xref: /third_party/mesa3d/src/mesa/math/m_matrix.c (revision bf215546)
1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36#include <stddef.h>
37#include <math.h>
38
39#include "main/errors.h"
40#include "main/glheader.h"
41#include "main/macros.h"
42#define MATH_ASM_PTR_SIZE sizeof(void *)
43#include "math/m_vector_asm.h"
44
45#include "m_matrix.h"
46
47#include "util/u_memory.h"
48
49
50/**
51 * \defgroup MatFlags MAT_FLAG_XXX-flags
52 *
53 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
54 */
55/*@{*/
56#define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
57                                       *   (Not actually used - the identity
58                                       *   matrix is identified by the absence
59                                       *   of all other flags.)
60                                       */
61#define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
62#define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
63#define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
64#define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
65#define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
66#define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
67#define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
68#define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
69#define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
70#define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
71#define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
72
73/** angle preserving matrix flags mask */
74#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
75				    MAT_FLAG_TRANSLATION | \
76				    MAT_FLAG_UNIFORM_SCALE)
77
78/** geometry related matrix flags mask */
79#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
80			    MAT_FLAG_ROTATION | \
81			    MAT_FLAG_TRANSLATION | \
82			    MAT_FLAG_UNIFORM_SCALE | \
83			    MAT_FLAG_GENERAL_SCALE | \
84			    MAT_FLAG_GENERAL_3D | \
85			    MAT_FLAG_PERSPECTIVE | \
86	                    MAT_FLAG_SINGULAR)
87
88/** length preserving matrix flags mask */
89#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
90				     MAT_FLAG_TRANSLATION)
91
92
93/** 3D (non-perspective) matrix flags mask */
94#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
95		      MAT_FLAG_TRANSLATION | \
96		      MAT_FLAG_UNIFORM_SCALE | \
97		      MAT_FLAG_GENERAL_SCALE | \
98		      MAT_FLAG_GENERAL_3D)
99
100/** dirty matrix flags mask */
101#define MAT_DIRTY          (MAT_DIRTY_TYPE | \
102			    MAT_DIRTY_FLAGS | \
103			    MAT_DIRTY_INVERSE)
104
105/*@}*/
106
107
108/**
109 * Test geometry related matrix flags.
110 *
111 * \param mat a pointer to a GLmatrix structure.
112 * \param a flags mask.
113 *
114 * \returns non-zero if all geometry related matrix flags are contained within
115 * the mask, or zero otherwise.
116 */
117#define TEST_MAT_FLAGS(mat, a)  \
118    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
119
120
121
122/**
123 * Names of the corresponding GLmatrixtype values.
124 */
125static const char *types[] = {
126   "MATRIX_GENERAL",
127   "MATRIX_IDENTITY",
128   "MATRIX_3D_NO_ROT",
129   "MATRIX_PERSPECTIVE",
130   "MATRIX_2D",
131   "MATRIX_2D_NO_ROT",
132   "MATRIX_3D"
133};
134
135
136/**
137 * Identity matrix.
138 */
139static const GLfloat Identity[16] = {
140   1.0, 0.0, 0.0, 0.0,
141   0.0, 1.0, 0.0, 0.0,
142   0.0, 0.0, 1.0, 0.0,
143   0.0, 0.0, 0.0, 1.0
144};
145
146
147
148/**********************************************************************/
149/** \name Matrix multiplication */
150/*@{*/
151
152#define A(row,col)  a[(col<<2)+row]
153#define B(row,col)  b[(col<<2)+row]
154#define P(row,col)  product[(col<<2)+row]
155
156/**
157 * Perform a full 4x4 matrix multiplication.
158 *
159 * \param a matrix.
160 * \param b matrix.
161 * \param product will receive the product of \p a and \p b.
162 *
163 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
164 *
165 * \note KW: 4*16 = 64 multiplications
166 *
167 * \author This \c matmul was contributed by Thomas Malik
168 */
169static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
170{
171   GLint i;
172   for (i = 0; i < 4; i++) {
173      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
174      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
175      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
176      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
177      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
178   }
179}
180
181/**
182 * Multiply two matrices known to occupy only the top three rows, such
183 * as typical model matrices, and orthogonal matrices.
184 *
185 * \param a matrix.
186 * \param b matrix.
187 * \param product will receive the product of \p a and \p b.
188 */
189static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
190{
191   GLint i;
192   for (i = 0; i < 3; i++) {
193      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
194      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
195      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
196      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
197      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
198   }
199   P(3,0) = 0;
200   P(3,1) = 0;
201   P(3,2) = 0;
202   P(3,3) = 1;
203}
204
205#undef A
206#undef B
207#undef P
208
209/**
210 * Multiply a matrix by an array of floats with known properties.
211 *
212 * \param mat pointer to a GLmatrix structure containing the left multiplication
213 * matrix, and that will receive the product result.
214 * \param m right multiplication matrix array.
215 * \param flags flags of the matrix \p m.
216 *
217 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
218 * if both matrices are 3D, or matmul4() otherwise.
219 */
220static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
221{
222   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
223
224   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
225      matmul34( mat->m, mat->m, m );
226   else
227      matmul4( mat->m, mat->m, m );
228}
229
230/**
231 * Matrix multiplication.
232 *
233 * \param dest destination matrix.
234 * \param a left matrix.
235 * \param b right matrix.
236 *
237 * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
238 * if both matrices are 3D, or matmul4() otherwise.
239 */
240void
241_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
242{
243   dest->flags = (a->flags |
244		  b->flags |
245		  MAT_DIRTY_TYPE |
246		  MAT_DIRTY_INVERSE);
247
248   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
249      matmul34( dest->m, a->m, b->m );
250   else
251      matmul4( dest->m, a->m, b->m );
252}
253
254/**
255 * Matrix multiplication.
256 *
257 * \param dest left and destination matrix.
258 * \param m right matrix array.
259 *
260 * Marks the matrix flags with general flag, and type and inverse dirty flags.
261 * Calls matmul4() for the multiplication.
262 */
263void
264_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
265{
266   dest->flags |= (MAT_FLAG_GENERAL |
267		   MAT_DIRTY_TYPE |
268		   MAT_DIRTY_INVERSE |
269                   MAT_DIRTY_FLAGS);
270
271   matmul4( dest->m, dest->m, m );
272}
273
274/*@}*/
275
276
277/**********************************************************************/
278/** \name Matrix output */
279/*@{*/
280
281/**
282 * Print a matrix array.
283 *
284 * \param m matrix array.
285 *
286 * Called by _math_matrix_print() to print a matrix or its inverse.
287 */
288static void print_matrix_floats( const GLfloat m[16] )
289{
290   int i;
291   for (i=0;i<4;i++) {
292      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
293   }
294}
295
296/**
297 * Dumps the contents of a GLmatrix structure.
298 *
299 * \param m pointer to the GLmatrix structure.
300 */
301void
302_math_matrix_print( const GLmatrix *m )
303{
304   GLfloat prod[16];
305
306   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
307   print_matrix_floats(m->m);
308   _mesa_debug(NULL, "Inverse: \n");
309   print_matrix_floats(m->inv);
310   matmul4(prod, m->m, m->inv);
311   _mesa_debug(NULL, "Mat * Inverse:\n");
312   print_matrix_floats(prod);
313}
314
315/*@}*/
316
317
318/**
319 * References an element of 4x4 matrix.
320 *
321 * \param m matrix array.
322 * \param c column of the desired element.
323 * \param r row of the desired element.
324 *
325 * \return value of the desired element.
326 *
327 * Calculate the linear storage index of the element and references it.
328 */
329#define MAT(m,r,c) (m)[(c)*4+(r)]
330
331
332/**********************************************************************/
333/** \name Matrix inversion */
334/*@{*/
335
336/**
337 * Compute inverse of 4x4 transformation matrix.
338 *
339 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
340 * stored in the GLmatrix::inv attribute.
341 *
342 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
343 *
344 * \author
345 * Code contributed by Jacques Leroy jle@star.be
346 *
347 * Calculates the inverse matrix by performing the gaussian matrix reduction
348 * with partial pivoting followed by back/substitution with the loops manually
349 * unrolled.
350 */
351static GLboolean invert_matrix_general( GLmatrix *mat )
352{
353   return util_invert_mat4x4(mat->inv, mat->m);
354}
355
356/**
357 * Compute inverse of a general 3d transformation matrix.
358 *
359 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
360 * stored in the GLmatrix::inv attribute.
361 *
362 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
363 *
364 * \author Adapted from graphics gems II.
365 *
366 * Calculates the inverse of the upper left by first calculating its
367 * determinant and multiplying it to the symmetric adjust matrix of each
368 * element. Finally deals with the translation part by transforming the
369 * original translation vector using by the calculated submatrix inverse.
370 */
371static GLboolean invert_matrix_3d_general( GLmatrix *mat )
372{
373   const GLfloat *in = mat->m;
374   GLfloat *out = mat->inv;
375   GLfloat pos, neg, t;
376   GLfloat det;
377
378   /* Calculate the determinant of upper left 3x3 submatrix and
379    * determine if the matrix is singular.
380    */
381   pos = neg = 0.0;
382   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
383   if (t >= 0.0F) pos += t; else neg += t;
384
385   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
386   if (t >= 0.0F) pos += t; else neg += t;
387
388   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
389   if (t >= 0.0F) pos += t; else neg += t;
390
391   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
392   if (t >= 0.0F) pos += t; else neg += t;
393
394   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
395   if (t >= 0.0F) pos += t; else neg += t;
396
397   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
398   if (t >= 0.0F) pos += t; else neg += t;
399
400   det = pos + neg;
401
402   if (fabsf(det) < 1e-25F)
403      return GL_FALSE;
404
405   det = 1.0F / det;
406   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
407   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
408   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
409   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
410   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
411   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
412   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
413   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
414   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
415
416   /* Do the translation part */
417   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
418		     MAT(in,1,3) * MAT(out,0,1) +
419		     MAT(in,2,3) * MAT(out,0,2) );
420   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
421		     MAT(in,1,3) * MAT(out,1,1) +
422		     MAT(in,2,3) * MAT(out,1,2) );
423   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
424		     MAT(in,1,3) * MAT(out,2,1) +
425		     MAT(in,2,3) * MAT(out,2,2) );
426
427   return GL_TRUE;
428}
429
430/**
431 * Compute inverse of a 3d transformation matrix.
432 *
433 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
434 * stored in the GLmatrix::inv attribute.
435 *
436 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
437 *
438 * If the matrix is not an angle preserving matrix then calls
439 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
440 * the inverse matrix analyzing and inverting each of the scaling, rotation and
441 * translation parts.
442 */
443static GLboolean invert_matrix_3d( GLmatrix *mat )
444{
445   const GLfloat *in = mat->m;
446   GLfloat *out = mat->inv;
447
448   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
449      return invert_matrix_3d_general( mat );
450   }
451
452   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
453      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
454                       MAT(in,0,1) * MAT(in,0,1) +
455                       MAT(in,0,2) * MAT(in,0,2));
456
457      if (scale == 0.0F)
458         return GL_FALSE;
459
460      scale = 1.0F / scale;
461
462      /* Transpose and scale the 3 by 3 upper-left submatrix. */
463      MAT(out,0,0) = scale * MAT(in,0,0);
464      MAT(out,1,0) = scale * MAT(in,0,1);
465      MAT(out,2,0) = scale * MAT(in,0,2);
466      MAT(out,0,1) = scale * MAT(in,1,0);
467      MAT(out,1,1) = scale * MAT(in,1,1);
468      MAT(out,2,1) = scale * MAT(in,1,2);
469      MAT(out,0,2) = scale * MAT(in,2,0);
470      MAT(out,1,2) = scale * MAT(in,2,1);
471      MAT(out,2,2) = scale * MAT(in,2,2);
472   }
473   else if (mat->flags & MAT_FLAG_ROTATION) {
474      /* Transpose the 3 by 3 upper-left submatrix. */
475      MAT(out,0,0) = MAT(in,0,0);
476      MAT(out,1,0) = MAT(in,0,1);
477      MAT(out,2,0) = MAT(in,0,2);
478      MAT(out,0,1) = MAT(in,1,0);
479      MAT(out,1,1) = MAT(in,1,1);
480      MAT(out,2,1) = MAT(in,1,2);
481      MAT(out,0,2) = MAT(in,2,0);
482      MAT(out,1,2) = MAT(in,2,1);
483      MAT(out,2,2) = MAT(in,2,2);
484   }
485   else {
486      /* pure translation */
487      memcpy( out, Identity, sizeof(Identity) );
488      MAT(out,0,3) = - MAT(in,0,3);
489      MAT(out,1,3) = - MAT(in,1,3);
490      MAT(out,2,3) = - MAT(in,2,3);
491      return GL_TRUE;
492   }
493
494   if (mat->flags & MAT_FLAG_TRANSLATION) {
495      /* Do the translation part */
496      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
497			MAT(in,1,3) * MAT(out,0,1) +
498			MAT(in,2,3) * MAT(out,0,2) );
499      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
500			MAT(in,1,3) * MAT(out,1,1) +
501			MAT(in,2,3) * MAT(out,1,2) );
502      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
503			MAT(in,1,3) * MAT(out,2,1) +
504			MAT(in,2,3) * MAT(out,2,2) );
505   }
506   else {
507      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
508   }
509
510   return GL_TRUE;
511}
512
513/**
514 * Compute inverse of an identity transformation matrix.
515 *
516 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
517 * stored in the GLmatrix::inv attribute.
518 *
519 * \return always GL_TRUE.
520 *
521 * Simply copies Identity into GLmatrix::inv.
522 */
523static GLboolean invert_matrix_identity( GLmatrix *mat )
524{
525   memcpy( mat->inv, Identity, sizeof(Identity) );
526   return GL_TRUE;
527}
528
529/**
530 * Compute inverse of a no-rotation 3d transformation matrix.
531 *
532 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
533 * stored in the GLmatrix::inv attribute.
534 *
535 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
536 *
537 * Calculates the
538 */
539static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
540{
541   const GLfloat *in = mat->m;
542   GLfloat *out = mat->inv;
543
544   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
545      return GL_FALSE;
546
547   memcpy( out, Identity, sizeof(Identity) );
548   MAT(out,0,0) = 1.0F / MAT(in,0,0);
549   MAT(out,1,1) = 1.0F / MAT(in,1,1);
550   MAT(out,2,2) = 1.0F / MAT(in,2,2);
551
552   if (mat->flags & MAT_FLAG_TRANSLATION) {
553      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
554      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
555      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
556   }
557
558   return GL_TRUE;
559}
560
561/**
562 * Compute inverse of a no-rotation 2d transformation matrix.
563 *
564 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
565 * stored in the GLmatrix::inv attribute.
566 *
567 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
568 *
569 * Calculates the inverse matrix by applying the inverse scaling and
570 * translation to the identity matrix.
571 */
572static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
573{
574   const GLfloat *in = mat->m;
575   GLfloat *out = mat->inv;
576
577   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
578      return GL_FALSE;
579
580   memcpy( out, Identity, sizeof(Identity) );
581   MAT(out,0,0) = 1.0F / MAT(in,0,0);
582   MAT(out,1,1) = 1.0F / MAT(in,1,1);
583
584   if (mat->flags & MAT_FLAG_TRANSLATION) {
585      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
586      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
587   }
588
589   return GL_TRUE;
590}
591
592#if 0
593/* broken */
594static GLboolean invert_matrix_perspective( GLmatrix *mat )
595{
596   const GLfloat *in = mat->m;
597   GLfloat *out = mat->inv;
598
599   if (MAT(in,2,3) == 0)
600      return GL_FALSE;
601
602   memcpy( out, Identity, sizeof(Identity) );
603
604   MAT(out,0,0) = 1.0F / MAT(in,0,0);
605   MAT(out,1,1) = 1.0F / MAT(in,1,1);
606
607   MAT(out,0,3) = MAT(in,0,2);
608   MAT(out,1,3) = MAT(in,1,2);
609
610   MAT(out,2,2) = 0;
611   MAT(out,2,3) = -1;
612
613   MAT(out,3,2) = 1.0F / MAT(in,2,3);
614   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
615
616   return GL_TRUE;
617}
618#endif
619
620/**
621 * Matrix inversion function pointer type.
622 */
623typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
624
625/**
626 * Table of the matrix inversion functions according to the matrix type.
627 */
628static inv_mat_func inv_mat_tab[7] = {
629   invert_matrix_general,
630   invert_matrix_identity,
631   invert_matrix_3d_no_rot,
632#if 0
633   /* Don't use this function for now - it fails when the projection matrix
634    * is premultiplied by a translation (ala Chromium's tilesort SPU).
635    */
636   invert_matrix_perspective,
637#else
638   invert_matrix_general,
639#endif
640   invert_matrix_3d,		/* lazy! */
641   invert_matrix_2d_no_rot,
642   invert_matrix_3d
643};
644
645/**
646 * Compute inverse of a transformation matrix.
647 *
648 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
649 * stored in the GLmatrix::inv attribute.
650 *
651 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
652 *
653 * Calls the matrix inversion function in inv_mat_tab corresponding to the
654 * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
655 * and copies the identity matrix into GLmatrix::inv.
656 */
657static GLboolean matrix_invert( GLmatrix *mat )
658{
659   if (inv_mat_tab[mat->type](mat)) {
660      mat->flags &= ~MAT_FLAG_SINGULAR;
661      return GL_TRUE;
662   } else {
663      mat->flags |= MAT_FLAG_SINGULAR;
664      memcpy( mat->inv, Identity, sizeof(Identity) );
665      return GL_FALSE;
666   }
667}
668
669/*@}*/
670
671
672/**********************************************************************/
673/** \name Matrix generation */
674/*@{*/
675
676/**
677 * Generate a 4x4 transformation matrix from glRotate parameters, and
678 * post-multiply the input matrix by it.
679 *
680 * \author
681 * This function was contributed by Erich Boleyn (erich@uruk.org).
682 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
683 */
684void
685_math_matrix_rotate( GLmatrix *mat,
686		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
687{
688   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
689   GLfloat m[16];
690   GLboolean optimized;
691
692   s = sinf( angle * M_PI / 180.0 );
693   c = cosf( angle * M_PI / 180.0 );
694
695   memcpy(m, Identity, sizeof(Identity));
696   optimized = GL_FALSE;
697
698#define M(row,col)  m[col*4+row]
699
700   if (x == 0.0F) {
701      if (y == 0.0F) {
702         if (z != 0.0F) {
703            optimized = GL_TRUE;
704            /* rotate only around z-axis */
705            M(0,0) = c;
706            M(1,1) = c;
707            if (z < 0.0F) {
708               M(0,1) = s;
709               M(1,0) = -s;
710            }
711            else {
712               M(0,1) = -s;
713               M(1,0) = s;
714            }
715         }
716      }
717      else if (z == 0.0F) {
718         optimized = GL_TRUE;
719         /* rotate only around y-axis */
720         M(0,0) = c;
721         M(2,2) = c;
722         if (y < 0.0F) {
723            M(0,2) = -s;
724            M(2,0) = s;
725         }
726         else {
727            M(0,2) = s;
728            M(2,0) = -s;
729         }
730      }
731   }
732   else if (y == 0.0F) {
733      if (z == 0.0F) {
734         optimized = GL_TRUE;
735         /* rotate only around x-axis */
736         M(1,1) = c;
737         M(2,2) = c;
738         if (x < 0.0F) {
739            M(1,2) = s;
740            M(2,1) = -s;
741         }
742         else {
743            M(1,2) = -s;
744            M(2,1) = s;
745         }
746      }
747   }
748
749   if (!optimized) {
750      const GLfloat mag = sqrtf(x * x + y * y + z * z);
751
752      if (mag <= 1.0e-4F) {
753         /* no rotation, leave mat as-is */
754         return;
755      }
756
757      x /= mag;
758      y /= mag;
759      z /= mag;
760
761
762      /*
763       *     Arbitrary axis rotation matrix.
764       *
765       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
766       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
767       *  (which is about the X-axis), and the two composite transforms
768       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
769       *  from the arbitrary axis to the X-axis then back.  They are
770       *  all elementary rotations.
771       *
772       *  Rz' is a rotation about the Z-axis, to bring the axis vector
773       *  into the x-z plane.  Then Ry' is applied, rotating about the
774       *  Y-axis to bring the axis vector parallel with the X-axis.  The
775       *  rotation about the X-axis is then performed.  Ry and Rz are
776       *  simply the respective inverse transforms to bring the arbitrary
777       *  axis back to its original orientation.  The first transforms
778       *  Rz' and Ry' are considered inverses, since the data from the
779       *  arbitrary axis gives you info on how to get to it, not how
780       *  to get away from it, and an inverse must be applied.
781       *
782       *  The basic calculation used is to recognize that the arbitrary
783       *  axis vector (x, y, z), since it is of unit length, actually
784       *  represents the sines and cosines of the angles to rotate the
785       *  X-axis to the same orientation, with theta being the angle about
786       *  Z and phi the angle about Y (in the order described above)
787       *  as follows:
788       *
789       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
790       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
791       *
792       *  cos ( phi ) = sqrt ( 1 - z^2 )
793       *  sin ( phi ) = z
794       *
795       *  Note that cos ( phi ) can further be inserted to the above
796       *  formulas:
797       *
798       *  cos ( theta ) = x / cos ( phi )
799       *  sin ( theta ) = y / sin ( phi )
800       *
801       *  ...etc.  Because of those relations and the standard trigonometric
802       *  relations, it is pssible to reduce the transforms down to what
803       *  is used below.  It may be that any primary axis chosen will give the
804       *  same results (modulo a sign convention) using thie method.
805       *
806       *  Particularly nice is to notice that all divisions that might
807       *  have caused trouble when parallel to certain planes or
808       *  axis go away with care paid to reducing the expressions.
809       *  After checking, it does perform correctly under all cases, since
810       *  in all the cases of division where the denominator would have
811       *  been zero, the numerator would have been zero as well, giving
812       *  the expected result.
813       */
814
815      xx = x * x;
816      yy = y * y;
817      zz = z * z;
818      xy = x * y;
819      yz = y * z;
820      zx = z * x;
821      xs = x * s;
822      ys = y * s;
823      zs = z * s;
824      one_c = 1.0F - c;
825
826      /* We already hold the identity-matrix so we can skip some statements */
827      M(0,0) = (one_c * xx) + c;
828      M(0,1) = (one_c * xy) - zs;
829      M(0,2) = (one_c * zx) + ys;
830/*    M(0,3) = 0.0F; */
831
832      M(1,0) = (one_c * xy) + zs;
833      M(1,1) = (one_c * yy) + c;
834      M(1,2) = (one_c * yz) - xs;
835/*    M(1,3) = 0.0F; */
836
837      M(2,0) = (one_c * zx) - ys;
838      M(2,1) = (one_c * yz) + xs;
839      M(2,2) = (one_c * zz) + c;
840/*    M(2,3) = 0.0F; */
841
842/*
843      M(3,0) = 0.0F;
844      M(3,1) = 0.0F;
845      M(3,2) = 0.0F;
846      M(3,3) = 1.0F;
847*/
848   }
849#undef M
850
851   matrix_multf( mat, m, MAT_FLAG_ROTATION );
852}
853
854/**
855 * Apply a perspective projection matrix.
856 *
857 * \param mat matrix to apply the projection.
858 * \param left left clipping plane coordinate.
859 * \param right right clipping plane coordinate.
860 * \param bottom bottom clipping plane coordinate.
861 * \param top top clipping plane coordinate.
862 * \param nearval distance to the near clipping plane.
863 * \param farval distance to the far clipping plane.
864 *
865 * Creates the projection matrix and multiplies it with \p mat, marking the
866 * MAT_FLAG_PERSPECTIVE flag.
867 */
868void
869_math_matrix_frustum( GLmatrix *mat,
870		      GLfloat left, GLfloat right,
871		      GLfloat bottom, GLfloat top,
872		      GLfloat nearval, GLfloat farval )
873{
874   GLfloat x, y, a, b, c, d;
875   GLfloat m[16];
876
877   x = (2.0F*nearval) / (right-left);
878   y = (2.0F*nearval) / (top-bottom);
879   a = (right+left) / (right-left);
880   b = (top+bottom) / (top-bottom);
881   c = -(farval+nearval) / ( farval-nearval);
882   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
883
884#define M(row,col)  m[col*4+row]
885   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
886   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
887   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
888   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
889#undef M
890
891   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
892}
893
894/**
895 * Create an orthographic projection matrix.
896 *
897 * \param m float array in which to store the project matrix
898 * \param left left clipping plane coordinate.
899 * \param right right clipping plane coordinate.
900 * \param bottom bottom clipping plane coordinate.
901 * \param top top clipping plane coordinate.
902 * \param nearval distance to the near clipping plane.
903 * \param farval distance to the far clipping plane.
904 *
905 * Creates the projection matrix and stored the values in \p m.  As with other
906 * OpenGL matrices, the data is stored in column-major ordering.
907 */
908void
909_math_float_ortho(float *m,
910                  float left, float right,
911                  float bottom, float top,
912                  float nearval, float farval)
913{
914#define M(row,col)  m[col*4+row]
915   M(0,0) = 2.0F / (right-left);
916   M(0,1) = 0.0F;
917   M(0,2) = 0.0F;
918   M(0,3) = -(right+left) / (right-left);
919
920   M(1,0) = 0.0F;
921   M(1,1) = 2.0F / (top-bottom);
922   M(1,2) = 0.0F;
923   M(1,3) = -(top+bottom) / (top-bottom);
924
925   M(2,0) = 0.0F;
926   M(2,1) = 0.0F;
927   M(2,2) = -2.0F / (farval-nearval);
928   M(2,3) = -(farval+nearval) / (farval-nearval);
929
930   M(3,0) = 0.0F;
931   M(3,1) = 0.0F;
932   M(3,2) = 0.0F;
933   M(3,3) = 1.0F;
934#undef M
935}
936
937/**
938 * Apply an orthographic projection matrix.
939 *
940 * \param mat matrix to apply the projection.
941 * \param left left clipping plane coordinate.
942 * \param right right clipping plane coordinate.
943 * \param bottom bottom clipping plane coordinate.
944 * \param top top clipping plane coordinate.
945 * \param nearval distance to the near clipping plane.
946 * \param farval distance to the far clipping plane.
947 *
948 * Creates the projection matrix and multiplies it with \p mat, marking the
949 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
950 */
951void
952_math_matrix_ortho( GLmatrix *mat,
953		    GLfloat left, GLfloat right,
954		    GLfloat bottom, GLfloat top,
955		    GLfloat nearval, GLfloat farval )
956{
957   GLfloat m[16];
958
959   _math_float_ortho(m, left, right, bottom, top, nearval, farval);
960   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
961}
962
963/**
964 * Multiply a matrix with a general scaling matrix.
965 *
966 * \param mat matrix.
967 * \param x x axis scale factor.
968 * \param y y axis scale factor.
969 * \param z z axis scale factor.
970 *
971 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
972 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
973 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
974 * MAT_DIRTY_INVERSE dirty flags.
975 */
976void
977_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
978{
979   GLfloat *m = mat->m;
980   m[0] *= x;   m[4] *= y;   m[8]  *= z;
981   m[1] *= x;   m[5] *= y;   m[9]  *= z;
982   m[2] *= x;   m[6] *= y;   m[10] *= z;
983   m[3] *= x;   m[7] *= y;   m[11] *= z;
984
985   if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
986      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
987   else
988      mat->flags |= MAT_FLAG_GENERAL_SCALE;
989
990   mat->flags |= (MAT_DIRTY_TYPE |
991		  MAT_DIRTY_INVERSE);
992}
993
994/**
995 * Multiply a matrix with a translation matrix.
996 *
997 * \param mat matrix.
998 * \param x translation vector x coordinate.
999 * \param y translation vector y coordinate.
1000 * \param z translation vector z coordinate.
1001 *
1002 * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1003 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1004 * dirty flags.
1005 */
1006void
1007_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1008{
1009   GLfloat *m = mat->m;
1010   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1011   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1012   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1013   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1014
1015   mat->flags |= (MAT_FLAG_TRANSLATION |
1016		  MAT_DIRTY_TYPE |
1017		  MAT_DIRTY_INVERSE);
1018}
1019
1020
1021/**
1022 * Set matrix to do viewport and depthrange mapping.
1023 * Transforms Normalized Device Coords to window/Z values.
1024 */
1025void
1026_math_matrix_viewport(GLmatrix *m, const float scale[3],
1027                      const float translate[3], double depthMax)
1028{
1029   m->m[MAT_SX] = scale[0];
1030   m->m[MAT_TX] = translate[0];
1031   m->m[MAT_SY] = scale[1];
1032   m->m[MAT_TY] = translate[1];
1033   m->m[MAT_SZ] = depthMax*scale[2];
1034   m->m[MAT_TZ] = depthMax*translate[2];
1035   m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1036   m->type = MATRIX_3D_NO_ROT;
1037}
1038
1039
1040/**
1041 * Set a matrix to the identity matrix.
1042 *
1043 * \param mat matrix.
1044 *
1045 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1046 * Sets the matrix type to identity, and clear the dirty flags.
1047 */
1048void
1049_math_matrix_set_identity( GLmatrix *mat )
1050{
1051   STATIC_ASSERT(MATRIX_M == offsetof(GLmatrix, m));
1052   STATIC_ASSERT(MATRIX_INV == offsetof(GLmatrix, inv));
1053
1054   memcpy( mat->m, Identity, sizeof(Identity) );
1055   memcpy( mat->inv, Identity, sizeof(Identity) );
1056
1057   mat->type = MATRIX_IDENTITY;
1058   mat->flags &= ~(MAT_DIRTY_FLAGS|
1059		   MAT_DIRTY_TYPE|
1060		   MAT_DIRTY_INVERSE);
1061}
1062
1063/*@}*/
1064
1065
1066/**********************************************************************/
1067/** \name Matrix analysis */
1068/*@{*/
1069
1070#define ZERO(x) (1<<x)
1071#define ONE(x)  (1<<(x+16))
1072
1073#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1074#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1075
1076#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1077			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1078			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1079			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1080
1081#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1082			  ZERO(1)  |            ZERO(9)  |           \
1083			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1084			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1085
1086#define MASK_2D          (                      ZERO(8)  |           \
1087			                        ZERO(9)  |           \
1088			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1089			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1090
1091
1092#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1093			  ZERO(1)  |            ZERO(9)  |           \
1094			  ZERO(2)  | ZERO(6)  |                      \
1095			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1096
1097#define MASK_3D          (                                           \
1098			                                             \
1099			                                             \
1100			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1101
1102
1103#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1104			  ZERO(1)  |                       ZERO(13) |\
1105			  ZERO(2)  | ZERO(6)  |                      \
1106			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1107
1108#define SQ(x) ((x)*(x))
1109
1110/**
1111 * Determine type and flags from scratch.
1112 *
1113 * \param mat matrix.
1114 *
1115 * This is expensive enough to only want to do it once.
1116 */
1117static void analyse_from_scratch( GLmatrix *mat )
1118{
1119   const GLfloat *m = mat->m;
1120   GLuint mask = 0;
1121   GLuint i;
1122
1123   for (i = 0 ; i < 16 ; i++) {
1124      if (m[i] == 0.0F) mask |= (1<<i);
1125   }
1126
1127   if (m[0] == 1.0F) mask |= (1<<16);
1128   if (m[5] == 1.0F) mask |= (1<<21);
1129   if (m[10] == 1.0F) mask |= (1<<26);
1130   if (m[15] == 1.0F) mask |= (1<<31);
1131
1132   mat->flags &= ~MAT_FLAGS_GEOMETRY;
1133
1134   /* Check for translation - no-one really cares
1135    */
1136   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1137      mat->flags |= MAT_FLAG_TRANSLATION;
1138
1139   /* Do the real work
1140    */
1141   if (mask == (GLuint) MASK_IDENTITY) {
1142      mat->type = MATRIX_IDENTITY;
1143   }
1144   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1145      mat->type = MATRIX_2D_NO_ROT;
1146
1147      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1148	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1149   }
1150   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1151      GLfloat mm = DOT2(m, m);
1152      GLfloat m4m4 = DOT2(m+4,m+4);
1153      GLfloat mm4 = DOT2(m,m+4);
1154
1155      mat->type = MATRIX_2D;
1156
1157      /* Check for scale */
1158      if (SQ(mm-1) > SQ(1e-6F) ||
1159	  SQ(m4m4-1) > SQ(1e-6F))
1160	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1161
1162      /* Check for rotation */
1163      if (SQ(mm4) > SQ(1e-6F))
1164	 mat->flags |= MAT_FLAG_GENERAL_3D;
1165      else
1166	 mat->flags |= MAT_FLAG_ROTATION;
1167
1168   }
1169   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1170      mat->type = MATRIX_3D_NO_ROT;
1171
1172      /* Check for scale */
1173      if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1174	  SQ(m[0]-m[10]) < SQ(1e-6F)) {
1175	 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1176	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1177         }
1178      }
1179      else {
1180	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1181      }
1182   }
1183   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1184      GLfloat c1 = DOT3(m,m);
1185      GLfloat c2 = DOT3(m+4,m+4);
1186      GLfloat c3 = DOT3(m+8,m+8);
1187      GLfloat d1 = DOT3(m, m+4);
1188      GLfloat cp[3];
1189
1190      mat->type = MATRIX_3D;
1191
1192      /* Check for scale */
1193      if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1194	 if (SQ(c1-1.0F) > SQ(1e-6F))
1195	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1196	 /* else no scale at all */
1197      }
1198      else {
1199	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1200      }
1201
1202      /* Check for rotation */
1203      if (SQ(d1) < SQ(1e-6F)) {
1204	 CROSS3( cp, m, m+4 );
1205	 SUB_3V( cp, cp, (m+8) );
1206	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1207	    mat->flags |= MAT_FLAG_ROTATION;
1208	 else
1209	    mat->flags |= MAT_FLAG_GENERAL_3D;
1210      }
1211      else {
1212	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1213      }
1214   }
1215   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1216      mat->type = MATRIX_PERSPECTIVE;
1217      mat->flags |= MAT_FLAG_GENERAL;
1218   }
1219   else {
1220      mat->type = MATRIX_GENERAL;
1221      mat->flags |= MAT_FLAG_GENERAL;
1222   }
1223}
1224
1225/**
1226 * Analyze a matrix given that its flags are accurate.
1227 *
1228 * This is the more common operation, hopefully.
1229 */
1230static void analyse_from_flags( GLmatrix *mat )
1231{
1232   const GLfloat *m = mat->m;
1233
1234   if (TEST_MAT_FLAGS(mat, 0)) {
1235      mat->type = MATRIX_IDENTITY;
1236   }
1237   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1238				 MAT_FLAG_UNIFORM_SCALE |
1239				 MAT_FLAG_GENERAL_SCALE))) {
1240      if ( m[10]==1.0F && m[14]==0.0F ) {
1241	 mat->type = MATRIX_2D_NO_ROT;
1242      }
1243      else {
1244	 mat->type = MATRIX_3D_NO_ROT;
1245      }
1246   }
1247   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1248      if (                                 m[ 8]==0.0F
1249            &&                             m[ 9]==0.0F
1250            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1251	 mat->type = MATRIX_2D;
1252      }
1253      else {
1254	 mat->type = MATRIX_3D;
1255      }
1256   }
1257   else if (                 m[4]==0.0F                 && m[12]==0.0F
1258            && m[1]==0.0F                               && m[13]==0.0F
1259            && m[2]==0.0F && m[6]==0.0F
1260            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1261      mat->type = MATRIX_PERSPECTIVE;
1262   }
1263   else {
1264      mat->type = MATRIX_GENERAL;
1265   }
1266}
1267
1268/**
1269 * Analyze and update a matrix.
1270 *
1271 * \param mat matrix.
1272 *
1273 * If the matrix type is dirty then calls either analyse_from_scratch() or
1274 * analyse_from_flags() to determine its type, according to whether the flags
1275 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1276 * then calls matrix_invert(). Finally clears the dirty flags.
1277 */
1278void
1279_math_matrix_analyse( GLmatrix *mat )
1280{
1281   if (mat->flags & MAT_DIRTY_TYPE) {
1282      if (mat->flags & MAT_DIRTY_FLAGS)
1283	 analyse_from_scratch( mat );
1284      else
1285	 analyse_from_flags( mat );
1286   }
1287
1288   if (mat->flags & MAT_DIRTY_INVERSE) {
1289      matrix_invert( mat );
1290      mat->flags &= ~MAT_DIRTY_INVERSE;
1291   }
1292
1293   mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1294}
1295
1296/*@}*/
1297
1298
1299/**
1300 * Test if the given matrix preserves vector lengths.
1301 */
1302GLboolean
1303_math_matrix_is_length_preserving( const GLmatrix *m )
1304{
1305   return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1306}
1307
1308
1309/**
1310 * Test if the given matrix does any rotation.
1311 * (or perhaps if the upper-left 3x3 is non-identity)
1312 */
1313GLboolean
1314_math_matrix_has_rotation( const GLmatrix *m )
1315{
1316   if (m->flags & (MAT_FLAG_GENERAL |
1317                   MAT_FLAG_ROTATION |
1318                   MAT_FLAG_GENERAL_3D |
1319                   MAT_FLAG_PERSPECTIVE))
1320      return GL_TRUE;
1321   else
1322      return GL_FALSE;
1323}
1324
1325
1326GLboolean
1327_math_matrix_is_general_scale( const GLmatrix *m )
1328{
1329   return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1330}
1331
1332
1333GLboolean
1334_math_matrix_is_dirty( const GLmatrix *m )
1335{
1336   return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1337}
1338
1339
1340/**********************************************************************/
1341/** \name Matrix setup */
1342/*@{*/
1343
1344/**
1345 * Copy a matrix.
1346 *
1347 * \param to destination matrix.
1348 * \param from source matrix.
1349 *
1350 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1351 */
1352void
1353_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1354{
1355   memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1356   memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1357   to->flags = from->flags;
1358   to->type = from->type;
1359}
1360
1361/**
1362 * Copy a matrix as part of glPushMatrix.
1363 *
1364 * The makes the source matrix canonical (inverse and flags are up-to-date),
1365 * so that later glPopMatrix is evaluated as a no-op if there is no state
1366 * change.
1367 *
1368 * It this wasn't done, a draw call would canonicalize the matrix, which
1369 * would make it different from the pushed one and so glPopMatrix wouldn't be
1370 * recognized as a no-op.
1371 */
1372void
1373_math_matrix_push_copy(GLmatrix *to, GLmatrix *from)
1374{
1375   if (from->flags & MAT_DIRTY)
1376      _math_matrix_analyse(from);
1377
1378   _math_matrix_copy(to, from);
1379}
1380
1381/**
1382 * Loads a matrix array into GLmatrix.
1383 *
1384 * \param m matrix array.
1385 * \param mat matrix.
1386 *
1387 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1388 * flags.
1389 */
1390void
1391_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1392{
1393   memcpy( mat->m, m, 16*sizeof(GLfloat) );
1394   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1395}
1396
1397/**
1398 * Matrix constructor.
1399 *
1400 * \param m matrix.
1401 *
1402 * Initialize the GLmatrix fields.
1403 */
1404void
1405_math_matrix_ctr( GLmatrix *m )
1406{
1407   memset(m, 0, sizeof(*m));
1408   memcpy( m->m, Identity, sizeof(Identity) );
1409   memcpy( m->inv, Identity, sizeof(Identity) );
1410   m->type = MATRIX_IDENTITY;
1411   m->flags = 0;
1412}
1413
1414/*@}*/
1415
1416
1417/**********************************************************************/
1418/** \name Matrix transpose */
1419/*@{*/
1420
1421/**
1422 * Transpose a GLfloat matrix.
1423 *
1424 * \param to destination array.
1425 * \param from source array.
1426 */
1427void
1428_math_transposef( GLfloat to[16], const GLfloat from[16] )
1429{
1430   to[0] = from[0];
1431   to[1] = from[4];
1432   to[2] = from[8];
1433   to[3] = from[12];
1434   to[4] = from[1];
1435   to[5] = from[5];
1436   to[6] = from[9];
1437   to[7] = from[13];
1438   to[8] = from[2];
1439   to[9] = from[6];
1440   to[10] = from[10];
1441   to[11] = from[14];
1442   to[12] = from[3];
1443   to[13] = from[7];
1444   to[14] = from[11];
1445   to[15] = from[15];
1446}
1447
1448/**
1449 * Transpose a GLdouble matrix.
1450 *
1451 * \param to destination array.
1452 * \param from source array.
1453 */
1454void
1455_math_transposed( GLdouble to[16], const GLdouble from[16] )
1456{
1457   to[0] = from[0];
1458   to[1] = from[4];
1459   to[2] = from[8];
1460   to[3] = from[12];
1461   to[4] = from[1];
1462   to[5] = from[5];
1463   to[6] = from[9];
1464   to[7] = from[13];
1465   to[8] = from[2];
1466   to[9] = from[6];
1467   to[10] = from[10];
1468   to[11] = from[14];
1469   to[12] = from[3];
1470   to[13] = from[7];
1471   to[14] = from[11];
1472   to[15] = from[15];
1473}
1474
1475/**
1476 * Transpose a GLdouble matrix and convert to GLfloat.
1477 *
1478 * \param to destination array.
1479 * \param from source array.
1480 */
1481void
1482_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1483{
1484   to[0] = (GLfloat) from[0];
1485   to[1] = (GLfloat) from[4];
1486   to[2] = (GLfloat) from[8];
1487   to[3] = (GLfloat) from[12];
1488   to[4] = (GLfloat) from[1];
1489   to[5] = (GLfloat) from[5];
1490   to[6] = (GLfloat) from[9];
1491   to[7] = (GLfloat) from[13];
1492   to[8] = (GLfloat) from[2];
1493   to[9] = (GLfloat) from[6];
1494   to[10] = (GLfloat) from[10];
1495   to[11] = (GLfloat) from[14];
1496   to[12] = (GLfloat) from[3];
1497   to[13] = (GLfloat) from[7];
1498   to[14] = (GLfloat) from[11];
1499   to[15] = (GLfloat) from[15];
1500}
1501
1502/*@}*/
1503
1504
1505/**
1506 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1507 * function is used for transforming clipping plane equations and spotlight
1508 * directions.
1509 * Mathematically,  u = v * m.
1510 * Input:  v - input vector
1511 *         m - transformation matrix
1512 * Output:  u - transformed vector
1513 */
1514void
1515_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1516{
1517   const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1518#define M(row,col)  m[row + col*4]
1519   u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1520   u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1521   u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1522   u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1523#undef M
1524}
1525