
127570af302Sopenharmony_cistatic const int init_jk[] = {3,4,4,6}; /* initial value for jk */
128570af302Sopenharmony_ci
129570af302Sopenharmony_ci/*
130570af302Sopenharmony_ci * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
131570af302Sopenharmony_ci *
132570af302Sopenharmony_ci *              integer array, contains the (24*i)-th to (24*i+23)-th
133570af302Sopenharmony_ci *              bit of 2/pi after binary point. The corresponding
134570af302Sopenharmony_ci *              floating value is
135570af302Sopenharmony_ci *
136570af302Sopenharmony_ci *                      ipio2[i] * 2^(-24(i+1)).
137570af302Sopenharmony_ci *
138570af302Sopenharmony_ci * NB: This table must have at least (e0-3)/24 + jk terms.
139570af302Sopenharmony_ci *     For quad precision (e0 <= 16360, jk = 6), this is 686.
140570af302Sopenharmony_ci */
141570af302Sopenharmony_cistatic const int32_t ipio2[] = {
142570af302Sopenharmony_ci0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
143570af302Sopenharmony_ci0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
144570af302Sopenharmony_ci0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
145570af302Sopenharmony_ci0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
146570af302Sopenharmony_ci0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
147570af302Sopenharmony_ci0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
148570af302Sopenharmony_ci0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
149570af302Sopenharmony_ci0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
150570af302Sopenharmony_ci0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
151570af302Sopenharmony_ci0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
152570af302Sopenharmony_ci0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
153570af302Sopenharmony_ci
154570af302Sopenharmony_ci#if LDBL_MAX_EXP > 1024
155570af302Sopenharmony_ci0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
156570af302Sopenharmony_ci0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
157570af302Sopenharmony_ci0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
158570af302Sopenharmony_ci0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
159570af302Sopenharmony_ci0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
160570af302Sopenharmony_ci0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
161570af302Sopenharmony_ci0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
162570af302Sopenharmony_ci0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
163570af302Sopenharmony_ci0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
164570af302Sopenharmony_ci0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
165570af302Sopenharmony_ci0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
166570af302Sopenharmony_ci0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
167570af302Sopenharmony_ci0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
168570af302Sopenharmony_ci0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
169570af302Sopenharmony_ci0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
170570af302Sopenharmony_ci0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
171570af302Sopenharmony_ci0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
172570af302Sopenharmony_ci0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
173570af302Sopenharmony_ci0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
174570af302Sopenharmony_ci0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
175570af302Sopenharmony_ci0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
176570af302Sopenharmony_ci0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
177570af302Sopenharmony_ci0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
178570af302Sopenharmony_ci0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
179570af302Sopenharmony_ci0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
180570af302Sopenharmony_ci0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
181570af302Sopenharmony_ci0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
182570af302Sopenharmony_ci0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
183570af302Sopenharmony_ci0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
184570af302Sopenharmony_ci0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
185570af302Sopenharmony_ci0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
186570af302Sopenharmony_ci0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
187570af302Sopenharmony_ci0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
188570af302Sopenharmony_ci0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
189570af302Sopenharmony_ci0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
190570af302Sopenharmony_ci0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
191570af302Sopenharmony_ci0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
192570af302Sopenharmony_ci0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
193570af302Sopenharmony_ci0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
194570af302Sopenharmony_ci0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
195570af302Sopenharmony_ci0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
196570af302Sopenharmony_ci0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
197570af302Sopenharmony_ci0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
198570af302Sopenharmony_ci0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
199570af302Sopenharmony_ci0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
200570af302Sopenharmony_ci0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
201570af302Sopenharmony_ci0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
202570af302Sopenharmony_ci0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
203570af302Sopenharmony_ci0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
204570af302Sopenharmony_ci0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
205570af302Sopenharmony_ci0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
206570af302Sopenharmony_ci0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
207570af302Sopenharmony_ci0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
208570af302Sopenharmony_ci0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
209570af302Sopenharmony_ci0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
210570af302Sopenharmony_ci0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
211570af302Sopenharmony_ci0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
212570af302Sopenharmony_ci0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
213570af302Sopenharmony_ci0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
214570af302Sopenharmony_ci0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
215570af302Sopenharmony_ci0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
216570af302Sopenharmony_ci0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
217570af302Sopenharmony_ci0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
218570af302Sopenharmony_ci0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
219570af302Sopenharmony_ci0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
220570af302Sopenharmony_ci0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
221570af302Sopenharmony_ci0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
222570af302Sopenharmony_ci0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
223570af302Sopenharmony_ci0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
224570af302Sopenharmony_ci0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
225570af302Sopenharmony_ci0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
226570af302Sopenharmony_ci0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
227570af302Sopenharmony_ci0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
228570af302Sopenharmony_ci0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
229570af302Sopenharmony_ci0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
230570af302Sopenharmony_ci0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
231570af302Sopenharmony_ci0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
232570af302Sopenharmony_ci0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
233570af302Sopenharmony_ci0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
234570af302Sopenharmony_ci0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
235570af302Sopenharmony_ci0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
236570af302Sopenharmony_ci0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
237570af302Sopenharmony_ci0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
238570af302Sopenharmony_ci0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
239570af302Sopenharmony_ci0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
240570af302Sopenharmony_ci0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
241570af302Sopenharmony_ci0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
242570af302Sopenharmony_ci0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
243570af302Sopenharmony_ci0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
244570af302Sopenharmony_ci0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
245570af302Sopenharmony_ci0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
246570af302Sopenharmony_ci0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
247570af302Sopenharmony_ci0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
248570af302Sopenharmony_ci0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
249570af302Sopenharmony_ci0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
250570af302Sopenharmony_ci0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
251570af302Sopenharmony_ci0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
252570af302Sopenharmony_ci0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
253570af302Sopenharmony_ci0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
254570af302Sopenharmony_ci0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
255570af302Sopenharmony_ci0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
256570af302Sopenharmony_ci0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
257570af302Sopenharmony_ci0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
258570af302Sopenharmony_ci0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
259570af302Sopenharmony_ci#endif
260570af302Sopenharmony_ci};
261570af302Sopenharmony_ci
262570af302Sopenharmony_cistatic const double PIo2[] = {
263570af302Sopenharmony_ci  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
264570af302Sopenharmony_ci  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
265570af302Sopenharmony_ci  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
266570af302Sopenharmony_ci  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
267570af302Sopenharmony_ci  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
268570af302Sopenharmony_ci  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
269570af302Sopenharmony_ci  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
270570af302Sopenharmony_ci  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
271570af302Sopenharmony_ci};
272570af302Sopenharmony_ci
273570af302Sopenharmony_ciint __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
274570af302Sopenharmony_ci{
275570af302Sopenharmony_ci	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
276570af302Sopenharmony_ci	double z,fw,f[20],fq[20],q[20];
277570af302Sopenharmony_ci
278570af302Sopenharmony_ci	/* initialize jk*/
279570af302Sopenharmony_ci	jk = init_jk[prec];
280570af302Sopenharmony_ci	jp = jk;
281570af302Sopenharmony_ci
282570af302Sopenharmony_ci	/* determine jx,jv,q0, note that 3>q0 */
283570af302Sopenharmony_ci	jx = nx-1;
284570af302Sopenharmony_ci	jv = (e0-3)/24;  if(jv<0) jv=0;
285570af302Sopenharmony_ci	q0 = e0-24*(jv+1);
286570af302Sopenharmony_ci
287570af302Sopenharmony_ci	/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
288570af302Sopenharmony_ci	j = jv-jx; m = jx+jk;
289570af302Sopenharmony_ci	for (i=0; i<=m; i++,j++)
290570af302Sopenharmony_ci		f[i] = j<0 ? 0.0 : (double)ipio2[j];
291570af302Sopenharmony_ci
292570af302Sopenharmony_ci	/* compute q[0],q[1],...q[jk] */
293570af302Sopenharmony_ci	for (i=0; i<=jk; i++) {
294570af302Sopenharmony_ci		for (j=0,fw=0.0; j<=jx; j++)
295570af302Sopenharmony_ci			fw += x[j]*f[jx+i-j];
296570af302Sopenharmony_ci		q[i] = fw;
297570af302Sopenharmony_ci	}
298570af302Sopenharmony_ci
299570af302Sopenharmony_ci	jz = jk;
300570af302Sopenharmony_cirecompute:
301570af302Sopenharmony_ci	/* distill q[] into iq[] reversingly */
302570af302Sopenharmony_ci	for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
303570af302Sopenharmony_ci		fw    = (double)(int32_t)(0x1p-24*z);
304570af302Sopenharmony_ci		iq[i] = (int32_t)(z - 0x1p24*fw);
305570af302Sopenharmony_ci		z     = q[j-1]+fw;
306570af302Sopenharmony_ci	}
307570af302Sopenharmony_ci
308570af302Sopenharmony_ci	/* compute n */
309570af302Sopenharmony_ci	z  = scalbn(z,q0);       /* actual value of z */
310570af302Sopenharmony_ci	z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
311570af302Sopenharmony_ci	n  = (int32_t)z;
312570af302Sopenharmony_ci	z -= (double)n;
313570af302Sopenharmony_ci	ih = 0;
314570af302Sopenharmony_ci	if (q0 > 0) {  /* need iq[jz-1] to determine n */
315570af302Sopenharmony_ci		i  = iq[jz-1]>>(24-q0); n += i;
316570af302Sopenharmony_ci		iq[jz-1] -= i<<(24-q0);
317570af302Sopenharmony_ci		ih = iq[jz-1]>>(23-q0);
318570af302Sopenharmony_ci	}
319570af302Sopenharmony_ci	else if (q0 == 0) ih = iq[jz-1]>>23;
320570af302Sopenharmony_ci	else if (z >= 0.5) ih = 2;
321570af302Sopenharmony_ci
322570af302Sopenharmony_ci	if (ih > 0) {  /* q > 0.5 */
323570af302Sopenharmony_ci		n += 1; carry = 0;
324570af302Sopenharmony_ci		for (i=0; i<jz; i++) {  /* compute 1-q */
325570af302Sopenharmony_ci			j = iq[i];
326570af302Sopenharmony_ci			if (carry == 0) {
327570af302Sopenharmony_ci				if (j != 0) {
328570af302Sopenharmony_ci					carry = 1;
329570af302Sopenharmony_ci					iq[i] = 0x1000000 - j;
330570af302Sopenharmony_ci				}
331570af302Sopenharmony_ci			} else
332570af302Sopenharmony_ci				iq[i] = 0xffffff - j;
333570af302Sopenharmony_ci		}
334570af302Sopenharmony_ci		if (q0 > 0) {  /* rare case: chance is 1 in 12 */
335570af302Sopenharmony_ci			switch(q0) {
336570af302Sopenharmony_ci			case 1:
337570af302Sopenharmony_ci				iq[jz-1] &= 0x7fffff; break;
338570af302Sopenharmony_ci			case 2:
339570af302Sopenharmony_ci				iq[jz-1] &= 0x3fffff; break;
340570af302Sopenharmony_ci			}
341570af302Sopenharmony_ci		}
342570af302Sopenharmony_ci		if (ih == 2) {
343570af302Sopenharmony_ci			z = 1.0 - z;
344570af302Sopenharmony_ci			if (carry != 0)
345570af302Sopenharmony_ci				z -= scalbn(1.0,q0);
346570af302Sopenharmony_ci		}
347570af302Sopenharmony_ci	}
348570af302Sopenharmony_ci
349570af302Sopenharmony_ci	/* check if recomputation is needed */
350570af302Sopenharmony_ci	if (z == 0.0) {
351570af302Sopenharmony_ci		j = 0;
352570af302Sopenharmony_ci		for (i=jz-1; i>=jk; i--) j |= iq[i];
353570af302Sopenharmony_ci		if (j == 0) {  /* need recomputation */
354570af302Sopenharmony_ci			for (k=1; iq[jk-k]==0; k++);  /* k = no. of terms needed */
355570af302Sopenharmony_ci
356570af302Sopenharmony_ci			for (i=jz+1; i<=jz+k; i++) {  /* add q[jz+1] to q[jz+k] */
357570af302Sopenharmony_ci				f[jx+i] = (double)ipio2[jv+i];
358570af302Sopenharmony_ci				for (j=0,fw=0.0; j<=jx; j++)
359570af302Sopenharmony_ci					fw += x[j]*f[jx+i-j];
360570af302Sopenharmony_ci				q[i] = fw;
361570af302Sopenharmony_ci			}
362570af302Sopenharmony_ci			jz += k;
363570af302Sopenharmony_ci			goto recompute;
364570af302Sopenharmony_ci		}
365570af302Sopenharmony_ci	}
366570af302Sopenharmony_ci
367570af302Sopenharmony_ci	/* chop off zero terms */
368570af302Sopenharmony_ci	if (z == 0.0) {
369570af302Sopenharmony_ci		jz -= 1;
370570af302Sopenharmony_ci		q0 -= 24;
371570af302Sopenharmony_ci		while (iq[jz] == 0) {
372570af302Sopenharmony_ci			jz--;
373570af302Sopenharmony_ci			q0 -= 24;
374570af302Sopenharmony_ci		}
375570af302Sopenharmony_ci	} else { /* break z into 24-bit if necessary */
376570af302Sopenharmony_ci		z = scalbn(z,-q0);
377570af302Sopenharmony_ci		if (z >= 0x1p24) {
378570af302Sopenharmony_ci			fw = (double)(int32_t)(0x1p-24*z);
379570af302Sopenharmony_ci			iq[jz] = (int32_t)(z - 0x1p24*fw);
380570af302Sopenharmony_ci			jz += 1;
381570af302Sopenharmony_ci			q0 += 24;
382570af302Sopenharmony_ci			iq[jz] = (int32_t)fw;
383570af302Sopenharmony_ci		} else
384570af302Sopenharmony_ci			iq[jz] = (int32_t)z;
385570af302Sopenharmony_ci	}
386570af302Sopenharmony_ci
387570af302Sopenharmony_ci	/* convert integer "bit" chunk to floating-point value */
388570af302Sopenharmony_ci	fw = scalbn(1.0,q0);
389570af302Sopenharmony_ci	for (i=jz; i>=0; i--) {
390570af302Sopenharmony_ci		q[i] = fw*(double)iq[i];
391570af302Sopenharmony_ci		fw *= 0x1p-24;
392570af302Sopenharmony_ci	}
393570af302Sopenharmony_ci
394570af302Sopenharmony_ci	/* compute PIo2[0,...,jp]*q[jz,...,0] */
395570af302Sopenharmony_ci	for(i=jz; i>=0; i--) {
396570af302Sopenharmony_ci		for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
397570af302Sopenharmony_ci			fw += PIo2[k]*q[i+k];
398570af302Sopenharmony_ci		fq[jz-i] = fw;
399570af302Sopenharmony_ci	}
400570af302Sopenharmony_ci
401570af302Sopenharmony_ci	/* compress fq[] into y[] */
402570af302Sopenharmony_ci	switch(prec) {
403570af302Sopenharmony_ci	case 0:
404570af302Sopenharmony_ci		fw = 0.0;
405570af302Sopenharmony_ci		for (i=jz; i>=0; i--)
406570af302Sopenharmony_ci			fw += fq[i];
407570af302Sopenharmony_ci		y[0] = ih==0 ? fw : -fw;
408570af302Sopenharmony_ci		break;
409570af302Sopenharmony_ci	case 1:
410570af302Sopenharmony_ci	case 2:
411570af302Sopenharmony_ci		fw = 0.0;
412570af302Sopenharmony_ci		for (i=jz; i>=0; i--)
413570af302Sopenharmony_ci			fw += fq[i];
414570af302Sopenharmony_ci		// TODO: drop excess precision here once double_t is used
415570af302Sopenharmony_ci		fw = (double)fw;
416570af302Sopenharmony_ci		y[0] = ih==0 ? fw : -fw;
417570af302Sopenharmony_ci		fw = fq[0]-fw;
418570af302Sopenharmony_ci		for (i=1; i<=jz; i++)
419570af302Sopenharmony_ci			fw += fq[i];
420570af302Sopenharmony_ci		y[1] = ih==0 ? fw : -fw;
421570af302Sopenharmony_ci		break;
422570af302Sopenharmony_ci	case 3:  /* painful */
423570af302Sopenharmony_ci		for (i=jz; i>0; i--) {
424570af302Sopenharmony_ci			fw      = fq[i-1]+fq[i];
425570af302Sopenharmony_ci			fq[i]  += fq[i-1]-fw;
426570af302Sopenharmony_ci			fq[i-1] = fw;
427570af302Sopenharmony_ci		}
428570af302Sopenharmony_ci		for (i=jz; i>1; i--) {
429570af302Sopenharmony_ci			fw      = fq[i-1]+fq[i];
430570af302Sopenharmony_ci			fq[i]  += fq[i-1]-fw;
431570af302Sopenharmony_ci			fq[i-1] = fw;
432570af302Sopenharmony_ci		}
433570af302Sopenharmony_ci		for (fw=0.0,i=jz; i>=2; i--)
434570af302Sopenharmony_ci			fw += fq[i];
435570af302Sopenharmony_ci		if (ih==0) {
436570af302Sopenharmony_ci			y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
437570af302Sopenharmony_ci		} else {
438570af302Sopenharmony_ci			y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
439570af302Sopenharmony_ci		}
440570af302Sopenharmony_ci	}
441570af302Sopenharmony_ci	return n&7;
442570af302Sopenharmony_ci}
443