1570af302Sopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */ 2570af302Sopenharmony_ci/* 3570af302Sopenharmony_ci * ==================================================== 4570af302Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 5570af302Sopenharmony_ci * 6570af302Sopenharmony_ci * Developed at SunSoft, a Sun Microsystems, Inc. business. 7570af302Sopenharmony_ci * Permission to use, copy, modify, and distribute this 8570af302Sopenharmony_ci * software is freely granted, provided that this notice 9570af302Sopenharmony_ci * is preserved. 10570af302Sopenharmony_ci * ==================================================== 11570af302Sopenharmony_ci */ 12570af302Sopenharmony_ci/* 13570af302Sopenharmony_ci * __rem_pio2_large(x,y,e0,nx,prec) 14570af302Sopenharmony_ci * double x[],y[]; int e0,nx,prec; 15570af302Sopenharmony_ci * 16570af302Sopenharmony_ci * __rem_pio2_large return the last three digits of N with 17570af302Sopenharmony_ci * y = x - N*pi/2 18570af302Sopenharmony_ci * so that |y| < pi/2. 19570af302Sopenharmony_ci * 20570af302Sopenharmony_ci * The method is to compute the integer (mod 8) and fraction parts of 21570af302Sopenharmony_ci * (2/pi)*x without doing the full multiplication. In general we 22570af302Sopenharmony_ci * skip the part of the product that are known to be a huge integer ( 23570af302Sopenharmony_ci * more accurately, = 0 mod 8 ). Thus the number of operations are 24570af302Sopenharmony_ci * independent of the exponent of the input. 25570af302Sopenharmony_ci * 26570af302Sopenharmony_ci * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 27570af302Sopenharmony_ci * 28570af302Sopenharmony_ci * Input parameters: 29570af302Sopenharmony_ci * x[] The input value (must be positive) is broken into nx 30570af302Sopenharmony_ci * pieces of 24-bit integers in double precision format. 31570af302Sopenharmony_ci * x[i] will be the i-th 24 bit of x. The scaled exponent 32570af302Sopenharmony_ci * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 33570af302Sopenharmony_ci * match x's up to 24 bits. 34570af302Sopenharmony_ci * 35570af302Sopenharmony_ci * Example of breaking a double positive z into x[0]+x[1]+x[2]: 36570af302Sopenharmony_ci * e0 = ilogb(z)-23 37570af302Sopenharmony_ci * z = scalbn(z,-e0) 38570af302Sopenharmony_ci * for i = 0,1,2 39570af302Sopenharmony_ci * x[i] = floor(z) 40570af302Sopenharmony_ci * z = (z-x[i])*2**24 41570af302Sopenharmony_ci * 42570af302Sopenharmony_ci * 43570af302Sopenharmony_ci * y[] ouput result in an array of double precision numbers. 44570af302Sopenharmony_ci * The dimension of y[] is: 45570af302Sopenharmony_ci * 24-bit precision 1 46570af302Sopenharmony_ci * 53-bit precision 2 47570af302Sopenharmony_ci * 64-bit precision 2 48570af302Sopenharmony_ci * 113-bit precision 3 49570af302Sopenharmony_ci * The actual value is the sum of them. Thus for 113-bit 50570af302Sopenharmony_ci * precison, one may have to do something like: 51570af302Sopenharmony_ci * 52570af302Sopenharmony_ci * long double t,w,r_head, r_tail; 53570af302Sopenharmony_ci * t = (long double)y[2] + (long double)y[1]; 54570af302Sopenharmony_ci * w = (long double)y[0]; 55570af302Sopenharmony_ci * r_head = t+w; 56570af302Sopenharmony_ci * r_tail = w - (r_head - t); 57570af302Sopenharmony_ci * 58570af302Sopenharmony_ci * e0 The exponent of x[0]. Must be <= 16360 or you need to 59570af302Sopenharmony_ci * expand the ipio2 table. 60570af302Sopenharmony_ci * 61570af302Sopenharmony_ci * nx dimension of x[] 62570af302Sopenharmony_ci * 63570af302Sopenharmony_ci * prec an integer indicating the precision: 64570af302Sopenharmony_ci * 0 24 bits (single) 65570af302Sopenharmony_ci * 1 53 bits (double) 66570af302Sopenharmony_ci * 2 64 bits (extended) 67570af302Sopenharmony_ci * 3 113 bits (quad) 68570af302Sopenharmony_ci * 69570af302Sopenharmony_ci * External function: 70570af302Sopenharmony_ci * double scalbn(), floor(); 71570af302Sopenharmony_ci * 72570af302Sopenharmony_ci * 73570af302Sopenharmony_ci * Here is the description of some local variables: 74570af302Sopenharmony_ci * 75570af302Sopenharmony_ci * jk jk+1 is the initial number of terms of ipio2[] needed 76570af302Sopenharmony_ci * in the computation. The minimum and recommended value 77570af302Sopenharmony_ci * for jk is 3,4,4,6 for single, double, extended, and quad. 78570af302Sopenharmony_ci * jk+1 must be 2 larger than you might expect so that our 79570af302Sopenharmony_ci * recomputation test works. (Up to 24 bits in the integer 80570af302Sopenharmony_ci * part (the 24 bits of it that we compute) and 23 bits in 81570af302Sopenharmony_ci * the fraction part may be lost to cancelation before we 82570af302Sopenharmony_ci * recompute.) 83570af302Sopenharmony_ci * 84570af302Sopenharmony_ci * jz local integer variable indicating the number of 85570af302Sopenharmony_ci * terms of ipio2[] used. 86570af302Sopenharmony_ci * 87570af302Sopenharmony_ci * jx nx - 1 88570af302Sopenharmony_ci * 89570af302Sopenharmony_ci * jv index for pointing to the suitable ipio2[] for the 90570af302Sopenharmony_ci * computation. In general, we want 91570af302Sopenharmony_ci * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 92570af302Sopenharmony_ci * is an integer. Thus 93570af302Sopenharmony_ci * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 94570af302Sopenharmony_ci * Hence jv = max(0,(e0-3)/24). 95570af302Sopenharmony_ci * 96570af302Sopenharmony_ci * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 97570af302Sopenharmony_ci * 98570af302Sopenharmony_ci * q[] double array with integral value, representing the 99570af302Sopenharmony_ci * 24-bits chunk of the product of x and 2/pi. 100570af302Sopenharmony_ci * 101570af302Sopenharmony_ci * q0 the corresponding exponent of q[0]. Note that the 102570af302Sopenharmony_ci * exponent for q[i] would be q0-24*i. 103570af302Sopenharmony_ci * 104570af302Sopenharmony_ci * PIo2[] double precision array, obtained by cutting pi/2 105570af302Sopenharmony_ci * into 24 bits chunks. 106570af302Sopenharmony_ci * 107570af302Sopenharmony_ci * f[] ipio2[] in floating point 108570af302Sopenharmony_ci * 109570af302Sopenharmony_ci * iq[] integer array by breaking up q[] in 24-bits chunk. 110570af302Sopenharmony_ci * 111570af302Sopenharmony_ci * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 112570af302Sopenharmony_ci * 113570af302Sopenharmony_ci * ih integer. If >0 it indicates q[] is >= 0.5, hence 114570af302Sopenharmony_ci * it also indicates the *sign* of the result. 115570af302Sopenharmony_ci * 116570af302Sopenharmony_ci */ 117570af302Sopenharmony_ci/* 118570af302Sopenharmony_ci * Constants: 119570af302Sopenharmony_ci * The hexadecimal values are the intended ones for the following 120570af302Sopenharmony_ci * constants. The decimal values may be used, provided that the 121570af302Sopenharmony_ci * compiler will convert from decimal to binary accurately enough 122570af302Sopenharmony_ci * to produce the hexadecimal values shown. 123570af302Sopenharmony_ci */ 124570af302Sopenharmony_ci 125570af302Sopenharmony_ci#include "libm.h" 126570af302Sopenharmony_ci 127570af302Sopenharmony_cistatic const int init_jk[] = {3,4,4,6}; /* initial value for jk */ 128570af302Sopenharmony_ci 129570af302Sopenharmony_ci/* 130570af302Sopenharmony_ci * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi 131570af302Sopenharmony_ci * 132570af302Sopenharmony_ci * integer array, contains the (24*i)-th to (24*i+23)-th 133570af302Sopenharmony_ci * bit of 2/pi after binary point. The corresponding 134570af302Sopenharmony_ci * floating value is 135570af302Sopenharmony_ci * 136570af302Sopenharmony_ci * ipio2[i] * 2^(-24(i+1)). 137570af302Sopenharmony_ci * 138570af302Sopenharmony_ci * NB: This table must have at least (e0-3)/24 + jk terms. 139570af302Sopenharmony_ci * For quad precision (e0 <= 16360, jk = 6), this is 686. 140570af302Sopenharmony_ci */ 141570af302Sopenharmony_cistatic const int32_t ipio2[] = { 142570af302Sopenharmony_ci0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 143570af302Sopenharmony_ci0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 144570af302Sopenharmony_ci0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 145570af302Sopenharmony_ci0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 146570af302Sopenharmony_ci0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 147570af302Sopenharmony_ci0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 148570af302Sopenharmony_ci0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 149570af302Sopenharmony_ci0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 150570af302Sopenharmony_ci0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 151570af302Sopenharmony_ci0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 152570af302Sopenharmony_ci0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, 153570af302Sopenharmony_ci 154570af302Sopenharmony_ci#if LDBL_MAX_EXP > 1024 155570af302Sopenharmony_ci0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, 156570af302Sopenharmony_ci0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 157570af302Sopenharmony_ci0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35, 158570af302Sopenharmony_ci0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30, 159570af302Sopenharmony_ci0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C, 160570af302Sopenharmony_ci0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4, 161570af302Sopenharmony_ci0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770, 162570af302Sopenharmony_ci0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 163570af302Sopenharmony_ci0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19, 164570af302Sopenharmony_ci0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, 165570af302Sopenharmony_ci0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16, 166570af302Sopenharmony_ci0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6, 167570af302Sopenharmony_ci0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E, 168570af302Sopenharmony_ci0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48, 169570af302Sopenharmony_ci0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3, 170570af302Sopenharmony_ci0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, 171570af302Sopenharmony_ci0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 172570af302Sopenharmony_ci0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612, 173570af302Sopenharmony_ci0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929, 174570af302Sopenharmony_ci0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC, 175570af302Sopenharmony_ci0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B, 176570af302Sopenharmony_ci0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, 177570af302Sopenharmony_ci0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 178570af302Sopenharmony_ci0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB, 179570af302Sopenharmony_ci0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC, 180570af302Sopenharmony_ci0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C, 181570af302Sopenharmony_ci0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F, 182570af302Sopenharmony_ci0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5, 183570af302Sopenharmony_ci0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 184570af302Sopenharmony_ci0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B, 185570af302Sopenharmony_ci0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, 186570af302Sopenharmony_ci0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD, 187570af302Sopenharmony_ci0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3, 188570af302Sopenharmony_ci0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3, 189570af302Sopenharmony_ci0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717, 190570af302Sopenharmony_ci0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F, 191570af302Sopenharmony_ci0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, 192570af302Sopenharmony_ci0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 193570af302Sopenharmony_ci0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51, 194570af302Sopenharmony_ci0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0, 195570af302Sopenharmony_ci0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C, 196570af302Sopenharmony_ci0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6, 197570af302Sopenharmony_ci0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, 198570af302Sopenharmony_ci0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 199570af302Sopenharmony_ci0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328, 200570af302Sopenharmony_ci0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D, 201570af302Sopenharmony_ci0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0, 202570af302Sopenharmony_ci0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B, 203570af302Sopenharmony_ci0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4, 204570af302Sopenharmony_ci0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 205570af302Sopenharmony_ci0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F, 206570af302Sopenharmony_ci0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, 207570af302Sopenharmony_ci0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B, 208570af302Sopenharmony_ci0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4, 209570af302Sopenharmony_ci0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761, 210570af302Sopenharmony_ci0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31, 211570af302Sopenharmony_ci0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30, 212570af302Sopenharmony_ci0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, 213570af302Sopenharmony_ci0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E, 214570af302Sopenharmony_ci0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1, 215570af302Sopenharmony_ci0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C, 216570af302Sopenharmony_ci0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4, 217570af302Sopenharmony_ci0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08, 218570af302Sopenharmony_ci0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, 219570af302Sopenharmony_ci0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 220570af302Sopenharmony_ci0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4, 221570af302Sopenharmony_ci0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC, 222570af302Sopenharmony_ci0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C, 223570af302Sopenharmony_ci0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0, 224570af302Sopenharmony_ci0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C, 225570af302Sopenharmony_ci0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 226570af302Sopenharmony_ci0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC, 227570af302Sopenharmony_ci0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, 228570af302Sopenharmony_ci0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893, 229570af302Sopenharmony_ci0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7, 230570af302Sopenharmony_ci0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5, 231570af302Sopenharmony_ci0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F, 232570af302Sopenharmony_ci0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4, 233570af302Sopenharmony_ci0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, 234570af302Sopenharmony_ci0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 235570af302Sopenharmony_ci0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2, 236570af302Sopenharmony_ci0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138, 237570af302Sopenharmony_ci0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E, 238570af302Sopenharmony_ci0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569, 239570af302Sopenharmony_ci0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, 240570af302Sopenharmony_ci0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 241570af302Sopenharmony_ci0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D, 242570af302Sopenharmony_ci0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F, 243570af302Sopenharmony_ci0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855, 244570af302Sopenharmony_ci0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569, 245570af302Sopenharmony_ci0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B, 246570af302Sopenharmony_ci0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 247570af302Sopenharmony_ci0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41, 248570af302Sopenharmony_ci0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, 249570af302Sopenharmony_ci0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F, 250570af302Sopenharmony_ci0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110, 251570af302Sopenharmony_ci0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8, 252570af302Sopenharmony_ci0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365, 253570af302Sopenharmony_ci0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A, 254570af302Sopenharmony_ci0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, 255570af302Sopenharmony_ci0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 256570af302Sopenharmony_ci0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616, 257570af302Sopenharmony_ci0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B, 258570af302Sopenharmony_ci0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0, 259570af302Sopenharmony_ci#endif 260570af302Sopenharmony_ci}; 261570af302Sopenharmony_ci 262570af302Sopenharmony_cistatic const double PIo2[] = { 263570af302Sopenharmony_ci 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 264570af302Sopenharmony_ci 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 265570af302Sopenharmony_ci 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 266570af302Sopenharmony_ci 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 267570af302Sopenharmony_ci 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 268570af302Sopenharmony_ci 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 269570af302Sopenharmony_ci 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 270570af302Sopenharmony_ci 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 271570af302Sopenharmony_ci}; 272570af302Sopenharmony_ci 273570af302Sopenharmony_ciint __rem_pio2_large(double *x, double *y, int e0, int nx, int prec) 274570af302Sopenharmony_ci{ 275570af302Sopenharmony_ci int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 276570af302Sopenharmony_ci double z,fw,f[20],fq[20],q[20]; 277570af302Sopenharmony_ci 278570af302Sopenharmony_ci /* initialize jk*/ 279570af302Sopenharmony_ci jk = init_jk[prec]; 280570af302Sopenharmony_ci jp = jk; 281570af302Sopenharmony_ci 282570af302Sopenharmony_ci /* determine jx,jv,q0, note that 3>q0 */ 283570af302Sopenharmony_ci jx = nx-1; 284570af302Sopenharmony_ci jv = (e0-3)/24; if(jv<0) jv=0; 285570af302Sopenharmony_ci q0 = e0-24*(jv+1); 286570af302Sopenharmony_ci 287570af302Sopenharmony_ci /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 288570af302Sopenharmony_ci j = jv-jx; m = jx+jk; 289570af302Sopenharmony_ci for (i=0; i<=m; i++,j++) 290570af302Sopenharmony_ci f[i] = j<0 ? 0.0 : (double)ipio2[j]; 291570af302Sopenharmony_ci 292570af302Sopenharmony_ci /* compute q[0],q[1],...q[jk] */ 293570af302Sopenharmony_ci for (i=0; i<=jk; i++) { 294570af302Sopenharmony_ci for (j=0,fw=0.0; j<=jx; j++) 295570af302Sopenharmony_ci fw += x[j]*f[jx+i-j]; 296570af302Sopenharmony_ci q[i] = fw; 297570af302Sopenharmony_ci } 298570af302Sopenharmony_ci 299570af302Sopenharmony_ci jz = jk; 300570af302Sopenharmony_cirecompute: 301570af302Sopenharmony_ci /* distill q[] into iq[] reversingly */ 302570af302Sopenharmony_ci for (i=0,j=jz,z=q[jz]; j>0; i++,j--) { 303570af302Sopenharmony_ci fw = (double)(int32_t)(0x1p-24*z); 304570af302Sopenharmony_ci iq[i] = (int32_t)(z - 0x1p24*fw); 305570af302Sopenharmony_ci z = q[j-1]+fw; 306570af302Sopenharmony_ci } 307570af302Sopenharmony_ci 308570af302Sopenharmony_ci /* compute n */ 309570af302Sopenharmony_ci z = scalbn(z,q0); /* actual value of z */ 310570af302Sopenharmony_ci z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 311570af302Sopenharmony_ci n = (int32_t)z; 312570af302Sopenharmony_ci z -= (double)n; 313570af302Sopenharmony_ci ih = 0; 314570af302Sopenharmony_ci if (q0 > 0) { /* need iq[jz-1] to determine n */ 315570af302Sopenharmony_ci i = iq[jz-1]>>(24-q0); n += i; 316570af302Sopenharmony_ci iq[jz-1] -= i<<(24-q0); 317570af302Sopenharmony_ci ih = iq[jz-1]>>(23-q0); 318570af302Sopenharmony_ci } 319570af302Sopenharmony_ci else if (q0 == 0) ih = iq[jz-1]>>23; 320570af302Sopenharmony_ci else if (z >= 0.5) ih = 2; 321570af302Sopenharmony_ci 322570af302Sopenharmony_ci if (ih > 0) { /* q > 0.5 */ 323570af302Sopenharmony_ci n += 1; carry = 0; 324570af302Sopenharmony_ci for (i=0; i<jz; i++) { /* compute 1-q */ 325570af302Sopenharmony_ci j = iq[i]; 326570af302Sopenharmony_ci if (carry == 0) { 327570af302Sopenharmony_ci if (j != 0) { 328570af302Sopenharmony_ci carry = 1; 329570af302Sopenharmony_ci iq[i] = 0x1000000 - j; 330570af302Sopenharmony_ci } 331570af302Sopenharmony_ci } else 332570af302Sopenharmony_ci iq[i] = 0xffffff - j; 333570af302Sopenharmony_ci } 334570af302Sopenharmony_ci if (q0 > 0) { /* rare case: chance is 1 in 12 */ 335570af302Sopenharmony_ci switch(q0) { 336570af302Sopenharmony_ci case 1: 337570af302Sopenharmony_ci iq[jz-1] &= 0x7fffff; break; 338570af302Sopenharmony_ci case 2: 339570af302Sopenharmony_ci iq[jz-1] &= 0x3fffff; break; 340570af302Sopenharmony_ci } 341570af302Sopenharmony_ci } 342570af302Sopenharmony_ci if (ih == 2) { 343570af302Sopenharmony_ci z = 1.0 - z; 344570af302Sopenharmony_ci if (carry != 0) 345570af302Sopenharmony_ci z -= scalbn(1.0,q0); 346570af302Sopenharmony_ci } 347570af302Sopenharmony_ci } 348570af302Sopenharmony_ci 349570af302Sopenharmony_ci /* check if recomputation is needed */ 350570af302Sopenharmony_ci if (z == 0.0) { 351570af302Sopenharmony_ci j = 0; 352570af302Sopenharmony_ci for (i=jz-1; i>=jk; i--) j |= iq[i]; 353570af302Sopenharmony_ci if (j == 0) { /* need recomputation */ 354570af302Sopenharmony_ci for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */ 355570af302Sopenharmony_ci 356570af302Sopenharmony_ci for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */ 357570af302Sopenharmony_ci f[jx+i] = (double)ipio2[jv+i]; 358570af302Sopenharmony_ci for (j=0,fw=0.0; j<=jx; j++) 359570af302Sopenharmony_ci fw += x[j]*f[jx+i-j]; 360570af302Sopenharmony_ci q[i] = fw; 361570af302Sopenharmony_ci } 362570af302Sopenharmony_ci jz += k; 363570af302Sopenharmony_ci goto recompute; 364570af302Sopenharmony_ci } 365570af302Sopenharmony_ci } 366570af302Sopenharmony_ci 367570af302Sopenharmony_ci /* chop off zero terms */ 368570af302Sopenharmony_ci if (z == 0.0) { 369570af302Sopenharmony_ci jz -= 1; 370570af302Sopenharmony_ci q0 -= 24; 371570af302Sopenharmony_ci while (iq[jz] == 0) { 372570af302Sopenharmony_ci jz--; 373570af302Sopenharmony_ci q0 -= 24; 374570af302Sopenharmony_ci } 375570af302Sopenharmony_ci } else { /* break z into 24-bit if necessary */ 376570af302Sopenharmony_ci z = scalbn(z,-q0); 377570af302Sopenharmony_ci if (z >= 0x1p24) { 378570af302Sopenharmony_ci fw = (double)(int32_t)(0x1p-24*z); 379570af302Sopenharmony_ci iq[jz] = (int32_t)(z - 0x1p24*fw); 380570af302Sopenharmony_ci jz += 1; 381570af302Sopenharmony_ci q0 += 24; 382570af302Sopenharmony_ci iq[jz] = (int32_t)fw; 383570af302Sopenharmony_ci } else 384570af302Sopenharmony_ci iq[jz] = (int32_t)z; 385570af302Sopenharmony_ci } 386570af302Sopenharmony_ci 387570af302Sopenharmony_ci /* convert integer "bit" chunk to floating-point value */ 388570af302Sopenharmony_ci fw = scalbn(1.0,q0); 389570af302Sopenharmony_ci for (i=jz; i>=0; i--) { 390570af302Sopenharmony_ci q[i] = fw*(double)iq[i]; 391570af302Sopenharmony_ci fw *= 0x1p-24; 392570af302Sopenharmony_ci } 393570af302Sopenharmony_ci 394570af302Sopenharmony_ci /* compute PIo2[0,...,jp]*q[jz,...,0] */ 395570af302Sopenharmony_ci for(i=jz; i>=0; i--) { 396570af302Sopenharmony_ci for (fw=0.0,k=0; k<=jp && k<=jz-i; k++) 397570af302Sopenharmony_ci fw += PIo2[k]*q[i+k]; 398570af302Sopenharmony_ci fq[jz-i] = fw; 399570af302Sopenharmony_ci } 400570af302Sopenharmony_ci 401570af302Sopenharmony_ci /* compress fq[] into y[] */ 402570af302Sopenharmony_ci switch(prec) { 403570af302Sopenharmony_ci case 0: 404570af302Sopenharmony_ci fw = 0.0; 405570af302Sopenharmony_ci for (i=jz; i>=0; i--) 406570af302Sopenharmony_ci fw += fq[i]; 407570af302Sopenharmony_ci y[0] = ih==0 ? fw : -fw; 408570af302Sopenharmony_ci break; 409570af302Sopenharmony_ci case 1: 410570af302Sopenharmony_ci case 2: 411570af302Sopenharmony_ci fw = 0.0; 412570af302Sopenharmony_ci for (i=jz; i>=0; i--) 413570af302Sopenharmony_ci fw += fq[i]; 414570af302Sopenharmony_ci // TODO: drop excess precision here once double_t is used 415570af302Sopenharmony_ci fw = (double)fw; 416570af302Sopenharmony_ci y[0] = ih==0 ? fw : -fw; 417570af302Sopenharmony_ci fw = fq[0]-fw; 418570af302Sopenharmony_ci for (i=1; i<=jz; i++) 419570af302Sopenharmony_ci fw += fq[i]; 420570af302Sopenharmony_ci y[1] = ih==0 ? fw : -fw; 421570af302Sopenharmony_ci break; 422570af302Sopenharmony_ci case 3: /* painful */ 423570af302Sopenharmony_ci for (i=jz; i>0; i--) { 424570af302Sopenharmony_ci fw = fq[i-1]+fq[i]; 425570af302Sopenharmony_ci fq[i] += fq[i-1]-fw; 426570af302Sopenharmony_ci fq[i-1] = fw; 427570af302Sopenharmony_ci } 428570af302Sopenharmony_ci for (i=jz; i>1; i--) { 429570af302Sopenharmony_ci fw = fq[i-1]+fq[i]; 430570af302Sopenharmony_ci fq[i] += fq[i-1]-fw; 431570af302Sopenharmony_ci fq[i-1] = fw; 432570af302Sopenharmony_ci } 433570af302Sopenharmony_ci for (fw=0.0,i=jz; i>=2; i--) 434570af302Sopenharmony_ci fw += fq[i]; 435570af302Sopenharmony_ci if (ih==0) { 436570af302Sopenharmony_ci y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 437570af302Sopenharmony_ci } else { 438570af302Sopenharmony_ci y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 439570af302Sopenharmony_ci } 440570af302Sopenharmony_ci } 441570af302Sopenharmony_ci return n&7; 442570af302Sopenharmony_ci} 443