xref: /third_party/mesa3d/src/util/half_float.c (revision bf215546)
1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5 * Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
6 * Copyright 2018 Advanced Micro Devices, Inc.
7 * Copyright (C) 2018-2019 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
23 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25 * OTHER DEALINGS IN THE SOFTWARE.
26 */
27
28#include <math.h>
29#include <assert.h>
30#include "half_float.h"
31#include "rounding.h"
32#include "softfloat.h"
33#include "macros.h"
34#include "u_math.h"
35
36typedef union { float f; int32_t i; uint32_t u; } fi_type;
37
38/**
39 * Convert a 4-byte float to a 2-byte half float.
40 *
41 * Not all float32 values can be represented exactly as a float16 value. We
42 * round such intermediate float32 values to the nearest float16. When the
43 * float32 lies exactly between to float16 values, we round to the one with
44 * an even mantissa.
45 *
46 * This rounding behavior has several benefits:
47 *   - It has no sign bias.
48 *
49 *   - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
50 *     GPU ISA.
51 *
52 *   - By reproducing the behavior of the GPU (at least on Intel hardware),
53 *     compile-time evaluation of constant packHalf2x16 GLSL expressions will
54 *     result in the same value as if the expression were executed on the GPU.
55 */
56uint16_t
57_mesa_float_to_half_slow(float val)
58{
59   const fi_type fi = {val};
60   const int flt_m = fi.i & 0x7fffff;
61   const int flt_e = (fi.i >> 23) & 0xff;
62   const int flt_s = (fi.i >> 31) & 0x1;
63   int s, e, m = 0;
64   uint16_t result;
65
66   /* sign bit */
67   s = flt_s;
68
69   /* handle special cases */
70   if ((flt_e == 0) && (flt_m == 0)) {
71      /* zero */
72      /* m = 0; - already set */
73      e = 0;
74   }
75   else if ((flt_e == 0) && (flt_m != 0)) {
76      /* denorm -- denorm float maps to 0 half */
77      /* m = 0; - already set */
78      e = 0;
79   }
80   else if ((flt_e == 0xff) && (flt_m == 0)) {
81      /* infinity */
82      /* m = 0; - already set */
83      e = 31;
84   }
85   else if ((flt_e == 0xff) && (flt_m != 0)) {
86      /* Retain the top bits of a NaN to make sure that the quiet/signaling
87       * status stays the same.
88       */
89      m = flt_m >> 13;
90      if (!m)
91         m = 1;
92      e = 31;
93   }
94   else {
95      /* regular number */
96      const int new_exp = flt_e - 127;
97      if (new_exp < -14) {
98         /* The float32 lies in the range (0.0, min_normal16) and is rounded
99          * to a nearby float16 value. The result will be either zero, subnormal,
100          * or normal.
101          */
102         e = 0;
103         m = _mesa_lroundevenf((1 << 24) * fabsf(fi.f));
104      }
105      else if (new_exp > 15) {
106         /* map this value to infinity */
107         /* m = 0; - already set */
108         e = 31;
109      }
110      else {
111         /* The float32 lies in the range
112          *   [min_normal16, max_normal16 + max_step16)
113          * and is rounded to a nearby float16 value. The result will be
114          * either normal or infinite.
115          */
116         e = new_exp + 15;
117         m = _mesa_lroundevenf(flt_m / (float) (1 << 13));
118      }
119   }
120
121   assert(0 <= m && m <= 1024);
122   if (m == 1024) {
123      /* The float32 was rounded upwards into the range of the next exponent,
124       * so bump the exponent. This correctly handles the case where f32
125       * should be rounded up to float16 infinity.
126       */
127      ++e;
128      m = 0;
129   }
130
131   result = (s << 15) | (e << 10) | m;
132   return result;
133}
134
135uint16_t
136_mesa_float_to_float16_rtz_slow(float val)
137{
138    return _mesa_float_to_half_rtz_slow(val);
139}
140
141/**
142 * Convert a 2-byte half float to a 4-byte float.
143 * Based on code from:
144 * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
145 */
146float
147_mesa_half_to_float_slow(uint16_t val)
148{
149   union fi infnan;
150   union fi magic;
151   union fi f32;
152
153   infnan.ui = 0x8f << 23;
154   infnan.f = 65536.0f;
155   magic.ui  = 0xef << 23;
156
157   /* Exponent / Mantissa */
158   f32.ui = (val & 0x7fff) << 13;
159
160   /* Adjust */
161   f32.f *= magic.f;
162   /* XXX: The magic mul relies on denorms being available */
163
164   /* Inf / NaN */
165   if (f32.f >= infnan.f)
166      f32.ui |= 0xff << 23;
167
168   /* Sign */
169   f32.ui |= (uint32_t)(val & 0x8000) << 16;
170
171   return f32.f;
172}
173
174/**
175  * Convert 0.0 to 0x00, 1.0 to 0xff.
176  * Values outside the range [0.0, 1.0] will give undefined results.
177  */
178uint8_t _mesa_half_to_unorm8(uint16_t val)
179{
180   const int m = val & 0x3ff;
181   const int e = (val >> 10) & 0x1f;
182   ASSERTED const int s = (val >> 15) & 0x1;
183
184   /* v = round_to_nearest(1.mmmmmmmmmm * 2^(e-15) * 255)
185    *   = round_to_nearest((1.mmmmmmmmmm * 255) * 2^(e-15))
186    *   = round_to_nearest((1mmmmmmmmmm * 255) * 2^(e-25))
187    *   = round_to_zero((1mmmmmmmmmm * 255) * 2^(e-25) + 0.5)
188    *   = round_to_zero(((1mmmmmmmmmm * 255) * 2^(e-24) + 1) / 2)
189    *
190    * This happens to give the correct answer for zero/subnormals too
191    */
192   assert(s == 0 && val <= FP16_ONE); /* check 0 <= this <= 1 */
193   /* (implies e <= 15, which means the bit-shifts below are safe) */
194
195   uint32_t v = ((1 << 10) | m) * 255;
196   v = ((v >> (24 - e)) + 1) >> 1;
197   return v;
198}
199
200/**
201  * Takes a uint16_t, divides by 65536, converts the infinite-precision
202  * result to fp16 with round-to-zero. Used by the ASTC decoder.
203  */
204uint16_t _mesa_uint16_div_64k_to_half(uint16_t v)
205{
206   /* Zero or subnormal. Set the mantissa to (v << 8) and return. */
207   if (v < 4)
208      return v << 8;
209
210   /* Count the leading 0s in the uint16_t */
211#ifdef HAVE___BUILTIN_CLZ
212   int n = __builtin_clz(v) - 16;
213#else
214   int n = 16;
215   for (int i = 15; i >= 0; i--) {
216      if (v & (1 << i)) {
217         n = 15 - i;
218         break;
219      }
220   }
221#endif
222
223   /* Shift the mantissa up so bit 16 is the hidden 1 bit,
224    * mask it off, then shift back down to 10 bits
225    */
226   int m = ( ((uint32_t)v << (n + 1)) & 0xffff ) >> 6;
227
228   /*  (0{n} 1 X{15-n}) * 2^-16
229    * = 1.X * 2^(15-n-16)
230    * = 1.X * 2^(14-n - 15)
231    * which is the FP16 form with e = 14 - n
232    */
233   int e = 14 - n;
234
235   assert(e >= 1 && e <= 30);
236   assert(m >= 0 && m < 0x400);
237
238   return (e << 10) | m;
239}
240