1bf215546Sopenharmony_ci/*
2bf215546Sopenharmony_ci * Mesa 3-D graphics library
3bf215546Sopenharmony_ci *
4bf215546Sopenharmony_ci * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5bf215546Sopenharmony_ci * Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
6bf215546Sopenharmony_ci * Copyright 2018 Advanced Micro Devices, Inc.
7bf215546Sopenharmony_ci * Copyright (C) 2018-2019 Intel Corporation
8bf215546Sopenharmony_ci *
9bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a
10bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"),
11bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation
12bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the
14bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions:
15bf215546Sopenharmony_ci *
16bf215546Sopenharmony_ci * The above copyright notice and this permission notice shall be included
17bf215546Sopenharmony_ci * in all copies or substantial portions of the Software.
18bf215546Sopenharmony_ci *
19bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20bf215546Sopenharmony_ci * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
23bf215546Sopenharmony_ci * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24bf215546Sopenharmony_ci * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25bf215546Sopenharmony_ci * OTHER DEALINGS IN THE SOFTWARE.
26bf215546Sopenharmony_ci */
27bf215546Sopenharmony_ci
28bf215546Sopenharmony_ci#include <math.h>
29bf215546Sopenharmony_ci#include <assert.h>
30bf215546Sopenharmony_ci#include "half_float.h"
31bf215546Sopenharmony_ci#include "rounding.h"
32bf215546Sopenharmony_ci#include "softfloat.h"
33bf215546Sopenharmony_ci#include "macros.h"
34bf215546Sopenharmony_ci#include "u_math.h"
35bf215546Sopenharmony_ci
36bf215546Sopenharmony_citypedef union { float f; int32_t i; uint32_t u; } fi_type;
37bf215546Sopenharmony_ci
38bf215546Sopenharmony_ci/**
39bf215546Sopenharmony_ci * Convert a 4-byte float to a 2-byte half float.
40bf215546Sopenharmony_ci *
41bf215546Sopenharmony_ci * Not all float32 values can be represented exactly as a float16 value. We
42bf215546Sopenharmony_ci * round such intermediate float32 values to the nearest float16. When the
43bf215546Sopenharmony_ci * float32 lies exactly between to float16 values, we round to the one with
44bf215546Sopenharmony_ci * an even mantissa.
45bf215546Sopenharmony_ci *
46bf215546Sopenharmony_ci * This rounding behavior has several benefits:
47bf215546Sopenharmony_ci *   - It has no sign bias.
48bf215546Sopenharmony_ci *
49bf215546Sopenharmony_ci *   - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
50bf215546Sopenharmony_ci *     GPU ISA.
51bf215546Sopenharmony_ci *
52bf215546Sopenharmony_ci *   - By reproducing the behavior of the GPU (at least on Intel hardware),
53bf215546Sopenharmony_ci *     compile-time evaluation of constant packHalf2x16 GLSL expressions will
54bf215546Sopenharmony_ci *     result in the same value as if the expression were executed on the GPU.
55bf215546Sopenharmony_ci */
56bf215546Sopenharmony_ciuint16_t
57bf215546Sopenharmony_ci_mesa_float_to_half_slow(float val)
58bf215546Sopenharmony_ci{
59bf215546Sopenharmony_ci   const fi_type fi = {val};
60bf215546Sopenharmony_ci   const int flt_m = fi.i & 0x7fffff;
61bf215546Sopenharmony_ci   const int flt_e = (fi.i >> 23) & 0xff;
62bf215546Sopenharmony_ci   const int flt_s = (fi.i >> 31) & 0x1;
63bf215546Sopenharmony_ci   int s, e, m = 0;
64bf215546Sopenharmony_ci   uint16_t result;
65bf215546Sopenharmony_ci
66bf215546Sopenharmony_ci   /* sign bit */
67bf215546Sopenharmony_ci   s = flt_s;
68bf215546Sopenharmony_ci
69bf215546Sopenharmony_ci   /* handle special cases */
70bf215546Sopenharmony_ci   if ((flt_e == 0) && (flt_m == 0)) {
71bf215546Sopenharmony_ci      /* zero */
72bf215546Sopenharmony_ci      /* m = 0; - already set */
73bf215546Sopenharmony_ci      e = 0;
74bf215546Sopenharmony_ci   }
75bf215546Sopenharmony_ci   else if ((flt_e == 0) && (flt_m != 0)) {
76bf215546Sopenharmony_ci      /* denorm -- denorm float maps to 0 half */
77bf215546Sopenharmony_ci      /* m = 0; - already set */
78bf215546Sopenharmony_ci      e = 0;
79bf215546Sopenharmony_ci   }
80bf215546Sopenharmony_ci   else if ((flt_e == 0xff) && (flt_m == 0)) {
81bf215546Sopenharmony_ci      /* infinity */
82bf215546Sopenharmony_ci      /* m = 0; - already set */
83bf215546Sopenharmony_ci      e = 31;
84bf215546Sopenharmony_ci   }
85bf215546Sopenharmony_ci   else if ((flt_e == 0xff) && (flt_m != 0)) {
86bf215546Sopenharmony_ci      /* Retain the top bits of a NaN to make sure that the quiet/signaling
87bf215546Sopenharmony_ci       * status stays the same.
88bf215546Sopenharmony_ci       */
89bf215546Sopenharmony_ci      m = flt_m >> 13;
90bf215546Sopenharmony_ci      if (!m)
91bf215546Sopenharmony_ci         m = 1;
92bf215546Sopenharmony_ci      e = 31;
93bf215546Sopenharmony_ci   }
94bf215546Sopenharmony_ci   else {
95bf215546Sopenharmony_ci      /* regular number */
96bf215546Sopenharmony_ci      const int new_exp = flt_e - 127;
97bf215546Sopenharmony_ci      if (new_exp < -14) {
98bf215546Sopenharmony_ci         /* The float32 lies in the range (0.0, min_normal16) and is rounded
99bf215546Sopenharmony_ci          * to a nearby float16 value. The result will be either zero, subnormal,
100bf215546Sopenharmony_ci          * or normal.
101bf215546Sopenharmony_ci          */
102bf215546Sopenharmony_ci         e = 0;
103bf215546Sopenharmony_ci         m = _mesa_lroundevenf((1 << 24) * fabsf(fi.f));
104bf215546Sopenharmony_ci      }
105bf215546Sopenharmony_ci      else if (new_exp > 15) {
106bf215546Sopenharmony_ci         /* map this value to infinity */
107bf215546Sopenharmony_ci         /* m = 0; - already set */
108bf215546Sopenharmony_ci         e = 31;
109bf215546Sopenharmony_ci      }
110bf215546Sopenharmony_ci      else {
111bf215546Sopenharmony_ci         /* The float32 lies in the range
112bf215546Sopenharmony_ci          *   [min_normal16, max_normal16 + max_step16)
113bf215546Sopenharmony_ci          * and is rounded to a nearby float16 value. The result will be
114bf215546Sopenharmony_ci          * either normal or infinite.
115bf215546Sopenharmony_ci          */
116bf215546Sopenharmony_ci         e = new_exp + 15;
117bf215546Sopenharmony_ci         m = _mesa_lroundevenf(flt_m / (float) (1 << 13));
118bf215546Sopenharmony_ci      }
119bf215546Sopenharmony_ci   }
120bf215546Sopenharmony_ci
121bf215546Sopenharmony_ci   assert(0 <= m && m <= 1024);
122bf215546Sopenharmony_ci   if (m == 1024) {
123bf215546Sopenharmony_ci      /* The float32 was rounded upwards into the range of the next exponent,
124bf215546Sopenharmony_ci       * so bump the exponent. This correctly handles the case where f32
125bf215546Sopenharmony_ci       * should be rounded up to float16 infinity.
126bf215546Sopenharmony_ci       */
127bf215546Sopenharmony_ci      ++e;
128bf215546Sopenharmony_ci      m = 0;
129bf215546Sopenharmony_ci   }
130bf215546Sopenharmony_ci
131bf215546Sopenharmony_ci   result = (s << 15) | (e << 10) | m;
132bf215546Sopenharmony_ci   return result;
133bf215546Sopenharmony_ci}
134bf215546Sopenharmony_ci
135bf215546Sopenharmony_ciuint16_t
136bf215546Sopenharmony_ci_mesa_float_to_float16_rtz_slow(float val)
137bf215546Sopenharmony_ci{
138bf215546Sopenharmony_ci    return _mesa_float_to_half_rtz_slow(val);
139bf215546Sopenharmony_ci}
140bf215546Sopenharmony_ci
141bf215546Sopenharmony_ci/**
142bf215546Sopenharmony_ci * Convert a 2-byte half float to a 4-byte float.
143bf215546Sopenharmony_ci * Based on code from:
144bf215546Sopenharmony_ci * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
145bf215546Sopenharmony_ci */
146bf215546Sopenharmony_cifloat
147bf215546Sopenharmony_ci_mesa_half_to_float_slow(uint16_t val)
148bf215546Sopenharmony_ci{
149bf215546Sopenharmony_ci   union fi infnan;
150bf215546Sopenharmony_ci   union fi magic;
151bf215546Sopenharmony_ci   union fi f32;
152bf215546Sopenharmony_ci
153bf215546Sopenharmony_ci   infnan.ui = 0x8f << 23;
154bf215546Sopenharmony_ci   infnan.f = 65536.0f;
155bf215546Sopenharmony_ci   magic.ui  = 0xef << 23;
156bf215546Sopenharmony_ci
157bf215546Sopenharmony_ci   /* Exponent / Mantissa */
158bf215546Sopenharmony_ci   f32.ui = (val & 0x7fff) << 13;
159bf215546Sopenharmony_ci
160bf215546Sopenharmony_ci   /* Adjust */
161bf215546Sopenharmony_ci   f32.f *= magic.f;
162bf215546Sopenharmony_ci   /* XXX: The magic mul relies on denorms being available */
163bf215546Sopenharmony_ci
164bf215546Sopenharmony_ci   /* Inf / NaN */
165bf215546Sopenharmony_ci   if (f32.f >= infnan.f)
166bf215546Sopenharmony_ci      f32.ui |= 0xff << 23;
167bf215546Sopenharmony_ci
168bf215546Sopenharmony_ci   /* Sign */
169bf215546Sopenharmony_ci   f32.ui |= (uint32_t)(val & 0x8000) << 16;
170bf215546Sopenharmony_ci
171bf215546Sopenharmony_ci   return f32.f;
172bf215546Sopenharmony_ci}
173bf215546Sopenharmony_ci
174bf215546Sopenharmony_ci/**
175bf215546Sopenharmony_ci  * Convert 0.0 to 0x00, 1.0 to 0xff.
176bf215546Sopenharmony_ci  * Values outside the range [0.0, 1.0] will give undefined results.
177bf215546Sopenharmony_ci  */
178bf215546Sopenharmony_ciuint8_t _mesa_half_to_unorm8(uint16_t val)
179bf215546Sopenharmony_ci{
180bf215546Sopenharmony_ci   const int m = val & 0x3ff;
181bf215546Sopenharmony_ci   const int e = (val >> 10) & 0x1f;
182bf215546Sopenharmony_ci   ASSERTED const int s = (val >> 15) & 0x1;
183bf215546Sopenharmony_ci
184bf215546Sopenharmony_ci   /* v = round_to_nearest(1.mmmmmmmmmm * 2^(e-15) * 255)
185bf215546Sopenharmony_ci    *   = round_to_nearest((1.mmmmmmmmmm * 255) * 2^(e-15))
186bf215546Sopenharmony_ci    *   = round_to_nearest((1mmmmmmmmmm * 255) * 2^(e-25))
187bf215546Sopenharmony_ci    *   = round_to_zero((1mmmmmmmmmm * 255) * 2^(e-25) + 0.5)
188bf215546Sopenharmony_ci    *   = round_to_zero(((1mmmmmmmmmm * 255) * 2^(e-24) + 1) / 2)
189bf215546Sopenharmony_ci    *
190bf215546Sopenharmony_ci    * This happens to give the correct answer for zero/subnormals too
191bf215546Sopenharmony_ci    */
192bf215546Sopenharmony_ci   assert(s == 0 && val <= FP16_ONE); /* check 0 <= this <= 1 */
193bf215546Sopenharmony_ci   /* (implies e <= 15, which means the bit-shifts below are safe) */
194bf215546Sopenharmony_ci
195bf215546Sopenharmony_ci   uint32_t v = ((1 << 10) | m) * 255;
196bf215546Sopenharmony_ci   v = ((v >> (24 - e)) + 1) >> 1;
197bf215546Sopenharmony_ci   return v;
198bf215546Sopenharmony_ci}
199bf215546Sopenharmony_ci
200bf215546Sopenharmony_ci/**
201bf215546Sopenharmony_ci  * Takes a uint16_t, divides by 65536, converts the infinite-precision
202bf215546Sopenharmony_ci  * result to fp16 with round-to-zero. Used by the ASTC decoder.
203bf215546Sopenharmony_ci  */
204bf215546Sopenharmony_ciuint16_t _mesa_uint16_div_64k_to_half(uint16_t v)
205bf215546Sopenharmony_ci{
206bf215546Sopenharmony_ci   /* Zero or subnormal. Set the mantissa to (v << 8) and return. */
207bf215546Sopenharmony_ci   if (v < 4)
208bf215546Sopenharmony_ci      return v << 8;
209bf215546Sopenharmony_ci
210bf215546Sopenharmony_ci   /* Count the leading 0s in the uint16_t */
211bf215546Sopenharmony_ci#ifdef HAVE___BUILTIN_CLZ
212bf215546Sopenharmony_ci   int n = __builtin_clz(v) - 16;
213bf215546Sopenharmony_ci#else
214bf215546Sopenharmony_ci   int n = 16;
215bf215546Sopenharmony_ci   for (int i = 15; i >= 0; i--) {
216bf215546Sopenharmony_ci      if (v & (1 << i)) {
217bf215546Sopenharmony_ci         n = 15 - i;
218bf215546Sopenharmony_ci         break;
219bf215546Sopenharmony_ci      }
220bf215546Sopenharmony_ci   }
221bf215546Sopenharmony_ci#endif
222bf215546Sopenharmony_ci
223bf215546Sopenharmony_ci   /* Shift the mantissa up so bit 16 is the hidden 1 bit,
224bf215546Sopenharmony_ci    * mask it off, then shift back down to 10 bits
225bf215546Sopenharmony_ci    */
226bf215546Sopenharmony_ci   int m = ( ((uint32_t)v << (n + 1)) & 0xffff ) >> 6;
227bf215546Sopenharmony_ci
228bf215546Sopenharmony_ci   /*  (0{n} 1 X{15-n}) * 2^-16
229bf215546Sopenharmony_ci    * = 1.X * 2^(15-n-16)
230bf215546Sopenharmony_ci    * = 1.X * 2^(14-n - 15)
231bf215546Sopenharmony_ci    * which is the FP16 form with e = 14 - n
232bf215546Sopenharmony_ci    */
233bf215546Sopenharmony_ci   int e = 14 - n;
234bf215546Sopenharmony_ci
235bf215546Sopenharmony_ci   assert(e >= 1 && e <= 30);
236bf215546Sopenharmony_ci   assert(m >= 0 && m < 0x400);
237bf215546Sopenharmony_ci
238bf215546Sopenharmony_ci   return (e << 10) | m;
239bf215546Sopenharmony_ci}
240