1/************************************************************************** 2 * 3 * Copyright 2008 VMware, Inc. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 29/** 30 * Math utilities and approximations for common math functions. 31 * Reduced precision is usually acceptable in shaders... 32 * 33 * "fast" is used in the names of functions which are low-precision, 34 * or at least lower-precision than the normal C lib functions. 35 */ 36 37 38#ifndef U_MATH_H 39#define U_MATH_H 40 41 42#include "c99_compat.h" 43#include <assert.h> 44#include <float.h> 45#include <stdarg.h> 46#include <math.h> 47 48#include "bitscan.h" 49#include "u_endian.h" /* for UTIL_ARCH_BIG_ENDIAN */ 50 51#ifdef __cplusplus 52extern "C" { 53#endif 54 55 56#ifndef M_SQRT2 57#define M_SQRT2 1.41421356237309504880 58#endif 59 60 61/** 62 * Initialize math module. This should be called before using any 63 * other functions in this module. 64 */ 65extern void 66util_init_math(void); 67 68 69union fi { 70 float f; 71 int32_t i; 72 uint32_t ui; 73}; 74 75 76union di { 77 double d; 78 int64_t i; 79 uint64_t ui; 80}; 81 82 83/** 84 * Extract the IEEE float32 exponent. 85 */ 86static inline signed 87util_get_float32_exponent(float x) 88{ 89 union fi f; 90 91 f.f = x; 92 93 return ((f.ui >> 23) & 0xff) - 127; 94} 95 96 97#define LOG2_TABLE_SIZE_LOG2 8 98#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2) 99#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1) 100extern float log2_table[LOG2_TABLE_SIZE]; 101 102 103/** 104 * Fast approximation to log2(x). 105 */ 106static inline float 107util_fast_log2(float x) 108{ 109 union fi num; 110 float epart, mpart; 111 num.f = x; 112 epart = (float)(((num.i & 0x7f800000) >> 23) - 127); 113 /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */ 114 mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)]; 115 return epart + mpart; 116} 117 118 119/** 120 * Floor(x), returned as int. 121 */ 122static inline int 123util_ifloor(float f) 124{ 125#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) 126 /* 127 * IEEE floor for computers that round to nearest or even. 128 * 'f' must be between -4194304 and 4194303. 129 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", 130 * but uses some IEEE specific tricks for better speed. 131 * Contributed by Josh Vanderhoof 132 */ 133 int ai, bi; 134 double af, bf; 135 af = (3 << 22) + 0.5 + (double)f; 136 bf = (3 << 22) + 0.5 - (double)f; 137 /* GCC generates an extra fstp/fld without this. */ 138 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); 139 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); 140 return (ai - bi) >> 1; 141#else 142 int ai, bi; 143 double af, bf; 144 union fi u; 145 af = (3 << 22) + 0.5 + (double) f; 146 bf = (3 << 22) + 0.5 - (double) f; 147 u.f = (float) af; ai = u.i; 148 u.f = (float) bf; bi = u.i; 149 return (ai - bi) >> 1; 150#endif 151} 152 153 154/** 155 * Round float to nearest int. 156 */ 157static inline int 158util_iround(float f) 159{ 160#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86) 161 int r; 162 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); 163 return r; 164#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86) 165 int r; 166 _asm { 167 fld f 168 fistp r 169 } 170 return r; 171#else 172 if (f >= 0.0f) 173 return (int) (f + 0.5f); 174 else 175 return (int) (f - 0.5f); 176#endif 177} 178 179 180/** 181 * Approximate floating point comparison 182 */ 183static inline bool 184util_is_approx(float a, float b, float tol) 185{ 186 return fabsf(b - a) <= tol; 187} 188 189 190/** 191 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf 192 * util_is_X_nan = test if x is NaN 193 * util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf 194 * 195 * NaN can be checked with x != x, however this fails with the fast math flag 196 **/ 197 198 199/** 200 * Single-float 201 */ 202static inline bool 203util_is_inf_or_nan(float x) 204{ 205 union fi tmp; 206 tmp.f = x; 207 return (tmp.ui & 0x7f800000) == 0x7f800000; 208} 209 210 211static inline bool 212util_is_nan(float x) 213{ 214 union fi tmp; 215 tmp.f = x; 216 return (tmp.ui & 0x7fffffff) > 0x7f800000; 217} 218 219 220static inline int 221util_inf_sign(float x) 222{ 223 union fi tmp; 224 tmp.f = x; 225 if ((tmp.ui & 0x7fffffff) != 0x7f800000) { 226 return 0; 227 } 228 229 return (x < 0) ? -1 : 1; 230} 231 232 233/** 234 * Double-float 235 */ 236static inline bool 237util_is_double_inf_or_nan(double x) 238{ 239 union di tmp; 240 tmp.d = x; 241 return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL; 242} 243 244 245static inline bool 246util_is_double_nan(double x) 247{ 248 union di tmp; 249 tmp.d = x; 250 return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL; 251} 252 253 254static inline int 255util_double_inf_sign(double x) 256{ 257 union di tmp; 258 tmp.d = x; 259 if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) { 260 return 0; 261 } 262 263 return (x < 0) ? -1 : 1; 264} 265 266 267/** 268 * Half-float 269 */ 270static inline bool 271util_is_half_inf_or_nan(int16_t x) 272{ 273 return (x & 0x7c00) == 0x7c00; 274} 275 276 277static inline bool 278util_is_half_nan(int16_t x) 279{ 280 return (x & 0x7fff) > 0x7c00; 281} 282 283 284static inline int 285util_half_inf_sign(int16_t x) 286{ 287 if ((x & 0x7fff) != 0x7c00) { 288 return 0; 289 } 290 291 return (x < 0) ? -1 : 1; 292} 293 294 295/** 296 * Return float bits. 297 */ 298static inline unsigned 299fui( float f ) 300{ 301 union fi fi; 302 fi.f = f; 303 return fi.ui; 304} 305 306static inline float 307uif(uint32_t ui) 308{ 309 union fi fi; 310 fi.ui = ui; 311 return fi.f; 312} 313 314 315/** 316 * Convert uint8_t to float in [0, 1]. 317 */ 318static inline float 319ubyte_to_float(uint8_t ub) 320{ 321 return (float) ub * (1.0f / 255.0f); 322} 323 324 325/** 326 * Convert float in [0,1] to uint8_t in [0,255] with clamping. 327 */ 328static inline uint8_t 329float_to_ubyte(float f) 330{ 331 /* return 0 for NaN too */ 332 if (!(f > 0.0f)) { 333 return (uint8_t) 0; 334 } 335 else if (f >= 1.0f) { 336 return (uint8_t) 255; 337 } 338 else { 339 union fi tmp; 340 tmp.f = f; 341 tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f; 342 return (uint8_t) tmp.i; 343 } 344} 345 346/** 347 * Convert uint16_t to float in [0, 1]. 348 */ 349static inline float 350ushort_to_float(uint16_t us) 351{ 352 return (float) us * (1.0f / 65535.0f); 353} 354 355 356/** 357 * Convert float in [0,1] to uint16_t in [0,65535] with clamping. 358 */ 359static inline uint16_t 360float_to_ushort(float f) 361{ 362 /* return 0 for NaN too */ 363 if (!(f > 0.0f)) { 364 return (uint16_t) 0; 365 } 366 else if (f >= 1.0f) { 367 return (uint16_t) 65535; 368 } 369 else { 370 union fi tmp; 371 tmp.f = f; 372 tmp.f = tmp.f * (65535.0f/65536.0f) + 128.0f; 373 return (uint16_t) tmp.i; 374 } 375} 376 377static inline float 378byte_to_float_tex(int8_t b) 379{ 380 return (b == -128) ? -1.0F : b * 1.0F / 127.0F; 381} 382 383static inline int8_t 384float_to_byte_tex(float f) 385{ 386 return (int8_t) (127.0F * f); 387} 388 389/** 390 * Calc log base 2 391 */ 392static inline unsigned 393util_logbase2(unsigned n) 394{ 395#if defined(HAVE___BUILTIN_CLZ) 396 return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1)); 397#else 398 unsigned pos = 0; 399 if (n >= 1<<16) { n >>= 16; pos += 16; } 400 if (n >= 1<< 8) { n >>= 8; pos += 8; } 401 if (n >= 1<< 4) { n >>= 4; pos += 4; } 402 if (n >= 1<< 2) { n >>= 2; pos += 2; } 403 if (n >= 1<< 1) { pos += 1; } 404 return pos; 405#endif 406} 407 408static inline uint64_t 409util_logbase2_64(uint64_t n) 410{ 411#if defined(HAVE___BUILTIN_CLZLL) 412 return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1)); 413#else 414 uint64_t pos = 0ull; 415 if (n >= 1ull<<32) { n >>= 32; pos += 32; } 416 if (n >= 1ull<<16) { n >>= 16; pos += 16; } 417 if (n >= 1ull<< 8) { n >>= 8; pos += 8; } 418 if (n >= 1ull<< 4) { n >>= 4; pos += 4; } 419 if (n >= 1ull<< 2) { n >>= 2; pos += 2; } 420 if (n >= 1ull<< 1) { pos += 1; } 421 return pos; 422#endif 423} 424 425/** 426 * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently, 427 * returns the smallest x such that n <= 2**x. 428 */ 429static inline unsigned 430util_logbase2_ceil(unsigned n) 431{ 432 if (n <= 1) 433 return 0; 434 435 return 1 + util_logbase2(n - 1); 436} 437 438static inline uint64_t 439util_logbase2_ceil64(uint64_t n) 440{ 441 if (n <= 1) 442 return 0; 443 444 return 1ull + util_logbase2_64(n - 1); 445} 446 447/** 448 * Returns the smallest power of two >= x 449 */ 450static inline unsigned 451util_next_power_of_two(unsigned x) 452{ 453#if defined(HAVE___BUILTIN_CLZ) 454 if (x <= 1) 455 return 1; 456 457 return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1))); 458#else 459 unsigned val = x; 460 461 if (x <= 1) 462 return 1; 463 464 if (util_is_power_of_two_or_zero(x)) 465 return x; 466 467 val--; 468 val = (val >> 1) | val; 469 val = (val >> 2) | val; 470 val = (val >> 4) | val; 471 val = (val >> 8) | val; 472 val = (val >> 16) | val; 473 val++; 474 return val; 475#endif 476} 477 478static inline uint64_t 479util_next_power_of_two64(uint64_t x) 480{ 481#if defined(HAVE___BUILTIN_CLZLL) 482 if (x <= 1) 483 return 1; 484 485 return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1))); 486#else 487 uint64_t val = x; 488 489 if (x <= 1) 490 return 1; 491 492 if (util_is_power_of_two_or_zero64(x)) 493 return x; 494 495 val--; 496 val = (val >> 1) | val; 497 val = (val >> 2) | val; 498 val = (val >> 4) | val; 499 val = (val >> 8) | val; 500 val = (val >> 16) | val; 501 val = (val >> 32) | val; 502 val++; 503 return val; 504#endif 505} 506 507/** 508 * Reverse bits in n 509 * Algorithm taken from: 510 * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer 511 */ 512static inline unsigned 513util_bitreverse(unsigned n) 514{ 515 n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1); 516 n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2); 517 n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4); 518 n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8); 519 n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16); 520 return n; 521} 522 523/** 524 * Convert from little endian to CPU byte order. 525 */ 526 527#if UTIL_ARCH_BIG_ENDIAN 528#define util_le64_to_cpu(x) util_bswap64(x) 529#define util_le32_to_cpu(x) util_bswap32(x) 530#define util_le16_to_cpu(x) util_bswap16(x) 531#else 532#define util_le64_to_cpu(x) (x) 533#define util_le32_to_cpu(x) (x) 534#define util_le16_to_cpu(x) (x) 535#endif 536 537#define util_cpu_to_le64(x) util_le64_to_cpu(x) 538#define util_cpu_to_le32(x) util_le32_to_cpu(x) 539#define util_cpu_to_le16(x) util_le16_to_cpu(x) 540 541/** 542 * Reverse byte order of a 32 bit word. 543 */ 544static inline uint32_t 545util_bswap32(uint32_t n) 546{ 547#if defined(HAVE___BUILTIN_BSWAP32) 548 return __builtin_bswap32(n); 549#else 550 return (n >> 24) | 551 ((n >> 8) & 0x0000ff00) | 552 ((n << 8) & 0x00ff0000) | 553 (n << 24); 554#endif 555} 556 557/** 558 * Reverse byte order of a 64bit word. 559 */ 560static inline uint64_t 561util_bswap64(uint64_t n) 562{ 563#if defined(HAVE___BUILTIN_BSWAP64) 564 return __builtin_bswap64(n); 565#else 566 return ((uint64_t)util_bswap32((uint32_t)n) << 32) | 567 util_bswap32((n >> 32)); 568#endif 569} 570 571 572/** 573 * Reverse byte order of a 16 bit word. 574 */ 575static inline uint16_t 576util_bswap16(uint16_t n) 577{ 578 return (n >> 8) | 579 (n << 8); 580} 581 582/** 583 * Mask and sign-extend a number 584 * 585 * The bit at position `width - 1` is replicated to all the higher bits. 586 * This makes no assumptions about the high bits of the value and will 587 * overwrite them with the sign bit. 588 */ 589static inline int64_t 590util_mask_sign_extend(uint64_t val, unsigned width) 591{ 592 assert(width > 0 && width <= 64); 593 unsigned shift = 64 - width; 594 return (int64_t)(val << shift) >> shift; 595} 596 597/** 598 * Sign-extend a number 599 * 600 * The bit at position `width - 1` is replicated to all the higher bits. 601 * This assumes and asserts that the value fits into `width` bits. 602 */ 603static inline int64_t 604util_sign_extend(uint64_t val, unsigned width) 605{ 606 assert(width == 64 || val < (UINT64_C(1) << width)); 607 return util_mask_sign_extend(val, width); 608} 609 610static inline void* 611util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n) 612{ 613#if UTIL_ARCH_BIG_ENDIAN 614 size_t i, e; 615 assert(n % 4 == 0); 616 617 for (i = 0, e = n / 4; i < e; i++) { 618 uint32_t * restrict d = (uint32_t* restrict)dest; 619 const uint32_t * restrict s = (const uint32_t* restrict)src; 620 d[i] = util_bswap32(s[i]); 621 } 622 return dest; 623#else 624 return memcpy(dest, src, n); 625#endif 626} 627 628/** 629 * Clamp X to [MIN, MAX]. 630 * This is a macro to allow float, int, uint, etc. types. 631 * We arbitrarily turn NaN into MIN. 632 */ 633#define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) ) 634 635/* Syntax sugar occuring frequently in graphics code */ 636#define SATURATE( X ) CLAMP(X, 0.0f, 1.0f) 637 638#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) ) 639#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) ) 640 641#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C)) 642#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C)) 643 644#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D)) 645#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D)) 646 647 648/** 649 * Align a value up to an alignment value 650 * 651 * If \c value is not already aligned to the requested alignment value, it 652 * will be rounded up. 653 * 654 * \param value Value to be rounded 655 * \param alignment Alignment value to be used. This must be a power of two. 656 * 657 * \sa ROUND_DOWN_TO() 658 */ 659 660#if defined(ALIGN) 661#undef ALIGN 662#endif 663static inline uintptr_t 664ALIGN(uintptr_t value, int32_t alignment) 665{ 666 assert(util_is_power_of_two_nonzero(alignment)); 667 return (((value) + (alignment) - 1) & ~((alignment) - 1)); 668} 669 670/** 671 * Like ALIGN(), but works with a non-power-of-two alignment. 672 */ 673static inline uintptr_t 674ALIGN_NPOT(uintptr_t value, int32_t alignment) 675{ 676 assert(alignment > 0); 677 return (value + alignment - 1) / alignment * alignment; 678} 679 680/** 681 * Align a value down to an alignment value 682 * 683 * If \c value is not already aligned to the requested alignment value, it 684 * will be rounded down. 685 * 686 * \param value Value to be rounded 687 * \param alignment Alignment value to be used. This must be a power of two. 688 * 689 * \sa ALIGN() 690 */ 691static inline uint64_t 692ROUND_DOWN_TO(uint64_t value, int32_t alignment) 693{ 694 assert(util_is_power_of_two_nonzero(alignment)); 695 return ((value) & ~(alignment - 1)); 696} 697 698/** 699 * Align a value, only works pot alignemnts. 700 */ 701static inline int 702align(int value, int alignment) 703{ 704 return (value + alignment - 1) & ~(alignment - 1); 705} 706 707static inline uint64_t 708align64(uint64_t value, unsigned alignment) 709{ 710 return (value + alignment - 1) & ~((uint64_t)alignment - 1); 711} 712 713/** 714 * Works like align but on npot alignments. 715 */ 716static inline size_t 717util_align_npot(size_t value, size_t alignment) 718{ 719 if (value % alignment) 720 return value + (alignment - (value % alignment)); 721 return value; 722} 723 724static inline unsigned 725u_minify(unsigned value, unsigned levels) 726{ 727 return MAX2(1, value >> levels); 728} 729 730#ifndef COPY_4V 731#define COPY_4V( DST, SRC ) \ 732do { \ 733 (DST)[0] = (SRC)[0]; \ 734 (DST)[1] = (SRC)[1]; \ 735 (DST)[2] = (SRC)[2]; \ 736 (DST)[3] = (SRC)[3]; \ 737} while (0) 738#endif 739 740 741#ifndef COPY_4FV 742#define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC) 743#endif 744 745 746#ifndef ASSIGN_4V 747#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \ 748do { \ 749 (DST)[0] = (V0); \ 750 (DST)[1] = (V1); \ 751 (DST)[2] = (V2); \ 752 (DST)[3] = (V3); \ 753} while (0) 754#endif 755 756 757static inline uint32_t 758util_unsigned_fixed(float value, unsigned frac_bits) 759{ 760 return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits)); 761} 762 763static inline int32_t 764util_signed_fixed(float value, unsigned frac_bits) 765{ 766 return (int32_t)(value * (1<<frac_bits)); 767} 768 769unsigned 770util_fpstate_get(void); 771unsigned 772util_fpstate_set_denorms_to_zero(unsigned current_fpstate); 773void 774util_fpstate_set(unsigned fpstate); 775 776/** 777 * For indexed draw calls, return true if the vertex count to be drawn is 778 * much lower than the vertex count that has to be uploaded, meaning 779 * that the driver should flatten indices instead of trying to upload 780 * a too big range. 781 * 782 * This is used by vertex upload code in u_vbuf and glthread. 783 */ 784static inline bool 785util_is_vbo_upload_ratio_too_large(unsigned draw_vertex_count, 786 unsigned upload_vertex_count) 787{ 788 if (draw_vertex_count > 1024) 789 return upload_vertex_count > draw_vertex_count * 4; 790 else if (draw_vertex_count > 32) 791 return upload_vertex_count > draw_vertex_count * 8; 792 else 793 return upload_vertex_count > draw_vertex_count * 16; 794} 795 796bool util_invert_mat4x4(float *out, const float *m); 797 798/* Quantize the lod bias value to reduce the number of sampler state 799 * variants in gallium because apps use it for smooth mipmap transitions, 800 * thrashing cso_cache and degrading performance. 801 * 802 * This quantization matches the AMD hw specification, so having more 803 * precision would have no effect anyway. 804 */ 805static inline float 806util_quantize_lod_bias(float lod) 807{ 808 lod = CLAMP(lod, -16, 16); 809 return roundf(lod * 256) / 256; 810} 811 812#ifdef __cplusplus 813} 814#endif 815 816#endif /* U_MATH_H */ 817