1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/** 27 * \file m_matrix.c 28 * Matrix operations. 29 * 30 * \note 31 * -# 4x4 transformation matrices are stored in memory in column major order. 32 * -# Points/vertices are to be thought of as column vectors. 33 * -# Transformation of a point p by a matrix M is: p' = M * p 34 */ 35 36#include <stddef.h> 37#include <math.h> 38 39#include "main/errors.h" 40#include "main/glheader.h" 41#include "main/macros.h" 42#define MATH_ASM_PTR_SIZE sizeof(void *) 43#include "math/m_vector_asm.h" 44 45#include "m_matrix.h" 46 47#include "util/u_memory.h" 48 49 50/** 51 * \defgroup MatFlags MAT_FLAG_XXX-flags 52 * 53 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags 54 */ 55/*@{*/ 56#define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 57 * (Not actually used - the identity 58 * matrix is identified by the absence 59 * of all other flags.) 60 */ 61#define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 62#define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 63#define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 64#define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 65#define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 66#define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */ 67#define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */ 68#define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */ 69#define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */ 70#define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */ 71#define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */ 72 73/** angle preserving matrix flags mask */ 74#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \ 75 MAT_FLAG_TRANSLATION | \ 76 MAT_FLAG_UNIFORM_SCALE) 77 78/** geometry related matrix flags mask */ 79#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \ 80 MAT_FLAG_ROTATION | \ 81 MAT_FLAG_TRANSLATION | \ 82 MAT_FLAG_UNIFORM_SCALE | \ 83 MAT_FLAG_GENERAL_SCALE | \ 84 MAT_FLAG_GENERAL_3D | \ 85 MAT_FLAG_PERSPECTIVE | \ 86 MAT_FLAG_SINGULAR) 87 88/** length preserving matrix flags mask */ 89#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \ 90 MAT_FLAG_TRANSLATION) 91 92 93/** 3D (non-perspective) matrix flags mask */ 94#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \ 95 MAT_FLAG_TRANSLATION | \ 96 MAT_FLAG_UNIFORM_SCALE | \ 97 MAT_FLAG_GENERAL_SCALE | \ 98 MAT_FLAG_GENERAL_3D) 99 100/** dirty matrix flags mask */ 101#define MAT_DIRTY (MAT_DIRTY_TYPE | \ 102 MAT_DIRTY_FLAGS | \ 103 MAT_DIRTY_INVERSE) 104 105/*@}*/ 106 107 108/** 109 * Test geometry related matrix flags. 110 * 111 * \param mat a pointer to a GLmatrix structure. 112 * \param a flags mask. 113 * 114 * \returns non-zero if all geometry related matrix flags are contained within 115 * the mask, or zero otherwise. 116 */ 117#define TEST_MAT_FLAGS(mat, a) \ 118 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0) 119 120 121 122/** 123 * Names of the corresponding GLmatrixtype values. 124 */ 125static const char *types[] = { 126 "MATRIX_GENERAL", 127 "MATRIX_IDENTITY", 128 "MATRIX_3D_NO_ROT", 129 "MATRIX_PERSPECTIVE", 130 "MATRIX_2D", 131 "MATRIX_2D_NO_ROT", 132 "MATRIX_3D" 133}; 134 135 136/** 137 * Identity matrix. 138 */ 139static const GLfloat Identity[16] = { 140 1.0, 0.0, 0.0, 0.0, 141 0.0, 1.0, 0.0, 0.0, 142 0.0, 0.0, 1.0, 0.0, 143 0.0, 0.0, 0.0, 1.0 144}; 145 146 147 148/**********************************************************************/ 149/** \name Matrix multiplication */ 150/*@{*/ 151 152#define A(row,col) a[(col<<2)+row] 153#define B(row,col) b[(col<<2)+row] 154#define P(row,col) product[(col<<2)+row] 155 156/** 157 * Perform a full 4x4 matrix multiplication. 158 * 159 * \param a matrix. 160 * \param b matrix. 161 * \param product will receive the product of \p a and \p b. 162 * 163 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed. 164 * 165 * \note KW: 4*16 = 64 multiplications 166 * 167 * \author This \c matmul was contributed by Thomas Malik 168 */ 169static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) 170{ 171 GLint i; 172 for (i = 0; i < 4; i++) { 173 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 174 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); 175 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); 176 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); 177 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); 178 } 179} 180 181/** 182 * Multiply two matrices known to occupy only the top three rows, such 183 * as typical model matrices, and orthogonal matrices. 184 * 185 * \param a matrix. 186 * \param b matrix. 187 * \param product will receive the product of \p a and \p b. 188 */ 189static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) 190{ 191 GLint i; 192 for (i = 0; i < 3; i++) { 193 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); 194 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); 195 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); 196 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); 197 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; 198 } 199 P(3,0) = 0; 200 P(3,1) = 0; 201 P(3,2) = 0; 202 P(3,3) = 1; 203} 204 205#undef A 206#undef B 207#undef P 208 209/** 210 * Multiply a matrix by an array of floats with known properties. 211 * 212 * \param mat pointer to a GLmatrix structure containing the left multiplication 213 * matrix, and that will receive the product result. 214 * \param m right multiplication matrix array. 215 * \param flags flags of the matrix \p m. 216 * 217 * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 218 * if both matrices are 3D, or matmul4() otherwise. 219 */ 220static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) 221{ 222 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); 223 224 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) 225 matmul34( mat->m, mat->m, m ); 226 else 227 matmul4( mat->m, mat->m, m ); 228} 229 230/** 231 * Matrix multiplication. 232 * 233 * \param dest destination matrix. 234 * \param a left matrix. 235 * \param b right matrix. 236 * 237 * Joins both flags and marks the type and inverse as dirty. Calls matmul34() 238 * if both matrices are 3D, or matmul4() otherwise. 239 */ 240void 241_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) 242{ 243 dest->flags = (a->flags | 244 b->flags | 245 MAT_DIRTY_TYPE | 246 MAT_DIRTY_INVERSE); 247 248 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) 249 matmul34( dest->m, a->m, b->m ); 250 else 251 matmul4( dest->m, a->m, b->m ); 252} 253 254/** 255 * Matrix multiplication. 256 * 257 * \param dest left and destination matrix. 258 * \param m right matrix array. 259 * 260 * Marks the matrix flags with general flag, and type and inverse dirty flags. 261 * Calls matmul4() for the multiplication. 262 */ 263void 264_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) 265{ 266 dest->flags |= (MAT_FLAG_GENERAL | 267 MAT_DIRTY_TYPE | 268 MAT_DIRTY_INVERSE | 269 MAT_DIRTY_FLAGS); 270 271 matmul4( dest->m, dest->m, m ); 272} 273 274/*@}*/ 275 276 277/**********************************************************************/ 278/** \name Matrix output */ 279/*@{*/ 280 281/** 282 * Print a matrix array. 283 * 284 * \param m matrix array. 285 * 286 * Called by _math_matrix_print() to print a matrix or its inverse. 287 */ 288static void print_matrix_floats( const GLfloat m[16] ) 289{ 290 int i; 291 for (i=0;i<4;i++) { 292 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); 293 } 294} 295 296/** 297 * Dumps the contents of a GLmatrix structure. 298 * 299 * \param m pointer to the GLmatrix structure. 300 */ 301void 302_math_matrix_print( const GLmatrix *m ) 303{ 304 GLfloat prod[16]; 305 306 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); 307 print_matrix_floats(m->m); 308 _mesa_debug(NULL, "Inverse: \n"); 309 print_matrix_floats(m->inv); 310 matmul4(prod, m->m, m->inv); 311 _mesa_debug(NULL, "Mat * Inverse:\n"); 312 print_matrix_floats(prod); 313} 314 315/*@}*/ 316 317 318/** 319 * References an element of 4x4 matrix. 320 * 321 * \param m matrix array. 322 * \param c column of the desired element. 323 * \param r row of the desired element. 324 * 325 * \return value of the desired element. 326 * 327 * Calculate the linear storage index of the element and references it. 328 */ 329#define MAT(m,r,c) (m)[(c)*4+(r)] 330 331 332/**********************************************************************/ 333/** \name Matrix inversion */ 334/*@{*/ 335 336/** 337 * Compute inverse of 4x4 transformation matrix. 338 * 339 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 340 * stored in the GLmatrix::inv attribute. 341 * 342 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 343 * 344 * \author 345 * Code contributed by Jacques Leroy jle@star.be 346 * 347 * Calculates the inverse matrix by performing the gaussian matrix reduction 348 * with partial pivoting followed by back/substitution with the loops manually 349 * unrolled. 350 */ 351static GLboolean invert_matrix_general( GLmatrix *mat ) 352{ 353 return util_invert_mat4x4(mat->inv, mat->m); 354} 355 356/** 357 * Compute inverse of a general 3d transformation matrix. 358 * 359 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 360 * stored in the GLmatrix::inv attribute. 361 * 362 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 363 * 364 * \author Adapted from graphics gems II. 365 * 366 * Calculates the inverse of the upper left by first calculating its 367 * determinant and multiplying it to the symmetric adjust matrix of each 368 * element. Finally deals with the translation part by transforming the 369 * original translation vector using by the calculated submatrix inverse. 370 */ 371static GLboolean invert_matrix_3d_general( GLmatrix *mat ) 372{ 373 const GLfloat *in = mat->m; 374 GLfloat *out = mat->inv; 375 GLfloat pos, neg, t; 376 GLfloat det; 377 378 /* Calculate the determinant of upper left 3x3 submatrix and 379 * determine if the matrix is singular. 380 */ 381 pos = neg = 0.0; 382 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); 383 if (t >= 0.0F) pos += t; else neg += t; 384 385 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); 386 if (t >= 0.0F) pos += t; else neg += t; 387 388 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); 389 if (t >= 0.0F) pos += t; else neg += t; 390 391 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); 392 if (t >= 0.0F) pos += t; else neg += t; 393 394 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); 395 if (t >= 0.0F) pos += t; else neg += t; 396 397 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); 398 if (t >= 0.0F) pos += t; else neg += t; 399 400 det = pos + neg; 401 402 if (fabsf(det) < 1e-25F) 403 return GL_FALSE; 404 405 det = 1.0F / det; 406 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); 407 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); 408 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); 409 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); 410 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); 411 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); 412 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); 413 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); 414 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); 415 416 /* Do the translation part */ 417 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 418 MAT(in,1,3) * MAT(out,0,1) + 419 MAT(in,2,3) * MAT(out,0,2) ); 420 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 421 MAT(in,1,3) * MAT(out,1,1) + 422 MAT(in,2,3) * MAT(out,1,2) ); 423 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 424 MAT(in,1,3) * MAT(out,2,1) + 425 MAT(in,2,3) * MAT(out,2,2) ); 426 427 return GL_TRUE; 428} 429 430/** 431 * Compute inverse of a 3d transformation matrix. 432 * 433 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 434 * stored in the GLmatrix::inv attribute. 435 * 436 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 437 * 438 * If the matrix is not an angle preserving matrix then calls 439 * invert_matrix_3d_general for the actual calculation. Otherwise calculates 440 * the inverse matrix analyzing and inverting each of the scaling, rotation and 441 * translation parts. 442 */ 443static GLboolean invert_matrix_3d( GLmatrix *mat ) 444{ 445 const GLfloat *in = mat->m; 446 GLfloat *out = mat->inv; 447 448 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { 449 return invert_matrix_3d_general( mat ); 450 } 451 452 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { 453 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + 454 MAT(in,0,1) * MAT(in,0,1) + 455 MAT(in,0,2) * MAT(in,0,2)); 456 457 if (scale == 0.0F) 458 return GL_FALSE; 459 460 scale = 1.0F / scale; 461 462 /* Transpose and scale the 3 by 3 upper-left submatrix. */ 463 MAT(out,0,0) = scale * MAT(in,0,0); 464 MAT(out,1,0) = scale * MAT(in,0,1); 465 MAT(out,2,0) = scale * MAT(in,0,2); 466 MAT(out,0,1) = scale * MAT(in,1,0); 467 MAT(out,1,1) = scale * MAT(in,1,1); 468 MAT(out,2,1) = scale * MAT(in,1,2); 469 MAT(out,0,2) = scale * MAT(in,2,0); 470 MAT(out,1,2) = scale * MAT(in,2,1); 471 MAT(out,2,2) = scale * MAT(in,2,2); 472 } 473 else if (mat->flags & MAT_FLAG_ROTATION) { 474 /* Transpose the 3 by 3 upper-left submatrix. */ 475 MAT(out,0,0) = MAT(in,0,0); 476 MAT(out,1,0) = MAT(in,0,1); 477 MAT(out,2,0) = MAT(in,0,2); 478 MAT(out,0,1) = MAT(in,1,0); 479 MAT(out,1,1) = MAT(in,1,1); 480 MAT(out,2,1) = MAT(in,1,2); 481 MAT(out,0,2) = MAT(in,2,0); 482 MAT(out,1,2) = MAT(in,2,1); 483 MAT(out,2,2) = MAT(in,2,2); 484 } 485 else { 486 /* pure translation */ 487 memcpy( out, Identity, sizeof(Identity) ); 488 MAT(out,0,3) = - MAT(in,0,3); 489 MAT(out,1,3) = - MAT(in,1,3); 490 MAT(out,2,3) = - MAT(in,2,3); 491 return GL_TRUE; 492 } 493 494 if (mat->flags & MAT_FLAG_TRANSLATION) { 495 /* Do the translation part */ 496 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + 497 MAT(in,1,3) * MAT(out,0,1) + 498 MAT(in,2,3) * MAT(out,0,2) ); 499 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + 500 MAT(in,1,3) * MAT(out,1,1) + 501 MAT(in,2,3) * MAT(out,1,2) ); 502 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + 503 MAT(in,1,3) * MAT(out,2,1) + 504 MAT(in,2,3) * MAT(out,2,2) ); 505 } 506 else { 507 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; 508 } 509 510 return GL_TRUE; 511} 512 513/** 514 * Compute inverse of an identity transformation matrix. 515 * 516 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 517 * stored in the GLmatrix::inv attribute. 518 * 519 * \return always GL_TRUE. 520 * 521 * Simply copies Identity into GLmatrix::inv. 522 */ 523static GLboolean invert_matrix_identity( GLmatrix *mat ) 524{ 525 memcpy( mat->inv, Identity, sizeof(Identity) ); 526 return GL_TRUE; 527} 528 529/** 530 * Compute inverse of a no-rotation 3d transformation matrix. 531 * 532 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 533 * stored in the GLmatrix::inv attribute. 534 * 535 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 536 * 537 * Calculates the 538 */ 539static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) 540{ 541 const GLfloat *in = mat->m; 542 GLfloat *out = mat->inv; 543 544 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) 545 return GL_FALSE; 546 547 memcpy( out, Identity, sizeof(Identity) ); 548 MAT(out,0,0) = 1.0F / MAT(in,0,0); 549 MAT(out,1,1) = 1.0F / MAT(in,1,1); 550 MAT(out,2,2) = 1.0F / MAT(in,2,2); 551 552 if (mat->flags & MAT_FLAG_TRANSLATION) { 553 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 554 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 555 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); 556 } 557 558 return GL_TRUE; 559} 560 561/** 562 * Compute inverse of a no-rotation 2d transformation matrix. 563 * 564 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 565 * stored in the GLmatrix::inv attribute. 566 * 567 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 568 * 569 * Calculates the inverse matrix by applying the inverse scaling and 570 * translation to the identity matrix. 571 */ 572static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) 573{ 574 const GLfloat *in = mat->m; 575 GLfloat *out = mat->inv; 576 577 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) 578 return GL_FALSE; 579 580 memcpy( out, Identity, sizeof(Identity) ); 581 MAT(out,0,0) = 1.0F / MAT(in,0,0); 582 MAT(out,1,1) = 1.0F / MAT(in,1,1); 583 584 if (mat->flags & MAT_FLAG_TRANSLATION) { 585 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); 586 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); 587 } 588 589 return GL_TRUE; 590} 591 592#if 0 593/* broken */ 594static GLboolean invert_matrix_perspective( GLmatrix *mat ) 595{ 596 const GLfloat *in = mat->m; 597 GLfloat *out = mat->inv; 598 599 if (MAT(in,2,3) == 0) 600 return GL_FALSE; 601 602 memcpy( out, Identity, sizeof(Identity) ); 603 604 MAT(out,0,0) = 1.0F / MAT(in,0,0); 605 MAT(out,1,1) = 1.0F / MAT(in,1,1); 606 607 MAT(out,0,3) = MAT(in,0,2); 608 MAT(out,1,3) = MAT(in,1,2); 609 610 MAT(out,2,2) = 0; 611 MAT(out,2,3) = -1; 612 613 MAT(out,3,2) = 1.0F / MAT(in,2,3); 614 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); 615 616 return GL_TRUE; 617} 618#endif 619 620/** 621 * Matrix inversion function pointer type. 622 */ 623typedef GLboolean (*inv_mat_func)( GLmatrix *mat ); 624 625/** 626 * Table of the matrix inversion functions according to the matrix type. 627 */ 628static inv_mat_func inv_mat_tab[7] = { 629 invert_matrix_general, 630 invert_matrix_identity, 631 invert_matrix_3d_no_rot, 632#if 0 633 /* Don't use this function for now - it fails when the projection matrix 634 * is premultiplied by a translation (ala Chromium's tilesort SPU). 635 */ 636 invert_matrix_perspective, 637#else 638 invert_matrix_general, 639#endif 640 invert_matrix_3d, /* lazy! */ 641 invert_matrix_2d_no_rot, 642 invert_matrix_3d 643}; 644 645/** 646 * Compute inverse of a transformation matrix. 647 * 648 * \param mat pointer to a GLmatrix structure. The matrix inverse will be 649 * stored in the GLmatrix::inv attribute. 650 * 651 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). 652 * 653 * Calls the matrix inversion function in inv_mat_tab corresponding to the 654 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, 655 * and copies the identity matrix into GLmatrix::inv. 656 */ 657static GLboolean matrix_invert( GLmatrix *mat ) 658{ 659 if (inv_mat_tab[mat->type](mat)) { 660 mat->flags &= ~MAT_FLAG_SINGULAR; 661 return GL_TRUE; 662 } else { 663 mat->flags |= MAT_FLAG_SINGULAR; 664 memcpy( mat->inv, Identity, sizeof(Identity) ); 665 return GL_FALSE; 666 } 667} 668 669/*@}*/ 670 671 672/**********************************************************************/ 673/** \name Matrix generation */ 674/*@{*/ 675 676/** 677 * Generate a 4x4 transformation matrix from glRotate parameters, and 678 * post-multiply the input matrix by it. 679 * 680 * \author 681 * This function was contributed by Erich Boleyn (erich@uruk.org). 682 * Optimizations contributed by Rudolf Opalla (rudi@khm.de). 683 */ 684void 685_math_matrix_rotate( GLmatrix *mat, 686 GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) 687{ 688 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; 689 GLfloat m[16]; 690 GLboolean optimized; 691 692 s = sinf( angle * M_PI / 180.0 ); 693 c = cosf( angle * M_PI / 180.0 ); 694 695 memcpy(m, Identity, sizeof(Identity)); 696 optimized = GL_FALSE; 697 698#define M(row,col) m[col*4+row] 699 700 if (x == 0.0F) { 701 if (y == 0.0F) { 702 if (z != 0.0F) { 703 optimized = GL_TRUE; 704 /* rotate only around z-axis */ 705 M(0,0) = c; 706 M(1,1) = c; 707 if (z < 0.0F) { 708 M(0,1) = s; 709 M(1,0) = -s; 710 } 711 else { 712 M(0,1) = -s; 713 M(1,0) = s; 714 } 715 } 716 } 717 else if (z == 0.0F) { 718 optimized = GL_TRUE; 719 /* rotate only around y-axis */ 720 M(0,0) = c; 721 M(2,2) = c; 722 if (y < 0.0F) { 723 M(0,2) = -s; 724 M(2,0) = s; 725 } 726 else { 727 M(0,2) = s; 728 M(2,0) = -s; 729 } 730 } 731 } 732 else if (y == 0.0F) { 733 if (z == 0.0F) { 734 optimized = GL_TRUE; 735 /* rotate only around x-axis */ 736 M(1,1) = c; 737 M(2,2) = c; 738 if (x < 0.0F) { 739 M(1,2) = s; 740 M(2,1) = -s; 741 } 742 else { 743 M(1,2) = -s; 744 M(2,1) = s; 745 } 746 } 747 } 748 749 if (!optimized) { 750 const GLfloat mag = sqrtf(x * x + y * y + z * z); 751 752 if (mag <= 1.0e-4F) { 753 /* no rotation, leave mat as-is */ 754 return; 755 } 756 757 x /= mag; 758 y /= mag; 759 z /= mag; 760 761 762 /* 763 * Arbitrary axis rotation matrix. 764 * 765 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied 766 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation 767 * (which is about the X-axis), and the two composite transforms 768 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary 769 * from the arbitrary axis to the X-axis then back. They are 770 * all elementary rotations. 771 * 772 * Rz' is a rotation about the Z-axis, to bring the axis vector 773 * into the x-z plane. Then Ry' is applied, rotating about the 774 * Y-axis to bring the axis vector parallel with the X-axis. The 775 * rotation about the X-axis is then performed. Ry and Rz are 776 * simply the respective inverse transforms to bring the arbitrary 777 * axis back to its original orientation. The first transforms 778 * Rz' and Ry' are considered inverses, since the data from the 779 * arbitrary axis gives you info on how to get to it, not how 780 * to get away from it, and an inverse must be applied. 781 * 782 * The basic calculation used is to recognize that the arbitrary 783 * axis vector (x, y, z), since it is of unit length, actually 784 * represents the sines and cosines of the angles to rotate the 785 * X-axis to the same orientation, with theta being the angle about 786 * Z and phi the angle about Y (in the order described above) 787 * as follows: 788 * 789 * cos ( theta ) = x / sqrt ( 1 - z^2 ) 790 * sin ( theta ) = y / sqrt ( 1 - z^2 ) 791 * 792 * cos ( phi ) = sqrt ( 1 - z^2 ) 793 * sin ( phi ) = z 794 * 795 * Note that cos ( phi ) can further be inserted to the above 796 * formulas: 797 * 798 * cos ( theta ) = x / cos ( phi ) 799 * sin ( theta ) = y / sin ( phi ) 800 * 801 * ...etc. Because of those relations and the standard trigonometric 802 * relations, it is pssible to reduce the transforms down to what 803 * is used below. It may be that any primary axis chosen will give the 804 * same results (modulo a sign convention) using thie method. 805 * 806 * Particularly nice is to notice that all divisions that might 807 * have caused trouble when parallel to certain planes or 808 * axis go away with care paid to reducing the expressions. 809 * After checking, it does perform correctly under all cases, since 810 * in all the cases of division where the denominator would have 811 * been zero, the numerator would have been zero as well, giving 812 * the expected result. 813 */ 814 815 xx = x * x; 816 yy = y * y; 817 zz = z * z; 818 xy = x * y; 819 yz = y * z; 820 zx = z * x; 821 xs = x * s; 822 ys = y * s; 823 zs = z * s; 824 one_c = 1.0F - c; 825 826 /* We already hold the identity-matrix so we can skip some statements */ 827 M(0,0) = (one_c * xx) + c; 828 M(0,1) = (one_c * xy) - zs; 829 M(0,2) = (one_c * zx) + ys; 830/* M(0,3) = 0.0F; */ 831 832 M(1,0) = (one_c * xy) + zs; 833 M(1,1) = (one_c * yy) + c; 834 M(1,2) = (one_c * yz) - xs; 835/* M(1,3) = 0.0F; */ 836 837 M(2,0) = (one_c * zx) - ys; 838 M(2,1) = (one_c * yz) + xs; 839 M(2,2) = (one_c * zz) + c; 840/* M(2,3) = 0.0F; */ 841 842/* 843 M(3,0) = 0.0F; 844 M(3,1) = 0.0F; 845 M(3,2) = 0.0F; 846 M(3,3) = 1.0F; 847*/ 848 } 849#undef M 850 851 matrix_multf( mat, m, MAT_FLAG_ROTATION ); 852} 853 854/** 855 * Apply a perspective projection matrix. 856 * 857 * \param mat matrix to apply the projection. 858 * \param left left clipping plane coordinate. 859 * \param right right clipping plane coordinate. 860 * \param bottom bottom clipping plane coordinate. 861 * \param top top clipping plane coordinate. 862 * \param nearval distance to the near clipping plane. 863 * \param farval distance to the far clipping plane. 864 * 865 * Creates the projection matrix and multiplies it with \p mat, marking the 866 * MAT_FLAG_PERSPECTIVE flag. 867 */ 868void 869_math_matrix_frustum( GLmatrix *mat, 870 GLfloat left, GLfloat right, 871 GLfloat bottom, GLfloat top, 872 GLfloat nearval, GLfloat farval ) 873{ 874 GLfloat x, y, a, b, c, d; 875 GLfloat m[16]; 876 877 x = (2.0F*nearval) / (right-left); 878 y = (2.0F*nearval) / (top-bottom); 879 a = (right+left) / (right-left); 880 b = (top+bottom) / (top-bottom); 881 c = -(farval+nearval) / ( farval-nearval); 882 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ 883 884#define M(row,col) m[col*4+row] 885 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; 886 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; 887 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; 888 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; 889#undef M 890 891 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); 892} 893 894/** 895 * Create an orthographic projection matrix. 896 * 897 * \param m float array in which to store the project matrix 898 * \param left left clipping plane coordinate. 899 * \param right right clipping plane coordinate. 900 * \param bottom bottom clipping plane coordinate. 901 * \param top top clipping plane coordinate. 902 * \param nearval distance to the near clipping plane. 903 * \param farval distance to the far clipping plane. 904 * 905 * Creates the projection matrix and stored the values in \p m. As with other 906 * OpenGL matrices, the data is stored in column-major ordering. 907 */ 908void 909_math_float_ortho(float *m, 910 float left, float right, 911 float bottom, float top, 912 float nearval, float farval) 913{ 914#define M(row,col) m[col*4+row] 915 M(0,0) = 2.0F / (right-left); 916 M(0,1) = 0.0F; 917 M(0,2) = 0.0F; 918 M(0,3) = -(right+left) / (right-left); 919 920 M(1,0) = 0.0F; 921 M(1,1) = 2.0F / (top-bottom); 922 M(1,2) = 0.0F; 923 M(1,3) = -(top+bottom) / (top-bottom); 924 925 M(2,0) = 0.0F; 926 M(2,1) = 0.0F; 927 M(2,2) = -2.0F / (farval-nearval); 928 M(2,3) = -(farval+nearval) / (farval-nearval); 929 930 M(3,0) = 0.0F; 931 M(3,1) = 0.0F; 932 M(3,2) = 0.0F; 933 M(3,3) = 1.0F; 934#undef M 935} 936 937/** 938 * Apply an orthographic projection matrix. 939 * 940 * \param mat matrix to apply the projection. 941 * \param left left clipping plane coordinate. 942 * \param right right clipping plane coordinate. 943 * \param bottom bottom clipping plane coordinate. 944 * \param top top clipping plane coordinate. 945 * \param nearval distance to the near clipping plane. 946 * \param farval distance to the far clipping plane. 947 * 948 * Creates the projection matrix and multiplies it with \p mat, marking the 949 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags. 950 */ 951void 952_math_matrix_ortho( GLmatrix *mat, 953 GLfloat left, GLfloat right, 954 GLfloat bottom, GLfloat top, 955 GLfloat nearval, GLfloat farval ) 956{ 957 GLfloat m[16]; 958 959 _math_float_ortho(m, left, right, bottom, top, nearval, farval); 960 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); 961} 962 963/** 964 * Multiply a matrix with a general scaling matrix. 965 * 966 * \param mat matrix. 967 * \param x x axis scale factor. 968 * \param y y axis scale factor. 969 * \param z z axis scale factor. 970 * 971 * Multiplies in-place the elements of \p mat by the scale factors. Checks if 972 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE 973 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and 974 * MAT_DIRTY_INVERSE dirty flags. 975 */ 976void 977_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 978{ 979 GLfloat *m = mat->m; 980 m[0] *= x; m[4] *= y; m[8] *= z; 981 m[1] *= x; m[5] *= y; m[9] *= z; 982 m[2] *= x; m[6] *= y; m[10] *= z; 983 m[3] *= x; m[7] *= y; m[11] *= z; 984 985 if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F) 986 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 987 else 988 mat->flags |= MAT_FLAG_GENERAL_SCALE; 989 990 mat->flags |= (MAT_DIRTY_TYPE | 991 MAT_DIRTY_INVERSE); 992} 993 994/** 995 * Multiply a matrix with a translation matrix. 996 * 997 * \param mat matrix. 998 * \param x translation vector x coordinate. 999 * \param y translation vector y coordinate. 1000 * \param z translation vector z coordinate. 1001 * 1002 * Adds the translation coordinates to the elements of \p mat in-place. Marks 1003 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE 1004 * dirty flags. 1005 */ 1006void 1007_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) 1008{ 1009 GLfloat *m = mat->m; 1010 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; 1011 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; 1012 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; 1013 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; 1014 1015 mat->flags |= (MAT_FLAG_TRANSLATION | 1016 MAT_DIRTY_TYPE | 1017 MAT_DIRTY_INVERSE); 1018} 1019 1020 1021/** 1022 * Set matrix to do viewport and depthrange mapping. 1023 * Transforms Normalized Device Coords to window/Z values. 1024 */ 1025void 1026_math_matrix_viewport(GLmatrix *m, const float scale[3], 1027 const float translate[3], double depthMax) 1028{ 1029 m->m[MAT_SX] = scale[0]; 1030 m->m[MAT_TX] = translate[0]; 1031 m->m[MAT_SY] = scale[1]; 1032 m->m[MAT_TY] = translate[1]; 1033 m->m[MAT_SZ] = depthMax*scale[2]; 1034 m->m[MAT_TZ] = depthMax*translate[2]; 1035 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION; 1036 m->type = MATRIX_3D_NO_ROT; 1037} 1038 1039 1040/** 1041 * Set a matrix to the identity matrix. 1042 * 1043 * \param mat matrix. 1044 * 1045 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL. 1046 * Sets the matrix type to identity, and clear the dirty flags. 1047 */ 1048void 1049_math_matrix_set_identity( GLmatrix *mat ) 1050{ 1051 STATIC_ASSERT(MATRIX_M == offsetof(GLmatrix, m)); 1052 STATIC_ASSERT(MATRIX_INV == offsetof(GLmatrix, inv)); 1053 1054 memcpy( mat->m, Identity, sizeof(Identity) ); 1055 memcpy( mat->inv, Identity, sizeof(Identity) ); 1056 1057 mat->type = MATRIX_IDENTITY; 1058 mat->flags &= ~(MAT_DIRTY_FLAGS| 1059 MAT_DIRTY_TYPE| 1060 MAT_DIRTY_INVERSE); 1061} 1062 1063/*@}*/ 1064 1065 1066/**********************************************************************/ 1067/** \name Matrix analysis */ 1068/*@{*/ 1069 1070#define ZERO(x) (1<<x) 1071#define ONE(x) (1<<(x+16)) 1072 1073#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) 1074#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) 1075 1076#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ 1077 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ 1078 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1079 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1080 1081#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1082 ZERO(1) | ZERO(9) | \ 1083 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1084 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1085 1086#define MASK_2D ( ZERO(8) | \ 1087 ZERO(9) | \ 1088 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ 1089 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1090 1091 1092#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ 1093 ZERO(1) | ZERO(9) | \ 1094 ZERO(2) | ZERO(6) | \ 1095 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1096 1097#define MASK_3D ( \ 1098 \ 1099 \ 1100 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) 1101 1102 1103#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ 1104 ZERO(1) | ZERO(13) |\ 1105 ZERO(2) | ZERO(6) | \ 1106 ZERO(3) | ZERO(7) | ZERO(15) ) 1107 1108#define SQ(x) ((x)*(x)) 1109 1110/** 1111 * Determine type and flags from scratch. 1112 * 1113 * \param mat matrix. 1114 * 1115 * This is expensive enough to only want to do it once. 1116 */ 1117static void analyse_from_scratch( GLmatrix *mat ) 1118{ 1119 const GLfloat *m = mat->m; 1120 GLuint mask = 0; 1121 GLuint i; 1122 1123 for (i = 0 ; i < 16 ; i++) { 1124 if (m[i] == 0.0F) mask |= (1<<i); 1125 } 1126 1127 if (m[0] == 1.0F) mask |= (1<<16); 1128 if (m[5] == 1.0F) mask |= (1<<21); 1129 if (m[10] == 1.0F) mask |= (1<<26); 1130 if (m[15] == 1.0F) mask |= (1<<31); 1131 1132 mat->flags &= ~MAT_FLAGS_GEOMETRY; 1133 1134 /* Check for translation - no-one really cares 1135 */ 1136 if ((mask & MASK_NO_TRX) != MASK_NO_TRX) 1137 mat->flags |= MAT_FLAG_TRANSLATION; 1138 1139 /* Do the real work 1140 */ 1141 if (mask == (GLuint) MASK_IDENTITY) { 1142 mat->type = MATRIX_IDENTITY; 1143 } 1144 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { 1145 mat->type = MATRIX_2D_NO_ROT; 1146 1147 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) 1148 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1149 } 1150 else if ((mask & MASK_2D) == (GLuint) MASK_2D) { 1151 GLfloat mm = DOT2(m, m); 1152 GLfloat m4m4 = DOT2(m+4,m+4); 1153 GLfloat mm4 = DOT2(m,m+4); 1154 1155 mat->type = MATRIX_2D; 1156 1157 /* Check for scale */ 1158 if (SQ(mm-1) > SQ(1e-6F) || 1159 SQ(m4m4-1) > SQ(1e-6F)) 1160 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1161 1162 /* Check for rotation */ 1163 if (SQ(mm4) > SQ(1e-6F)) 1164 mat->flags |= MAT_FLAG_GENERAL_3D; 1165 else 1166 mat->flags |= MAT_FLAG_ROTATION; 1167 1168 } 1169 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { 1170 mat->type = MATRIX_3D_NO_ROT; 1171 1172 /* Check for scale */ 1173 if (SQ(m[0]-m[5]) < SQ(1e-6F) && 1174 SQ(m[0]-m[10]) < SQ(1e-6F)) { 1175 if (SQ(m[0]-1.0F) > SQ(1e-6F)) { 1176 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1177 } 1178 } 1179 else { 1180 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1181 } 1182 } 1183 else if ((mask & MASK_3D) == (GLuint) MASK_3D) { 1184 GLfloat c1 = DOT3(m,m); 1185 GLfloat c2 = DOT3(m+4,m+4); 1186 GLfloat c3 = DOT3(m+8,m+8); 1187 GLfloat d1 = DOT3(m, m+4); 1188 GLfloat cp[3]; 1189 1190 mat->type = MATRIX_3D; 1191 1192 /* Check for scale */ 1193 if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) { 1194 if (SQ(c1-1.0F) > SQ(1e-6F)) 1195 mat->flags |= MAT_FLAG_UNIFORM_SCALE; 1196 /* else no scale at all */ 1197 } 1198 else { 1199 mat->flags |= MAT_FLAG_GENERAL_SCALE; 1200 } 1201 1202 /* Check for rotation */ 1203 if (SQ(d1) < SQ(1e-6F)) { 1204 CROSS3( cp, m, m+4 ); 1205 SUB_3V( cp, cp, (m+8) ); 1206 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F)) 1207 mat->flags |= MAT_FLAG_ROTATION; 1208 else 1209 mat->flags |= MAT_FLAG_GENERAL_3D; 1210 } 1211 else { 1212 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ 1213 } 1214 } 1215 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { 1216 mat->type = MATRIX_PERSPECTIVE; 1217 mat->flags |= MAT_FLAG_GENERAL; 1218 } 1219 else { 1220 mat->type = MATRIX_GENERAL; 1221 mat->flags |= MAT_FLAG_GENERAL; 1222 } 1223} 1224 1225/** 1226 * Analyze a matrix given that its flags are accurate. 1227 * 1228 * This is the more common operation, hopefully. 1229 */ 1230static void analyse_from_flags( GLmatrix *mat ) 1231{ 1232 const GLfloat *m = mat->m; 1233 1234 if (TEST_MAT_FLAGS(mat, 0)) { 1235 mat->type = MATRIX_IDENTITY; 1236 } 1237 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | 1238 MAT_FLAG_UNIFORM_SCALE | 1239 MAT_FLAG_GENERAL_SCALE))) { 1240 if ( m[10]==1.0F && m[14]==0.0F ) { 1241 mat->type = MATRIX_2D_NO_ROT; 1242 } 1243 else { 1244 mat->type = MATRIX_3D_NO_ROT; 1245 } 1246 } 1247 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { 1248 if ( m[ 8]==0.0F 1249 && m[ 9]==0.0F 1250 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { 1251 mat->type = MATRIX_2D; 1252 } 1253 else { 1254 mat->type = MATRIX_3D; 1255 } 1256 } 1257 else if ( m[4]==0.0F && m[12]==0.0F 1258 && m[1]==0.0F && m[13]==0.0F 1259 && m[2]==0.0F && m[6]==0.0F 1260 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { 1261 mat->type = MATRIX_PERSPECTIVE; 1262 } 1263 else { 1264 mat->type = MATRIX_GENERAL; 1265 } 1266} 1267 1268/** 1269 * Analyze and update a matrix. 1270 * 1271 * \param mat matrix. 1272 * 1273 * If the matrix type is dirty then calls either analyse_from_scratch() or 1274 * analyse_from_flags() to determine its type, according to whether the flags 1275 * are dirty or not, respectively. If the matrix has an inverse and it's dirty 1276 * then calls matrix_invert(). Finally clears the dirty flags. 1277 */ 1278void 1279_math_matrix_analyse( GLmatrix *mat ) 1280{ 1281 if (mat->flags & MAT_DIRTY_TYPE) { 1282 if (mat->flags & MAT_DIRTY_FLAGS) 1283 analyse_from_scratch( mat ); 1284 else 1285 analyse_from_flags( mat ); 1286 } 1287 1288 if (mat->flags & MAT_DIRTY_INVERSE) { 1289 matrix_invert( mat ); 1290 mat->flags &= ~MAT_DIRTY_INVERSE; 1291 } 1292 1293 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); 1294} 1295 1296/*@}*/ 1297 1298 1299/** 1300 * Test if the given matrix preserves vector lengths. 1301 */ 1302GLboolean 1303_math_matrix_is_length_preserving( const GLmatrix *m ) 1304{ 1305 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING); 1306} 1307 1308 1309/** 1310 * Test if the given matrix does any rotation. 1311 * (or perhaps if the upper-left 3x3 is non-identity) 1312 */ 1313GLboolean 1314_math_matrix_has_rotation( const GLmatrix *m ) 1315{ 1316 if (m->flags & (MAT_FLAG_GENERAL | 1317 MAT_FLAG_ROTATION | 1318 MAT_FLAG_GENERAL_3D | 1319 MAT_FLAG_PERSPECTIVE)) 1320 return GL_TRUE; 1321 else 1322 return GL_FALSE; 1323} 1324 1325 1326GLboolean 1327_math_matrix_is_general_scale( const GLmatrix *m ) 1328{ 1329 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE; 1330} 1331 1332 1333GLboolean 1334_math_matrix_is_dirty( const GLmatrix *m ) 1335{ 1336 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE; 1337} 1338 1339 1340/**********************************************************************/ 1341/** \name Matrix setup */ 1342/*@{*/ 1343 1344/** 1345 * Copy a matrix. 1346 * 1347 * \param to destination matrix. 1348 * \param from source matrix. 1349 * 1350 * Copies all fields in GLmatrix, creating an inverse array if necessary. 1351 */ 1352void 1353_math_matrix_copy( GLmatrix *to, const GLmatrix *from ) 1354{ 1355 memcpy(to->m, from->m, 16 * sizeof(GLfloat)); 1356 memcpy(to->inv, from->inv, 16 * sizeof(GLfloat)); 1357 to->flags = from->flags; 1358 to->type = from->type; 1359} 1360 1361/** 1362 * Copy a matrix as part of glPushMatrix. 1363 * 1364 * The makes the source matrix canonical (inverse and flags are up-to-date), 1365 * so that later glPopMatrix is evaluated as a no-op if there is no state 1366 * change. 1367 * 1368 * It this wasn't done, a draw call would canonicalize the matrix, which 1369 * would make it different from the pushed one and so glPopMatrix wouldn't be 1370 * recognized as a no-op. 1371 */ 1372void 1373_math_matrix_push_copy(GLmatrix *to, GLmatrix *from) 1374{ 1375 if (from->flags & MAT_DIRTY) 1376 _math_matrix_analyse(from); 1377 1378 _math_matrix_copy(to, from); 1379} 1380 1381/** 1382 * Loads a matrix array into GLmatrix. 1383 * 1384 * \param m matrix array. 1385 * \param mat matrix. 1386 * 1387 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY 1388 * flags. 1389 */ 1390void 1391_math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) 1392{ 1393 memcpy( mat->m, m, 16*sizeof(GLfloat) ); 1394 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); 1395} 1396 1397/** 1398 * Matrix constructor. 1399 * 1400 * \param m matrix. 1401 * 1402 * Initialize the GLmatrix fields. 1403 */ 1404void 1405_math_matrix_ctr( GLmatrix *m ) 1406{ 1407 memset(m, 0, sizeof(*m)); 1408 memcpy( m->m, Identity, sizeof(Identity) ); 1409 memcpy( m->inv, Identity, sizeof(Identity) ); 1410 m->type = MATRIX_IDENTITY; 1411 m->flags = 0; 1412} 1413 1414/*@}*/ 1415 1416 1417/**********************************************************************/ 1418/** \name Matrix transpose */ 1419/*@{*/ 1420 1421/** 1422 * Transpose a GLfloat matrix. 1423 * 1424 * \param to destination array. 1425 * \param from source array. 1426 */ 1427void 1428_math_transposef( GLfloat to[16], const GLfloat from[16] ) 1429{ 1430 to[0] = from[0]; 1431 to[1] = from[4]; 1432 to[2] = from[8]; 1433 to[3] = from[12]; 1434 to[4] = from[1]; 1435 to[5] = from[5]; 1436 to[6] = from[9]; 1437 to[7] = from[13]; 1438 to[8] = from[2]; 1439 to[9] = from[6]; 1440 to[10] = from[10]; 1441 to[11] = from[14]; 1442 to[12] = from[3]; 1443 to[13] = from[7]; 1444 to[14] = from[11]; 1445 to[15] = from[15]; 1446} 1447 1448/** 1449 * Transpose a GLdouble matrix. 1450 * 1451 * \param to destination array. 1452 * \param from source array. 1453 */ 1454void 1455_math_transposed( GLdouble to[16], const GLdouble from[16] ) 1456{ 1457 to[0] = from[0]; 1458 to[1] = from[4]; 1459 to[2] = from[8]; 1460 to[3] = from[12]; 1461 to[4] = from[1]; 1462 to[5] = from[5]; 1463 to[6] = from[9]; 1464 to[7] = from[13]; 1465 to[8] = from[2]; 1466 to[9] = from[6]; 1467 to[10] = from[10]; 1468 to[11] = from[14]; 1469 to[12] = from[3]; 1470 to[13] = from[7]; 1471 to[14] = from[11]; 1472 to[15] = from[15]; 1473} 1474 1475/** 1476 * Transpose a GLdouble matrix and convert to GLfloat. 1477 * 1478 * \param to destination array. 1479 * \param from source array. 1480 */ 1481void 1482_math_transposefd( GLfloat to[16], const GLdouble from[16] ) 1483{ 1484 to[0] = (GLfloat) from[0]; 1485 to[1] = (GLfloat) from[4]; 1486 to[2] = (GLfloat) from[8]; 1487 to[3] = (GLfloat) from[12]; 1488 to[4] = (GLfloat) from[1]; 1489 to[5] = (GLfloat) from[5]; 1490 to[6] = (GLfloat) from[9]; 1491 to[7] = (GLfloat) from[13]; 1492 to[8] = (GLfloat) from[2]; 1493 to[9] = (GLfloat) from[6]; 1494 to[10] = (GLfloat) from[10]; 1495 to[11] = (GLfloat) from[14]; 1496 to[12] = (GLfloat) from[3]; 1497 to[13] = (GLfloat) from[7]; 1498 to[14] = (GLfloat) from[11]; 1499 to[15] = (GLfloat) from[15]; 1500} 1501 1502/*@}*/ 1503 1504 1505/** 1506 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This 1507 * function is used for transforming clipping plane equations and spotlight 1508 * directions. 1509 * Mathematically, u = v * m. 1510 * Input: v - input vector 1511 * m - transformation matrix 1512 * Output: u - transformed vector 1513 */ 1514void 1515_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) 1516{ 1517 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; 1518#define M(row,col) m[row + col*4] 1519 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); 1520 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); 1521 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); 1522 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); 1523#undef M 1524} 1525