1/* 2 * Copyright © 2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23#ifndef VK_UTIL_H 24#define VK_UTIL_H 25 26#include "util/bitscan.h" 27#include "util/macros.h" 28#include "compiler/shader_enums.h" 29#include <stdlib.h> 30#include <string.h> 31 32#ifdef __cplusplus 33extern "C" { 34#endif 35 36/* common inlines and macros for vulkan drivers */ 37 38#include <vulkan/vulkan.h> 39 40struct vk_pnext_iterator { 41 VkBaseOutStructure *pos; 42#ifndef NDEBUG 43 VkBaseOutStructure *half_pos; 44 unsigned idx; 45#endif 46 bool done; 47}; 48 49static inline struct vk_pnext_iterator 50vk_pnext_iterator_init(void *start) 51{ 52 struct vk_pnext_iterator iter; 53 54 iter.pos = (VkBaseOutStructure *)start; 55#ifndef NDEBUG 56 iter.half_pos = (VkBaseOutStructure *)start; 57 iter.idx = 0; 58#endif 59 iter.done = false; 60 61 return iter; 62} 63 64static inline struct vk_pnext_iterator 65vk_pnext_iterator_init_const(const void *start) 66{ 67 return vk_pnext_iterator_init((void *)start); 68} 69 70static inline VkBaseOutStructure * 71vk_pnext_iterator_next(struct vk_pnext_iterator *iter) 72{ 73 iter->pos = iter->pos->pNext; 74 75#ifndef NDEBUG 76 if (iter->idx++ & 1) { 77 /** This the "tortoise and the hare" algorithm. We increment 78 * chaser->pNext every other time *iter gets incremented. Because *iter 79 * is incrementing twice as fast as chaser->pNext, the distance between 80 * them in the list increases by one for each time we get here. If we 81 * have a loop, eventually, both iterators will be inside the loop and 82 * this distance will be an integer multiple of the loop length, at 83 * which point the two pointers will be equal. 84 */ 85 iter->half_pos = iter->half_pos->pNext; 86 if (iter->half_pos == iter->pos) 87 assert(!"Vulkan input pNext chain has a loop!"); 88 } 89#endif 90 91 return iter->pos; 92} 93 94/* Because the outer loop only executes once, independently of what happens in 95 * the inner loop, breaks and continues should work exactly the same as if 96 * there were only one for loop. 97 */ 98#define vk_foreach_struct(__e, __start) \ 99 for (struct vk_pnext_iterator __iter = vk_pnext_iterator_init(__start); \ 100 !__iter.done; __iter.done = true) \ 101 for (VkBaseOutStructure *__e = __iter.pos; \ 102 __e; __e = vk_pnext_iterator_next(&__iter)) 103 104#define vk_foreach_struct_const(__e, __start) \ 105 for (struct vk_pnext_iterator __iter = \ 106 vk_pnext_iterator_init_const(__start); \ 107 !__iter.done; __iter.done = true) \ 108 for (const VkBaseInStructure *__e = (VkBaseInStructure *)__iter.pos; \ 109 __e; __e = (VkBaseInStructure *)vk_pnext_iterator_next(&__iter)) 110 111 112/** 113 * A wrapper for a Vulkan output array. A Vulkan output array is one that 114 * follows the convention of the parameters to 115 * vkGetPhysicalDeviceQueueFamilyProperties(). 116 * 117 * Example Usage: 118 * 119 * VkResult 120 * vkGetPhysicalDeviceQueueFamilyProperties( 121 * VkPhysicalDevice physicalDevice, 122 * uint32_t* pQueueFamilyPropertyCount, 123 * VkQueueFamilyProperties* pQueueFamilyProperties) 124 * { 125 * VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties, props, 126 * pQueueFamilyProperties, 127 * pQueueFamilyPropertyCount); 128 * 129 * vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) { 130 * p->queueFlags = ...; 131 * p->queueCount = ...; 132 * } 133 * 134 * vk_outarray_append_typed(VkQueueFamilyProperties, &props, p) { 135 * p->queueFlags = ...; 136 * p->queueCount = ...; 137 * } 138 * 139 * return vk_outarray_status(&props); 140 * } 141 */ 142struct __vk_outarray { 143 /** May be null. */ 144 void *data; 145 146 /** 147 * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if 148 * data is null. 149 */ 150 uint32_t cap; 151 152 /** 153 * Count of elements successfully written to the array. Every write is 154 * considered successful if data is null. 155 */ 156 uint32_t *filled_len; 157 158 /** 159 * Count of elements that would have been written to the array if its 160 * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE 161 * when `*filled_len < wanted_len`. 162 */ 163 uint32_t wanted_len; 164}; 165 166static inline void 167__vk_outarray_init(struct __vk_outarray *a, 168 void *data, uint32_t *restrict len) 169{ 170 a->data = data; 171 a->cap = *len; 172 a->filled_len = len; 173 *a->filled_len = 0; 174 a->wanted_len = 0; 175 176 if (a->data == NULL) 177 a->cap = UINT32_MAX; 178} 179 180static inline VkResult 181__vk_outarray_status(const struct __vk_outarray *a) 182{ 183 if (*a->filled_len < a->wanted_len) 184 return VK_INCOMPLETE; 185 else 186 return VK_SUCCESS; 187} 188 189static inline void * 190__vk_outarray_next(struct __vk_outarray *a, size_t elem_size) 191{ 192 void *p = NULL; 193 194 a->wanted_len += 1; 195 196 if (*a->filled_len >= a->cap) 197 return NULL; 198 199 if (a->data != NULL) 200 p = (uint8_t *)a->data + (*a->filled_len) * elem_size; 201 202 *a->filled_len += 1; 203 204 return p; 205} 206 207#define vk_outarray(elem_t) \ 208 struct { \ 209 struct __vk_outarray base; \ 210 elem_t meta[]; \ 211 } 212 213#define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0]) 214#define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0]) 215 216#define vk_outarray_init(a, data, len) \ 217 __vk_outarray_init(&(a)->base, (data), (len)) 218 219#define VK_OUTARRAY_MAKE_TYPED(type, name, data, len) \ 220 vk_outarray(type) name; \ 221 vk_outarray_init(&name, (data), (len)) 222 223#define vk_outarray_status(a) \ 224 __vk_outarray_status(&(a)->base) 225 226#define vk_outarray_next(a) \ 227 vk_outarray_next_typed(vk_outarray_typeof_elem(a), a) 228#define vk_outarray_next_typed(type, a) \ 229 ((type *) \ 230 __vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a))) 231 232/** 233 * Append to a Vulkan output array. 234 * 235 * This is a block-based macro. For example: 236 * 237 * vk_outarray_append_typed(T, &a, elem) { 238 * elem->foo = ...; 239 * elem->bar = ...; 240 * } 241 * 242 * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with 243 * VK_OUTARRAY_MAKE_TYPED(). The variable `elem` is block-scoped and has type 244 * `elem_t *`. 245 * 246 * The macro unconditionally increments the array's `wanted_len`. If the array 247 * is not full, then the macro also increment its `filled_len` and then 248 * executes the block. When the block is executed, `elem` is non-null and 249 * points to the newly appended element. 250 */ 251#define vk_outarray_append_typed(type, a, elem) \ 252 for (type *elem = vk_outarray_next_typed(type, a); \ 253 elem != NULL; elem = NULL) 254 255static inline void * 256__vk_find_struct(void *start, VkStructureType sType) 257{ 258 vk_foreach_struct(s, start) { 259 if (s->sType == sType) 260 return s; 261 } 262 263 return NULL; 264} 265 266#define vk_find_struct(__start, __sType) \ 267 __vk_find_struct((__start), VK_STRUCTURE_TYPE_##__sType) 268 269#define vk_find_struct_const(__start, __sType) \ 270 (const void *)__vk_find_struct((void *)(__start), VK_STRUCTURE_TYPE_##__sType) 271 272static inline void 273__vk_append_struct(void *start, void *element) 274{ 275 vk_foreach_struct(s, start) { 276 if (s->pNext) 277 continue; 278 279 s->pNext = (struct VkBaseOutStructure *) element; 280 break; 281 } 282} 283 284uint32_t vk_get_driver_version(void); 285 286uint32_t vk_get_version_override(void); 287 288void vk_warn_non_conformant_implementation(const char *driver_name); 289 290struct vk_pipeline_cache_header { 291 uint32_t header_size; 292 uint32_t header_version; 293 uint32_t vendor_id; 294 uint32_t device_id; 295 uint8_t uuid[VK_UUID_SIZE]; 296}; 297 298#define VK_EXT_OFFSET (1000000000UL) 299#define VK_ENUM_EXTENSION(__enum) \ 300 ((__enum) >= VK_EXT_OFFSET ? ((((__enum) - VK_EXT_OFFSET) / 1000UL) + 1) : 0) 301#define VK_ENUM_OFFSET(__enum) \ 302 ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum)) 303 304#define typed_memcpy(dest, src, count) do { \ 305 STATIC_ASSERT(sizeof(*(src)) == sizeof(*(dest))); \ 306 memcpy((dest), (src), (count) * sizeof(*(src))); \ 307} while (0) 308 309static inline gl_shader_stage 310vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage) 311{ 312 assert(util_bitcount((uint32_t) vk_stage) == 1); 313 return (gl_shader_stage) (ffs((uint32_t) vk_stage) - 1); 314} 315 316static inline VkShaderStageFlagBits 317mesa_to_vk_shader_stage(gl_shader_stage mesa_stage) 318{ 319 return (VkShaderStageFlagBits) (1 << ((uint32_t) mesa_stage)); 320} 321 322/* iterate over a sequence of indexed multidraws for VK_EXT_multi_draw extension */ 323/* 'i' must be explicitly declared */ 324#define vk_foreach_multi_draw_indexed(_draw, _i, _pDrawInfo, _num_draws, _stride) \ 325 for (const VkMultiDrawIndexedInfoEXT *_draw = (const void*)(_pDrawInfo); \ 326 (_i) < (_num_draws); \ 327 (_i)++, (_draw) = (const VkMultiDrawIndexedInfoEXT*)((const uint8_t*)(_draw) + (_stride))) 328 329/* iterate over a sequence of multidraws for VK_EXT_multi_draw extension */ 330/* 'i' must be explicitly declared */ 331#define vk_foreach_multi_draw(_draw, _i, _pDrawInfo, _num_draws, _stride) \ 332 for (const VkMultiDrawInfoEXT *_draw = (const void*)(_pDrawInfo); \ 333 (_i) < (_num_draws); \ 334 (_i)++, (_draw) = (const VkMultiDrawInfoEXT*)((const uint8_t*)(_draw) + (_stride))) 335 336 337struct nir_spirv_specialization; 338 339struct nir_spirv_specialization* 340vk_spec_info_to_nir_spirv(const VkSpecializationInfo *spec_info, 341 uint32_t *out_num_spec_entries); 342 343#define STACK_ARRAY_SIZE 8 344 345#ifdef __cplusplus 346#define STACK_ARRAY_ZERO_INIT {} 347#else 348#define STACK_ARRAY_ZERO_INIT {0} 349#endif 350 351#define STACK_ARRAY(type, name, size) \ 352 type _stack_##name[STACK_ARRAY_SIZE] = STACK_ARRAY_ZERO_INIT; \ 353 type *const name = \ 354 ((size) <= STACK_ARRAY_SIZE ? _stack_##name : (type *)malloc((size) * sizeof(type))) 355 356#define STACK_ARRAY_FINISH(name) \ 357 if (name != _stack_##name) free(name) 358 359#ifdef __cplusplus 360} 361#endif 362 363#endif /* VK_UTIL_H */ 364