1bf215546Sopenharmony_ci/*
2bf215546Sopenharmony_ci * Copyright © 2018 Advanced Micro Devices, Inc.
3bf215546Sopenharmony_ci *
4bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a
5bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"),
6bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation
7bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the
9bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions:
10bf215546Sopenharmony_ci *
11bf215546Sopenharmony_ci * The above copyright notice and this permission notice (including the next
12bf215546Sopenharmony_ci * paragraph) shall be included in all copies or substantial portions of the
13bf215546Sopenharmony_ci * Software.
14bf215546Sopenharmony_ci *
15bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16bf215546Sopenharmony_ci * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19bf215546Sopenharmony_ci * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20bf215546Sopenharmony_ci * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21bf215546Sopenharmony_ci * IN THE SOFTWARE.
22bf215546Sopenharmony_ci */
23bf215546Sopenharmony_ci
24bf215546Sopenharmony_ci/* Imported from:
25bf215546Sopenharmony_ci *   https://raw.githubusercontent.com/ridiculousfish/libdivide/master/divide_by_constants_codegen_reference.c
26bf215546Sopenharmony_ci * Paper:
27bf215546Sopenharmony_ci *   http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf
28bf215546Sopenharmony_ci *
29bf215546Sopenharmony_ci * The author, ridiculous_fish, wrote:
30bf215546Sopenharmony_ci *
31bf215546Sopenharmony_ci *  ''Reference implementations of computing and using the "magic number"
32bf215546Sopenharmony_ci *    approach to dividing by constants, including codegen instructions.
33bf215546Sopenharmony_ci *    The unsigned division incorporates the "round down" optimization per
34bf215546Sopenharmony_ci *    ridiculous_fish.
35bf215546Sopenharmony_ci *
36bf215546Sopenharmony_ci *    This is free and unencumbered software. Any copyright is dedicated
37bf215546Sopenharmony_ci *    to the Public Domain.''
38bf215546Sopenharmony_ci */
39bf215546Sopenharmony_ci
40bf215546Sopenharmony_ci#include "fast_idiv_by_const.h"
41bf215546Sopenharmony_ci#include "u_math.h"
42bf215546Sopenharmony_ci#include "util/macros.h"
43bf215546Sopenharmony_ci#include <limits.h>
44bf215546Sopenharmony_ci#include <assert.h>
45bf215546Sopenharmony_ci
46bf215546Sopenharmony_cistruct util_fast_udiv_info
47bf215546Sopenharmony_ciutil_compute_fast_udiv_info(uint64_t D, unsigned num_bits, unsigned UINT_BITS)
48bf215546Sopenharmony_ci{
49bf215546Sopenharmony_ci   /* The numerator must fit in a uint64_t */
50bf215546Sopenharmony_ci   assert(num_bits > 0 && num_bits <= UINT_BITS);
51bf215546Sopenharmony_ci   assert(D != 0);
52bf215546Sopenharmony_ci
53bf215546Sopenharmony_ci   /* The eventual result */
54bf215546Sopenharmony_ci   struct util_fast_udiv_info result;
55bf215546Sopenharmony_ci
56bf215546Sopenharmony_ci   if (util_is_power_of_two_or_zero64(D)) {
57bf215546Sopenharmony_ci      unsigned div_shift = util_logbase2_64(D);
58bf215546Sopenharmony_ci
59bf215546Sopenharmony_ci      if (div_shift) {
60bf215546Sopenharmony_ci         /* Dividing by a power of two. */
61bf215546Sopenharmony_ci         result.multiplier = 1ull << (UINT_BITS - div_shift);
62bf215546Sopenharmony_ci         result.pre_shift = 0;
63bf215546Sopenharmony_ci         result.post_shift = 0;
64bf215546Sopenharmony_ci         result.increment = 0;
65bf215546Sopenharmony_ci         return result;
66bf215546Sopenharmony_ci      } else {
67bf215546Sopenharmony_ci         /* Dividing by 1. */
68bf215546Sopenharmony_ci         /* Assuming: floor((num + 1) * (2^32 - 1) / 2^32) = num */
69bf215546Sopenharmony_ci         result.multiplier = u_uintN_max(UINT_BITS);
70bf215546Sopenharmony_ci         result.pre_shift = 0;
71bf215546Sopenharmony_ci         result.post_shift = 0;
72bf215546Sopenharmony_ci         result.increment = 1;
73bf215546Sopenharmony_ci         return result;
74bf215546Sopenharmony_ci      }
75bf215546Sopenharmony_ci   }
76bf215546Sopenharmony_ci
77bf215546Sopenharmony_ci   /* The extra shift implicit in the difference between UINT_BITS and num_bits
78bf215546Sopenharmony_ci    */
79bf215546Sopenharmony_ci   const unsigned extra_shift = UINT_BITS - num_bits;
80bf215546Sopenharmony_ci
81bf215546Sopenharmony_ci   /* The initial power of 2 is one less than the first one that can possibly
82bf215546Sopenharmony_ci    * work.
83bf215546Sopenharmony_ci    */
84bf215546Sopenharmony_ci   const uint64_t initial_power_of_2 = (uint64_t)1 << (UINT_BITS-1);
85bf215546Sopenharmony_ci
86bf215546Sopenharmony_ci   /* The remainder and quotient of our power of 2 divided by d */
87bf215546Sopenharmony_ci   uint64_t quotient = initial_power_of_2 / D;
88bf215546Sopenharmony_ci   uint64_t remainder = initial_power_of_2 % D;
89bf215546Sopenharmony_ci
90bf215546Sopenharmony_ci   /* ceil(log_2 D) */
91bf215546Sopenharmony_ci   unsigned ceil_log_2_D;
92bf215546Sopenharmony_ci
93bf215546Sopenharmony_ci   /* The magic info for the variant "round down" algorithm */
94bf215546Sopenharmony_ci   uint64_t down_multiplier = 0;
95bf215546Sopenharmony_ci   unsigned down_exponent = 0;
96bf215546Sopenharmony_ci   int has_magic_down = 0;
97bf215546Sopenharmony_ci
98bf215546Sopenharmony_ci   /* Compute ceil(log_2 D) */
99bf215546Sopenharmony_ci   ceil_log_2_D = 0;
100bf215546Sopenharmony_ci   uint64_t tmp;
101bf215546Sopenharmony_ci   for (tmp = D; tmp > 0; tmp >>= 1)
102bf215546Sopenharmony_ci      ceil_log_2_D += 1;
103bf215546Sopenharmony_ci
104bf215546Sopenharmony_ci
105bf215546Sopenharmony_ci   /* Begin a loop that increments the exponent, until we find a power of 2
106bf215546Sopenharmony_ci    * that works.
107bf215546Sopenharmony_ci    */
108bf215546Sopenharmony_ci   unsigned exponent;
109bf215546Sopenharmony_ci   for (exponent = 0; ; exponent++) {
110bf215546Sopenharmony_ci      /* Quotient and remainder is from previous exponent; compute it for this
111bf215546Sopenharmony_ci       * exponent.
112bf215546Sopenharmony_ci       */
113bf215546Sopenharmony_ci      if (remainder >= D - remainder) {
114bf215546Sopenharmony_ci         /* Doubling remainder will wrap around D */
115bf215546Sopenharmony_ci         quotient = quotient * 2 + 1;
116bf215546Sopenharmony_ci         remainder = remainder * 2 - D;
117bf215546Sopenharmony_ci      } else {
118bf215546Sopenharmony_ci         /* Remainder will not wrap */
119bf215546Sopenharmony_ci         quotient = quotient * 2;
120bf215546Sopenharmony_ci         remainder = remainder * 2;
121bf215546Sopenharmony_ci      }
122bf215546Sopenharmony_ci
123bf215546Sopenharmony_ci      /* We're done if this exponent works for the round_up algorithm.
124bf215546Sopenharmony_ci       * Note that exponent may be larger than the maximum shift supported,
125bf215546Sopenharmony_ci       * so the check for >= ceil_log_2_D is critical.
126bf215546Sopenharmony_ci       */
127bf215546Sopenharmony_ci      if ((exponent + extra_shift >= ceil_log_2_D) ||
128bf215546Sopenharmony_ci          (D - remainder) <= ((uint64_t)1 << (exponent + extra_shift)))
129bf215546Sopenharmony_ci         break;
130bf215546Sopenharmony_ci
131bf215546Sopenharmony_ci      /* Set magic_down if we have not set it yet and this exponent works for
132bf215546Sopenharmony_ci       * the round_down algorithm
133bf215546Sopenharmony_ci       */
134bf215546Sopenharmony_ci      if (!has_magic_down &&
135bf215546Sopenharmony_ci          remainder <= ((uint64_t)1 << (exponent + extra_shift))) {
136bf215546Sopenharmony_ci         has_magic_down = 1;
137bf215546Sopenharmony_ci         down_multiplier = quotient;
138bf215546Sopenharmony_ci         down_exponent = exponent;
139bf215546Sopenharmony_ci      }
140bf215546Sopenharmony_ci   }
141bf215546Sopenharmony_ci
142bf215546Sopenharmony_ci   if (exponent < ceil_log_2_D) {
143bf215546Sopenharmony_ci      /* magic_up is efficient */
144bf215546Sopenharmony_ci      result.multiplier = quotient + 1;
145bf215546Sopenharmony_ci      result.pre_shift = 0;
146bf215546Sopenharmony_ci      result.post_shift = exponent;
147bf215546Sopenharmony_ci      result.increment = 0;
148bf215546Sopenharmony_ci   } else if (D & 1) {
149bf215546Sopenharmony_ci      /* Odd divisor, so use magic_down, which must have been set */
150bf215546Sopenharmony_ci      assert(has_magic_down);
151bf215546Sopenharmony_ci      result.multiplier = down_multiplier;
152bf215546Sopenharmony_ci      result.pre_shift = 0;
153bf215546Sopenharmony_ci      result.post_shift = down_exponent;
154bf215546Sopenharmony_ci      result.increment = 1;
155bf215546Sopenharmony_ci   } else {
156bf215546Sopenharmony_ci      /* Even divisor, so use a prefix-shifted dividend */
157bf215546Sopenharmony_ci      unsigned pre_shift = 0;
158bf215546Sopenharmony_ci      uint64_t shifted_D = D;
159bf215546Sopenharmony_ci      while ((shifted_D & 1) == 0) {
160bf215546Sopenharmony_ci         shifted_D >>= 1;
161bf215546Sopenharmony_ci         pre_shift += 1;
162bf215546Sopenharmony_ci      }
163bf215546Sopenharmony_ci      result = util_compute_fast_udiv_info(shifted_D, num_bits - pre_shift,
164bf215546Sopenharmony_ci                                           UINT_BITS);
165bf215546Sopenharmony_ci      /* expect no increment or pre_shift in this path */
166bf215546Sopenharmony_ci      assert(result.increment == 0 && result.pre_shift == 0);
167bf215546Sopenharmony_ci      result.pre_shift = pre_shift;
168bf215546Sopenharmony_ci   }
169bf215546Sopenharmony_ci   return result;
170bf215546Sopenharmony_ci}
171bf215546Sopenharmony_ci
172bf215546Sopenharmony_cistruct util_fast_sdiv_info
173bf215546Sopenharmony_ciutil_compute_fast_sdiv_info(int64_t D, unsigned SINT_BITS)
174bf215546Sopenharmony_ci{
175bf215546Sopenharmony_ci   /* D must not be zero. */
176bf215546Sopenharmony_ci   assert(D != 0);
177bf215546Sopenharmony_ci   /* The result is not correct for these divisors. */
178bf215546Sopenharmony_ci   assert(D != 1 && D != -1);
179bf215546Sopenharmony_ci
180bf215546Sopenharmony_ci   /* Our result */
181bf215546Sopenharmony_ci   struct util_fast_sdiv_info result;
182bf215546Sopenharmony_ci
183bf215546Sopenharmony_ci   /* Absolute value of D (we know D is not the most negative value since
184bf215546Sopenharmony_ci    * that's a power of 2)
185bf215546Sopenharmony_ci    */
186bf215546Sopenharmony_ci   const uint64_t abs_d = (D < 0 ? -D : D);
187bf215546Sopenharmony_ci
188bf215546Sopenharmony_ci   /* The initial power of 2 is one less than the first one that can possibly
189bf215546Sopenharmony_ci    * work */
190bf215546Sopenharmony_ci   /* "two31" in Warren */
191bf215546Sopenharmony_ci   unsigned exponent = SINT_BITS - 1;
192bf215546Sopenharmony_ci   const uint64_t initial_power_of_2 = (uint64_t)1 << exponent;
193bf215546Sopenharmony_ci
194bf215546Sopenharmony_ci   /* Compute the absolute value of our "test numerator,"
195bf215546Sopenharmony_ci    * which is the largest dividend whose remainder with d is d-1.
196bf215546Sopenharmony_ci    * This is called anc in Warren.
197bf215546Sopenharmony_ci    */
198bf215546Sopenharmony_ci   const uint64_t tmp = initial_power_of_2 + (D < 0);
199bf215546Sopenharmony_ci   const uint64_t abs_test_numer = tmp - 1 - tmp % abs_d;
200bf215546Sopenharmony_ci
201bf215546Sopenharmony_ci   /* Initialize our quotients and remainders (q1, r1, q2, r2 in Warren) */
202bf215546Sopenharmony_ci   uint64_t quotient1 = initial_power_of_2 / abs_test_numer;
203bf215546Sopenharmony_ci   uint64_t remainder1 = initial_power_of_2 % abs_test_numer;
204bf215546Sopenharmony_ci   uint64_t quotient2 = initial_power_of_2 / abs_d;
205bf215546Sopenharmony_ci   uint64_t remainder2 = initial_power_of_2 % abs_d;
206bf215546Sopenharmony_ci   uint64_t delta;
207bf215546Sopenharmony_ci
208bf215546Sopenharmony_ci   /* Begin our loop */
209bf215546Sopenharmony_ci   do {
210bf215546Sopenharmony_ci      /* Update the exponent */
211bf215546Sopenharmony_ci      exponent++;
212bf215546Sopenharmony_ci
213bf215546Sopenharmony_ci      /* Update quotient1 and remainder1 */
214bf215546Sopenharmony_ci      quotient1 *= 2;
215bf215546Sopenharmony_ci      remainder1 *= 2;
216bf215546Sopenharmony_ci      if (remainder1 >= abs_test_numer) {
217bf215546Sopenharmony_ci         quotient1 += 1;
218bf215546Sopenharmony_ci         remainder1 -= abs_test_numer;
219bf215546Sopenharmony_ci      }
220bf215546Sopenharmony_ci
221bf215546Sopenharmony_ci      /* Update quotient2 and remainder2 */
222bf215546Sopenharmony_ci      quotient2 *= 2;
223bf215546Sopenharmony_ci      remainder2 *= 2;
224bf215546Sopenharmony_ci      if (remainder2 >= abs_d) {
225bf215546Sopenharmony_ci         quotient2 += 1;
226bf215546Sopenharmony_ci         remainder2 -= abs_d;
227bf215546Sopenharmony_ci      }
228bf215546Sopenharmony_ci
229bf215546Sopenharmony_ci      /* Keep going as long as (2**exponent) / abs_d <= delta */
230bf215546Sopenharmony_ci      delta = abs_d - remainder2;
231bf215546Sopenharmony_ci   } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
232bf215546Sopenharmony_ci
233bf215546Sopenharmony_ci   result.multiplier = util_sign_extend(quotient2 + 1, SINT_BITS);
234bf215546Sopenharmony_ci   if (D < 0) result.multiplier = -result.multiplier;
235bf215546Sopenharmony_ci   result.shift = exponent - SINT_BITS;
236bf215546Sopenharmony_ci   return result;
237bf215546Sopenharmony_ci}
238