1bf215546Sopenharmony_ci/*
2bf215546Sopenharmony_ci * Mesa 3-D graphics library
3bf215546Sopenharmony_ci *
4bf215546Sopenharmony_ci * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
5bf215546Sopenharmony_ci *
6bf215546Sopenharmony_ci * Permission is hereby granted, free of charge, to any person obtaining a
7bf215546Sopenharmony_ci * copy of this software and associated documentation files (the "Software"),
8bf215546Sopenharmony_ci * to deal in the Software without restriction, including without limitation
9bf215546Sopenharmony_ci * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10bf215546Sopenharmony_ci * and/or sell copies of the Software, and to permit persons to whom the
11bf215546Sopenharmony_ci * Software is furnished to do so, subject to the following conditions:
12bf215546Sopenharmony_ci *
13bf215546Sopenharmony_ci * The above copyright notice and this permission notice shall be included
14bf215546Sopenharmony_ci * in all copies or substantial portions of the Software.
15bf215546Sopenharmony_ci *
16bf215546Sopenharmony_ci * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17bf215546Sopenharmony_ci * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18bf215546Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19bf215546Sopenharmony_ci * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20bf215546Sopenharmony_ci * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21bf215546Sopenharmony_ci * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22bf215546Sopenharmony_ci * OTHER DEALINGS IN THE SOFTWARE.
23bf215546Sopenharmony_ci */
24bf215546Sopenharmony_ci
25bf215546Sopenharmony_ci
26bf215546Sopenharmony_ci/**
27bf215546Sopenharmony_ci * \file m_matrix.c
28bf215546Sopenharmony_ci * Matrix operations.
29bf215546Sopenharmony_ci *
30bf215546Sopenharmony_ci * \note
31bf215546Sopenharmony_ci * -# 4x4 transformation matrices are stored in memory in column major order.
32bf215546Sopenharmony_ci * -# Points/vertices are to be thought of as column vectors.
33bf215546Sopenharmony_ci * -# Transformation of a point p by a matrix M is: p' = M * p
34bf215546Sopenharmony_ci */
35bf215546Sopenharmony_ci
36bf215546Sopenharmony_ci#include <stddef.h>
37bf215546Sopenharmony_ci#include <math.h>
38bf215546Sopenharmony_ci
39bf215546Sopenharmony_ci#include "main/errors.h"
40bf215546Sopenharmony_ci#include "main/glheader.h"
41bf215546Sopenharmony_ci#include "main/macros.h"
42bf215546Sopenharmony_ci#define MATH_ASM_PTR_SIZE sizeof(void *)
43bf215546Sopenharmony_ci#include "math/m_vector_asm.h"
44bf215546Sopenharmony_ci
45bf215546Sopenharmony_ci#include "m_matrix.h"
46bf215546Sopenharmony_ci
47bf215546Sopenharmony_ci#include "util/u_memory.h"
48bf215546Sopenharmony_ci
49bf215546Sopenharmony_ci
50bf215546Sopenharmony_ci/**
51bf215546Sopenharmony_ci * \defgroup MatFlags MAT_FLAG_XXX-flags
52bf215546Sopenharmony_ci *
53bf215546Sopenharmony_ci * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
54bf215546Sopenharmony_ci */
55bf215546Sopenharmony_ci/*@{*/
56bf215546Sopenharmony_ci#define MAT_FLAG_IDENTITY       0     /**< is an identity matrix flag.
57bf215546Sopenharmony_ci                                       *   (Not actually used - the identity
58bf215546Sopenharmony_ci                                       *   matrix is identified by the absence
59bf215546Sopenharmony_ci                                       *   of all other flags.)
60bf215546Sopenharmony_ci                                       */
61bf215546Sopenharmony_ci#define MAT_FLAG_GENERAL        0x1   /**< is a general matrix flag */
62bf215546Sopenharmony_ci#define MAT_FLAG_ROTATION       0x2   /**< is a rotation matrix flag */
63bf215546Sopenharmony_ci#define MAT_FLAG_TRANSLATION    0x4   /**< is a translation matrix flag */
64bf215546Sopenharmony_ci#define MAT_FLAG_UNIFORM_SCALE  0x8   /**< is an uniform scaling matrix flag */
65bf215546Sopenharmony_ci#define MAT_FLAG_GENERAL_SCALE  0x10  /**< is a general scaling matrix flag */
66bf215546Sopenharmony_ci#define MAT_FLAG_GENERAL_3D     0x20  /**< general 3D matrix flag */
67bf215546Sopenharmony_ci#define MAT_FLAG_PERSPECTIVE    0x40  /**< is a perspective proj matrix flag */
68bf215546Sopenharmony_ci#define MAT_FLAG_SINGULAR       0x80  /**< is a singular matrix flag */
69bf215546Sopenharmony_ci#define MAT_DIRTY_TYPE          0x100  /**< matrix type is dirty */
70bf215546Sopenharmony_ci#define MAT_DIRTY_FLAGS         0x200  /**< matrix flags are dirty */
71bf215546Sopenharmony_ci#define MAT_DIRTY_INVERSE       0x400  /**< matrix inverse is dirty */
72bf215546Sopenharmony_ci
73bf215546Sopenharmony_ci/** angle preserving matrix flags mask */
74bf215546Sopenharmony_ci#define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
75bf215546Sopenharmony_ci				    MAT_FLAG_TRANSLATION | \
76bf215546Sopenharmony_ci				    MAT_FLAG_UNIFORM_SCALE)
77bf215546Sopenharmony_ci
78bf215546Sopenharmony_ci/** geometry related matrix flags mask */
79bf215546Sopenharmony_ci#define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
80bf215546Sopenharmony_ci			    MAT_FLAG_ROTATION | \
81bf215546Sopenharmony_ci			    MAT_FLAG_TRANSLATION | \
82bf215546Sopenharmony_ci			    MAT_FLAG_UNIFORM_SCALE | \
83bf215546Sopenharmony_ci			    MAT_FLAG_GENERAL_SCALE | \
84bf215546Sopenharmony_ci			    MAT_FLAG_GENERAL_3D | \
85bf215546Sopenharmony_ci			    MAT_FLAG_PERSPECTIVE | \
86bf215546Sopenharmony_ci	                    MAT_FLAG_SINGULAR)
87bf215546Sopenharmony_ci
88bf215546Sopenharmony_ci/** length preserving matrix flags mask */
89bf215546Sopenharmony_ci#define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
90bf215546Sopenharmony_ci				     MAT_FLAG_TRANSLATION)
91bf215546Sopenharmony_ci
92bf215546Sopenharmony_ci
93bf215546Sopenharmony_ci/** 3D (non-perspective) matrix flags mask */
94bf215546Sopenharmony_ci#define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
95bf215546Sopenharmony_ci		      MAT_FLAG_TRANSLATION | \
96bf215546Sopenharmony_ci		      MAT_FLAG_UNIFORM_SCALE | \
97bf215546Sopenharmony_ci		      MAT_FLAG_GENERAL_SCALE | \
98bf215546Sopenharmony_ci		      MAT_FLAG_GENERAL_3D)
99bf215546Sopenharmony_ci
100bf215546Sopenharmony_ci/** dirty matrix flags mask */
101bf215546Sopenharmony_ci#define MAT_DIRTY          (MAT_DIRTY_TYPE | \
102bf215546Sopenharmony_ci			    MAT_DIRTY_FLAGS | \
103bf215546Sopenharmony_ci			    MAT_DIRTY_INVERSE)
104bf215546Sopenharmony_ci
105bf215546Sopenharmony_ci/*@}*/
106bf215546Sopenharmony_ci
107bf215546Sopenharmony_ci
108bf215546Sopenharmony_ci/**
109bf215546Sopenharmony_ci * Test geometry related matrix flags.
110bf215546Sopenharmony_ci *
111bf215546Sopenharmony_ci * \param mat a pointer to a GLmatrix structure.
112bf215546Sopenharmony_ci * \param a flags mask.
113bf215546Sopenharmony_ci *
114bf215546Sopenharmony_ci * \returns non-zero if all geometry related matrix flags are contained within
115bf215546Sopenharmony_ci * the mask, or zero otherwise.
116bf215546Sopenharmony_ci */
117bf215546Sopenharmony_ci#define TEST_MAT_FLAGS(mat, a)  \
118bf215546Sopenharmony_ci    ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
119bf215546Sopenharmony_ci
120bf215546Sopenharmony_ci
121bf215546Sopenharmony_ci
122bf215546Sopenharmony_ci/**
123bf215546Sopenharmony_ci * Names of the corresponding GLmatrixtype values.
124bf215546Sopenharmony_ci */
125bf215546Sopenharmony_cistatic const char *types[] = {
126bf215546Sopenharmony_ci   "MATRIX_GENERAL",
127bf215546Sopenharmony_ci   "MATRIX_IDENTITY",
128bf215546Sopenharmony_ci   "MATRIX_3D_NO_ROT",
129bf215546Sopenharmony_ci   "MATRIX_PERSPECTIVE",
130bf215546Sopenharmony_ci   "MATRIX_2D",
131bf215546Sopenharmony_ci   "MATRIX_2D_NO_ROT",
132bf215546Sopenharmony_ci   "MATRIX_3D"
133bf215546Sopenharmony_ci};
134bf215546Sopenharmony_ci
135bf215546Sopenharmony_ci
136bf215546Sopenharmony_ci/**
137bf215546Sopenharmony_ci * Identity matrix.
138bf215546Sopenharmony_ci */
139bf215546Sopenharmony_cistatic const GLfloat Identity[16] = {
140bf215546Sopenharmony_ci   1.0, 0.0, 0.0, 0.0,
141bf215546Sopenharmony_ci   0.0, 1.0, 0.0, 0.0,
142bf215546Sopenharmony_ci   0.0, 0.0, 1.0, 0.0,
143bf215546Sopenharmony_ci   0.0, 0.0, 0.0, 1.0
144bf215546Sopenharmony_ci};
145bf215546Sopenharmony_ci
146bf215546Sopenharmony_ci
147bf215546Sopenharmony_ci
148bf215546Sopenharmony_ci/**********************************************************************/
149bf215546Sopenharmony_ci/** \name Matrix multiplication */
150bf215546Sopenharmony_ci/*@{*/
151bf215546Sopenharmony_ci
152bf215546Sopenharmony_ci#define A(row,col)  a[(col<<2)+row]
153bf215546Sopenharmony_ci#define B(row,col)  b[(col<<2)+row]
154bf215546Sopenharmony_ci#define P(row,col)  product[(col<<2)+row]
155bf215546Sopenharmony_ci
156bf215546Sopenharmony_ci/**
157bf215546Sopenharmony_ci * Perform a full 4x4 matrix multiplication.
158bf215546Sopenharmony_ci *
159bf215546Sopenharmony_ci * \param a matrix.
160bf215546Sopenharmony_ci * \param b matrix.
161bf215546Sopenharmony_ci * \param product will receive the product of \p a and \p b.
162bf215546Sopenharmony_ci *
163bf215546Sopenharmony_ci * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
164bf215546Sopenharmony_ci *
165bf215546Sopenharmony_ci * \note KW: 4*16 = 64 multiplications
166bf215546Sopenharmony_ci *
167bf215546Sopenharmony_ci * \author This \c matmul was contributed by Thomas Malik
168bf215546Sopenharmony_ci */
169bf215546Sopenharmony_cistatic void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
170bf215546Sopenharmony_ci{
171bf215546Sopenharmony_ci   GLint i;
172bf215546Sopenharmony_ci   for (i = 0; i < 4; i++) {
173bf215546Sopenharmony_ci      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
174bf215546Sopenharmony_ci      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
175bf215546Sopenharmony_ci      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
176bf215546Sopenharmony_ci      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
177bf215546Sopenharmony_ci      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
178bf215546Sopenharmony_ci   }
179bf215546Sopenharmony_ci}
180bf215546Sopenharmony_ci
181bf215546Sopenharmony_ci/**
182bf215546Sopenharmony_ci * Multiply two matrices known to occupy only the top three rows, such
183bf215546Sopenharmony_ci * as typical model matrices, and orthogonal matrices.
184bf215546Sopenharmony_ci *
185bf215546Sopenharmony_ci * \param a matrix.
186bf215546Sopenharmony_ci * \param b matrix.
187bf215546Sopenharmony_ci * \param product will receive the product of \p a and \p b.
188bf215546Sopenharmony_ci */
189bf215546Sopenharmony_cistatic void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
190bf215546Sopenharmony_ci{
191bf215546Sopenharmony_ci   GLint i;
192bf215546Sopenharmony_ci   for (i = 0; i < 3; i++) {
193bf215546Sopenharmony_ci      const GLfloat ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
194bf215546Sopenharmony_ci      P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
195bf215546Sopenharmony_ci      P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
196bf215546Sopenharmony_ci      P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
197bf215546Sopenharmony_ci      P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
198bf215546Sopenharmony_ci   }
199bf215546Sopenharmony_ci   P(3,0) = 0;
200bf215546Sopenharmony_ci   P(3,1) = 0;
201bf215546Sopenharmony_ci   P(3,2) = 0;
202bf215546Sopenharmony_ci   P(3,3) = 1;
203bf215546Sopenharmony_ci}
204bf215546Sopenharmony_ci
205bf215546Sopenharmony_ci#undef A
206bf215546Sopenharmony_ci#undef B
207bf215546Sopenharmony_ci#undef P
208bf215546Sopenharmony_ci
209bf215546Sopenharmony_ci/**
210bf215546Sopenharmony_ci * Multiply a matrix by an array of floats with known properties.
211bf215546Sopenharmony_ci *
212bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure containing the left multiplication
213bf215546Sopenharmony_ci * matrix, and that will receive the product result.
214bf215546Sopenharmony_ci * \param m right multiplication matrix array.
215bf215546Sopenharmony_ci * \param flags flags of the matrix \p m.
216bf215546Sopenharmony_ci *
217bf215546Sopenharmony_ci * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
218bf215546Sopenharmony_ci * if both matrices are 3D, or matmul4() otherwise.
219bf215546Sopenharmony_ci */
220bf215546Sopenharmony_cistatic void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
221bf215546Sopenharmony_ci{
222bf215546Sopenharmony_ci   mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
223bf215546Sopenharmony_ci
224bf215546Sopenharmony_ci   if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
225bf215546Sopenharmony_ci      matmul34( mat->m, mat->m, m );
226bf215546Sopenharmony_ci   else
227bf215546Sopenharmony_ci      matmul4( mat->m, mat->m, m );
228bf215546Sopenharmony_ci}
229bf215546Sopenharmony_ci
230bf215546Sopenharmony_ci/**
231bf215546Sopenharmony_ci * Matrix multiplication.
232bf215546Sopenharmony_ci *
233bf215546Sopenharmony_ci * \param dest destination matrix.
234bf215546Sopenharmony_ci * \param a left matrix.
235bf215546Sopenharmony_ci * \param b right matrix.
236bf215546Sopenharmony_ci *
237bf215546Sopenharmony_ci * Joins both flags and marks the type and inverse as dirty.  Calls matmul34()
238bf215546Sopenharmony_ci * if both matrices are 3D, or matmul4() otherwise.
239bf215546Sopenharmony_ci */
240bf215546Sopenharmony_civoid
241bf215546Sopenharmony_ci_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
242bf215546Sopenharmony_ci{
243bf215546Sopenharmony_ci   dest->flags = (a->flags |
244bf215546Sopenharmony_ci		  b->flags |
245bf215546Sopenharmony_ci		  MAT_DIRTY_TYPE |
246bf215546Sopenharmony_ci		  MAT_DIRTY_INVERSE);
247bf215546Sopenharmony_ci
248bf215546Sopenharmony_ci   if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
249bf215546Sopenharmony_ci      matmul34( dest->m, a->m, b->m );
250bf215546Sopenharmony_ci   else
251bf215546Sopenharmony_ci      matmul4( dest->m, a->m, b->m );
252bf215546Sopenharmony_ci}
253bf215546Sopenharmony_ci
254bf215546Sopenharmony_ci/**
255bf215546Sopenharmony_ci * Matrix multiplication.
256bf215546Sopenharmony_ci *
257bf215546Sopenharmony_ci * \param dest left and destination matrix.
258bf215546Sopenharmony_ci * \param m right matrix array.
259bf215546Sopenharmony_ci *
260bf215546Sopenharmony_ci * Marks the matrix flags with general flag, and type and inverse dirty flags.
261bf215546Sopenharmony_ci * Calls matmul4() for the multiplication.
262bf215546Sopenharmony_ci */
263bf215546Sopenharmony_civoid
264bf215546Sopenharmony_ci_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
265bf215546Sopenharmony_ci{
266bf215546Sopenharmony_ci   dest->flags |= (MAT_FLAG_GENERAL |
267bf215546Sopenharmony_ci		   MAT_DIRTY_TYPE |
268bf215546Sopenharmony_ci		   MAT_DIRTY_INVERSE |
269bf215546Sopenharmony_ci                   MAT_DIRTY_FLAGS);
270bf215546Sopenharmony_ci
271bf215546Sopenharmony_ci   matmul4( dest->m, dest->m, m );
272bf215546Sopenharmony_ci}
273bf215546Sopenharmony_ci
274bf215546Sopenharmony_ci/*@}*/
275bf215546Sopenharmony_ci
276bf215546Sopenharmony_ci
277bf215546Sopenharmony_ci/**********************************************************************/
278bf215546Sopenharmony_ci/** \name Matrix output */
279bf215546Sopenharmony_ci/*@{*/
280bf215546Sopenharmony_ci
281bf215546Sopenharmony_ci/**
282bf215546Sopenharmony_ci * Print a matrix array.
283bf215546Sopenharmony_ci *
284bf215546Sopenharmony_ci * \param m matrix array.
285bf215546Sopenharmony_ci *
286bf215546Sopenharmony_ci * Called by _math_matrix_print() to print a matrix or its inverse.
287bf215546Sopenharmony_ci */
288bf215546Sopenharmony_cistatic void print_matrix_floats( const GLfloat m[16] )
289bf215546Sopenharmony_ci{
290bf215546Sopenharmony_ci   int i;
291bf215546Sopenharmony_ci   for (i=0;i<4;i++) {
292bf215546Sopenharmony_ci      _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
293bf215546Sopenharmony_ci   }
294bf215546Sopenharmony_ci}
295bf215546Sopenharmony_ci
296bf215546Sopenharmony_ci/**
297bf215546Sopenharmony_ci * Dumps the contents of a GLmatrix structure.
298bf215546Sopenharmony_ci *
299bf215546Sopenharmony_ci * \param m pointer to the GLmatrix structure.
300bf215546Sopenharmony_ci */
301bf215546Sopenharmony_civoid
302bf215546Sopenharmony_ci_math_matrix_print( const GLmatrix *m )
303bf215546Sopenharmony_ci{
304bf215546Sopenharmony_ci   GLfloat prod[16];
305bf215546Sopenharmony_ci
306bf215546Sopenharmony_ci   _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
307bf215546Sopenharmony_ci   print_matrix_floats(m->m);
308bf215546Sopenharmony_ci   _mesa_debug(NULL, "Inverse: \n");
309bf215546Sopenharmony_ci   print_matrix_floats(m->inv);
310bf215546Sopenharmony_ci   matmul4(prod, m->m, m->inv);
311bf215546Sopenharmony_ci   _mesa_debug(NULL, "Mat * Inverse:\n");
312bf215546Sopenharmony_ci   print_matrix_floats(prod);
313bf215546Sopenharmony_ci}
314bf215546Sopenharmony_ci
315bf215546Sopenharmony_ci/*@}*/
316bf215546Sopenharmony_ci
317bf215546Sopenharmony_ci
318bf215546Sopenharmony_ci/**
319bf215546Sopenharmony_ci * References an element of 4x4 matrix.
320bf215546Sopenharmony_ci *
321bf215546Sopenharmony_ci * \param m matrix array.
322bf215546Sopenharmony_ci * \param c column of the desired element.
323bf215546Sopenharmony_ci * \param r row of the desired element.
324bf215546Sopenharmony_ci *
325bf215546Sopenharmony_ci * \return value of the desired element.
326bf215546Sopenharmony_ci *
327bf215546Sopenharmony_ci * Calculate the linear storage index of the element and references it.
328bf215546Sopenharmony_ci */
329bf215546Sopenharmony_ci#define MAT(m,r,c) (m)[(c)*4+(r)]
330bf215546Sopenharmony_ci
331bf215546Sopenharmony_ci
332bf215546Sopenharmony_ci/**********************************************************************/
333bf215546Sopenharmony_ci/** \name Matrix inversion */
334bf215546Sopenharmony_ci/*@{*/
335bf215546Sopenharmony_ci
336bf215546Sopenharmony_ci/**
337bf215546Sopenharmony_ci * Compute inverse of 4x4 transformation matrix.
338bf215546Sopenharmony_ci *
339bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
340bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
341bf215546Sopenharmony_ci *
342bf215546Sopenharmony_ci * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
343bf215546Sopenharmony_ci *
344bf215546Sopenharmony_ci * \author
345bf215546Sopenharmony_ci * Code contributed by Jacques Leroy jle@star.be
346bf215546Sopenharmony_ci *
347bf215546Sopenharmony_ci * Calculates the inverse matrix by performing the gaussian matrix reduction
348bf215546Sopenharmony_ci * with partial pivoting followed by back/substitution with the loops manually
349bf215546Sopenharmony_ci * unrolled.
350bf215546Sopenharmony_ci */
351bf215546Sopenharmony_cistatic GLboolean invert_matrix_general( GLmatrix *mat )
352bf215546Sopenharmony_ci{
353bf215546Sopenharmony_ci   return util_invert_mat4x4(mat->inv, mat->m);
354bf215546Sopenharmony_ci}
355bf215546Sopenharmony_ci
356bf215546Sopenharmony_ci/**
357bf215546Sopenharmony_ci * Compute inverse of a general 3d transformation matrix.
358bf215546Sopenharmony_ci *
359bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
360bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
361bf215546Sopenharmony_ci *
362bf215546Sopenharmony_ci * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
363bf215546Sopenharmony_ci *
364bf215546Sopenharmony_ci * \author Adapted from graphics gems II.
365bf215546Sopenharmony_ci *
366bf215546Sopenharmony_ci * Calculates the inverse of the upper left by first calculating its
367bf215546Sopenharmony_ci * determinant and multiplying it to the symmetric adjust matrix of each
368bf215546Sopenharmony_ci * element. Finally deals with the translation part by transforming the
369bf215546Sopenharmony_ci * original translation vector using by the calculated submatrix inverse.
370bf215546Sopenharmony_ci */
371bf215546Sopenharmony_cistatic GLboolean invert_matrix_3d_general( GLmatrix *mat )
372bf215546Sopenharmony_ci{
373bf215546Sopenharmony_ci   const GLfloat *in = mat->m;
374bf215546Sopenharmony_ci   GLfloat *out = mat->inv;
375bf215546Sopenharmony_ci   GLfloat pos, neg, t;
376bf215546Sopenharmony_ci   GLfloat det;
377bf215546Sopenharmony_ci
378bf215546Sopenharmony_ci   /* Calculate the determinant of upper left 3x3 submatrix and
379bf215546Sopenharmony_ci    * determine if the matrix is singular.
380bf215546Sopenharmony_ci    */
381bf215546Sopenharmony_ci   pos = neg = 0.0;
382bf215546Sopenharmony_ci   t =  MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
383bf215546Sopenharmony_ci   if (t >= 0.0F) pos += t; else neg += t;
384bf215546Sopenharmony_ci
385bf215546Sopenharmony_ci   t =  MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
386bf215546Sopenharmony_ci   if (t >= 0.0F) pos += t; else neg += t;
387bf215546Sopenharmony_ci
388bf215546Sopenharmony_ci   t =  MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
389bf215546Sopenharmony_ci   if (t >= 0.0F) pos += t; else neg += t;
390bf215546Sopenharmony_ci
391bf215546Sopenharmony_ci   t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
392bf215546Sopenharmony_ci   if (t >= 0.0F) pos += t; else neg += t;
393bf215546Sopenharmony_ci
394bf215546Sopenharmony_ci   t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
395bf215546Sopenharmony_ci   if (t >= 0.0F) pos += t; else neg += t;
396bf215546Sopenharmony_ci
397bf215546Sopenharmony_ci   t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
398bf215546Sopenharmony_ci   if (t >= 0.0F) pos += t; else neg += t;
399bf215546Sopenharmony_ci
400bf215546Sopenharmony_ci   det = pos + neg;
401bf215546Sopenharmony_ci
402bf215546Sopenharmony_ci   if (fabsf(det) < 1e-25F)
403bf215546Sopenharmony_ci      return GL_FALSE;
404bf215546Sopenharmony_ci
405bf215546Sopenharmony_ci   det = 1.0F / det;
406bf215546Sopenharmony_ci   MAT(out,0,0) = (  (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
407bf215546Sopenharmony_ci   MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
408bf215546Sopenharmony_ci   MAT(out,0,2) = (  (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
409bf215546Sopenharmony_ci   MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
410bf215546Sopenharmony_ci   MAT(out,1,1) = (  (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
411bf215546Sopenharmony_ci   MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
412bf215546Sopenharmony_ci   MAT(out,2,0) = (  (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
413bf215546Sopenharmony_ci   MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
414bf215546Sopenharmony_ci   MAT(out,2,2) = (  (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
415bf215546Sopenharmony_ci
416bf215546Sopenharmony_ci   /* Do the translation part */
417bf215546Sopenharmony_ci   MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
418bf215546Sopenharmony_ci		     MAT(in,1,3) * MAT(out,0,1) +
419bf215546Sopenharmony_ci		     MAT(in,2,3) * MAT(out,0,2) );
420bf215546Sopenharmony_ci   MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
421bf215546Sopenharmony_ci		     MAT(in,1,3) * MAT(out,1,1) +
422bf215546Sopenharmony_ci		     MAT(in,2,3) * MAT(out,1,2) );
423bf215546Sopenharmony_ci   MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
424bf215546Sopenharmony_ci		     MAT(in,1,3) * MAT(out,2,1) +
425bf215546Sopenharmony_ci		     MAT(in,2,3) * MAT(out,2,2) );
426bf215546Sopenharmony_ci
427bf215546Sopenharmony_ci   return GL_TRUE;
428bf215546Sopenharmony_ci}
429bf215546Sopenharmony_ci
430bf215546Sopenharmony_ci/**
431bf215546Sopenharmony_ci * Compute inverse of a 3d transformation matrix.
432bf215546Sopenharmony_ci *
433bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
434bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
435bf215546Sopenharmony_ci *
436bf215546Sopenharmony_ci * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
437bf215546Sopenharmony_ci *
438bf215546Sopenharmony_ci * If the matrix is not an angle preserving matrix then calls
439bf215546Sopenharmony_ci * invert_matrix_3d_general for the actual calculation. Otherwise calculates
440bf215546Sopenharmony_ci * the inverse matrix analyzing and inverting each of the scaling, rotation and
441bf215546Sopenharmony_ci * translation parts.
442bf215546Sopenharmony_ci */
443bf215546Sopenharmony_cistatic GLboolean invert_matrix_3d( GLmatrix *mat )
444bf215546Sopenharmony_ci{
445bf215546Sopenharmony_ci   const GLfloat *in = mat->m;
446bf215546Sopenharmony_ci   GLfloat *out = mat->inv;
447bf215546Sopenharmony_ci
448bf215546Sopenharmony_ci   if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
449bf215546Sopenharmony_ci      return invert_matrix_3d_general( mat );
450bf215546Sopenharmony_ci   }
451bf215546Sopenharmony_ci
452bf215546Sopenharmony_ci   if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
453bf215546Sopenharmony_ci      GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
454bf215546Sopenharmony_ci                       MAT(in,0,1) * MAT(in,0,1) +
455bf215546Sopenharmony_ci                       MAT(in,0,2) * MAT(in,0,2));
456bf215546Sopenharmony_ci
457bf215546Sopenharmony_ci      if (scale == 0.0F)
458bf215546Sopenharmony_ci         return GL_FALSE;
459bf215546Sopenharmony_ci
460bf215546Sopenharmony_ci      scale = 1.0F / scale;
461bf215546Sopenharmony_ci
462bf215546Sopenharmony_ci      /* Transpose and scale the 3 by 3 upper-left submatrix. */
463bf215546Sopenharmony_ci      MAT(out,0,0) = scale * MAT(in,0,0);
464bf215546Sopenharmony_ci      MAT(out,1,0) = scale * MAT(in,0,1);
465bf215546Sopenharmony_ci      MAT(out,2,0) = scale * MAT(in,0,2);
466bf215546Sopenharmony_ci      MAT(out,0,1) = scale * MAT(in,1,0);
467bf215546Sopenharmony_ci      MAT(out,1,1) = scale * MAT(in,1,1);
468bf215546Sopenharmony_ci      MAT(out,2,1) = scale * MAT(in,1,2);
469bf215546Sopenharmony_ci      MAT(out,0,2) = scale * MAT(in,2,0);
470bf215546Sopenharmony_ci      MAT(out,1,2) = scale * MAT(in,2,1);
471bf215546Sopenharmony_ci      MAT(out,2,2) = scale * MAT(in,2,2);
472bf215546Sopenharmony_ci   }
473bf215546Sopenharmony_ci   else if (mat->flags & MAT_FLAG_ROTATION) {
474bf215546Sopenharmony_ci      /* Transpose the 3 by 3 upper-left submatrix. */
475bf215546Sopenharmony_ci      MAT(out,0,0) = MAT(in,0,0);
476bf215546Sopenharmony_ci      MAT(out,1,0) = MAT(in,0,1);
477bf215546Sopenharmony_ci      MAT(out,2,0) = MAT(in,0,2);
478bf215546Sopenharmony_ci      MAT(out,0,1) = MAT(in,1,0);
479bf215546Sopenharmony_ci      MAT(out,1,1) = MAT(in,1,1);
480bf215546Sopenharmony_ci      MAT(out,2,1) = MAT(in,1,2);
481bf215546Sopenharmony_ci      MAT(out,0,2) = MAT(in,2,0);
482bf215546Sopenharmony_ci      MAT(out,1,2) = MAT(in,2,1);
483bf215546Sopenharmony_ci      MAT(out,2,2) = MAT(in,2,2);
484bf215546Sopenharmony_ci   }
485bf215546Sopenharmony_ci   else {
486bf215546Sopenharmony_ci      /* pure translation */
487bf215546Sopenharmony_ci      memcpy( out, Identity, sizeof(Identity) );
488bf215546Sopenharmony_ci      MAT(out,0,3) = - MAT(in,0,3);
489bf215546Sopenharmony_ci      MAT(out,1,3) = - MAT(in,1,3);
490bf215546Sopenharmony_ci      MAT(out,2,3) = - MAT(in,2,3);
491bf215546Sopenharmony_ci      return GL_TRUE;
492bf215546Sopenharmony_ci   }
493bf215546Sopenharmony_ci
494bf215546Sopenharmony_ci   if (mat->flags & MAT_FLAG_TRANSLATION) {
495bf215546Sopenharmony_ci      /* Do the translation part */
496bf215546Sopenharmony_ci      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
497bf215546Sopenharmony_ci			MAT(in,1,3) * MAT(out,0,1) +
498bf215546Sopenharmony_ci			MAT(in,2,3) * MAT(out,0,2) );
499bf215546Sopenharmony_ci      MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
500bf215546Sopenharmony_ci			MAT(in,1,3) * MAT(out,1,1) +
501bf215546Sopenharmony_ci			MAT(in,2,3) * MAT(out,1,2) );
502bf215546Sopenharmony_ci      MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
503bf215546Sopenharmony_ci			MAT(in,1,3) * MAT(out,2,1) +
504bf215546Sopenharmony_ci			MAT(in,2,3) * MAT(out,2,2) );
505bf215546Sopenharmony_ci   }
506bf215546Sopenharmony_ci   else {
507bf215546Sopenharmony_ci      MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
508bf215546Sopenharmony_ci   }
509bf215546Sopenharmony_ci
510bf215546Sopenharmony_ci   return GL_TRUE;
511bf215546Sopenharmony_ci}
512bf215546Sopenharmony_ci
513bf215546Sopenharmony_ci/**
514bf215546Sopenharmony_ci * Compute inverse of an identity transformation matrix.
515bf215546Sopenharmony_ci *
516bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
517bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
518bf215546Sopenharmony_ci *
519bf215546Sopenharmony_ci * \return always GL_TRUE.
520bf215546Sopenharmony_ci *
521bf215546Sopenharmony_ci * Simply copies Identity into GLmatrix::inv.
522bf215546Sopenharmony_ci */
523bf215546Sopenharmony_cistatic GLboolean invert_matrix_identity( GLmatrix *mat )
524bf215546Sopenharmony_ci{
525bf215546Sopenharmony_ci   memcpy( mat->inv, Identity, sizeof(Identity) );
526bf215546Sopenharmony_ci   return GL_TRUE;
527bf215546Sopenharmony_ci}
528bf215546Sopenharmony_ci
529bf215546Sopenharmony_ci/**
530bf215546Sopenharmony_ci * Compute inverse of a no-rotation 3d transformation matrix.
531bf215546Sopenharmony_ci *
532bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
533bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
534bf215546Sopenharmony_ci *
535bf215546Sopenharmony_ci * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
536bf215546Sopenharmony_ci *
537bf215546Sopenharmony_ci * Calculates the
538bf215546Sopenharmony_ci */
539bf215546Sopenharmony_cistatic GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
540bf215546Sopenharmony_ci{
541bf215546Sopenharmony_ci   const GLfloat *in = mat->m;
542bf215546Sopenharmony_ci   GLfloat *out = mat->inv;
543bf215546Sopenharmony_ci
544bf215546Sopenharmony_ci   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
545bf215546Sopenharmony_ci      return GL_FALSE;
546bf215546Sopenharmony_ci
547bf215546Sopenharmony_ci   memcpy( out, Identity, sizeof(Identity) );
548bf215546Sopenharmony_ci   MAT(out,0,0) = 1.0F / MAT(in,0,0);
549bf215546Sopenharmony_ci   MAT(out,1,1) = 1.0F / MAT(in,1,1);
550bf215546Sopenharmony_ci   MAT(out,2,2) = 1.0F / MAT(in,2,2);
551bf215546Sopenharmony_ci
552bf215546Sopenharmony_ci   if (mat->flags & MAT_FLAG_TRANSLATION) {
553bf215546Sopenharmony_ci      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
554bf215546Sopenharmony_ci      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
555bf215546Sopenharmony_ci      MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
556bf215546Sopenharmony_ci   }
557bf215546Sopenharmony_ci
558bf215546Sopenharmony_ci   return GL_TRUE;
559bf215546Sopenharmony_ci}
560bf215546Sopenharmony_ci
561bf215546Sopenharmony_ci/**
562bf215546Sopenharmony_ci * Compute inverse of a no-rotation 2d transformation matrix.
563bf215546Sopenharmony_ci *
564bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
565bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
566bf215546Sopenharmony_ci *
567bf215546Sopenharmony_ci * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
568bf215546Sopenharmony_ci *
569bf215546Sopenharmony_ci * Calculates the inverse matrix by applying the inverse scaling and
570bf215546Sopenharmony_ci * translation to the identity matrix.
571bf215546Sopenharmony_ci */
572bf215546Sopenharmony_cistatic GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
573bf215546Sopenharmony_ci{
574bf215546Sopenharmony_ci   const GLfloat *in = mat->m;
575bf215546Sopenharmony_ci   GLfloat *out = mat->inv;
576bf215546Sopenharmony_ci
577bf215546Sopenharmony_ci   if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
578bf215546Sopenharmony_ci      return GL_FALSE;
579bf215546Sopenharmony_ci
580bf215546Sopenharmony_ci   memcpy( out, Identity, sizeof(Identity) );
581bf215546Sopenharmony_ci   MAT(out,0,0) = 1.0F / MAT(in,0,0);
582bf215546Sopenharmony_ci   MAT(out,1,1) = 1.0F / MAT(in,1,1);
583bf215546Sopenharmony_ci
584bf215546Sopenharmony_ci   if (mat->flags & MAT_FLAG_TRANSLATION) {
585bf215546Sopenharmony_ci      MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
586bf215546Sopenharmony_ci      MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
587bf215546Sopenharmony_ci   }
588bf215546Sopenharmony_ci
589bf215546Sopenharmony_ci   return GL_TRUE;
590bf215546Sopenharmony_ci}
591bf215546Sopenharmony_ci
592bf215546Sopenharmony_ci#if 0
593bf215546Sopenharmony_ci/* broken */
594bf215546Sopenharmony_cistatic GLboolean invert_matrix_perspective( GLmatrix *mat )
595bf215546Sopenharmony_ci{
596bf215546Sopenharmony_ci   const GLfloat *in = mat->m;
597bf215546Sopenharmony_ci   GLfloat *out = mat->inv;
598bf215546Sopenharmony_ci
599bf215546Sopenharmony_ci   if (MAT(in,2,3) == 0)
600bf215546Sopenharmony_ci      return GL_FALSE;
601bf215546Sopenharmony_ci
602bf215546Sopenharmony_ci   memcpy( out, Identity, sizeof(Identity) );
603bf215546Sopenharmony_ci
604bf215546Sopenharmony_ci   MAT(out,0,0) = 1.0F / MAT(in,0,0);
605bf215546Sopenharmony_ci   MAT(out,1,1) = 1.0F / MAT(in,1,1);
606bf215546Sopenharmony_ci
607bf215546Sopenharmony_ci   MAT(out,0,3) = MAT(in,0,2);
608bf215546Sopenharmony_ci   MAT(out,1,3) = MAT(in,1,2);
609bf215546Sopenharmony_ci
610bf215546Sopenharmony_ci   MAT(out,2,2) = 0;
611bf215546Sopenharmony_ci   MAT(out,2,3) = -1;
612bf215546Sopenharmony_ci
613bf215546Sopenharmony_ci   MAT(out,3,2) = 1.0F / MAT(in,2,3);
614bf215546Sopenharmony_ci   MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
615bf215546Sopenharmony_ci
616bf215546Sopenharmony_ci   return GL_TRUE;
617bf215546Sopenharmony_ci}
618bf215546Sopenharmony_ci#endif
619bf215546Sopenharmony_ci
620bf215546Sopenharmony_ci/**
621bf215546Sopenharmony_ci * Matrix inversion function pointer type.
622bf215546Sopenharmony_ci */
623bf215546Sopenharmony_citypedef GLboolean (*inv_mat_func)( GLmatrix *mat );
624bf215546Sopenharmony_ci
625bf215546Sopenharmony_ci/**
626bf215546Sopenharmony_ci * Table of the matrix inversion functions according to the matrix type.
627bf215546Sopenharmony_ci */
628bf215546Sopenharmony_cistatic inv_mat_func inv_mat_tab[7] = {
629bf215546Sopenharmony_ci   invert_matrix_general,
630bf215546Sopenharmony_ci   invert_matrix_identity,
631bf215546Sopenharmony_ci   invert_matrix_3d_no_rot,
632bf215546Sopenharmony_ci#if 0
633bf215546Sopenharmony_ci   /* Don't use this function for now - it fails when the projection matrix
634bf215546Sopenharmony_ci    * is premultiplied by a translation (ala Chromium's tilesort SPU).
635bf215546Sopenharmony_ci    */
636bf215546Sopenharmony_ci   invert_matrix_perspective,
637bf215546Sopenharmony_ci#else
638bf215546Sopenharmony_ci   invert_matrix_general,
639bf215546Sopenharmony_ci#endif
640bf215546Sopenharmony_ci   invert_matrix_3d,		/* lazy! */
641bf215546Sopenharmony_ci   invert_matrix_2d_no_rot,
642bf215546Sopenharmony_ci   invert_matrix_3d
643bf215546Sopenharmony_ci};
644bf215546Sopenharmony_ci
645bf215546Sopenharmony_ci/**
646bf215546Sopenharmony_ci * Compute inverse of a transformation matrix.
647bf215546Sopenharmony_ci *
648bf215546Sopenharmony_ci * \param mat pointer to a GLmatrix structure. The matrix inverse will be
649bf215546Sopenharmony_ci * stored in the GLmatrix::inv attribute.
650bf215546Sopenharmony_ci *
651bf215546Sopenharmony_ci * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
652bf215546Sopenharmony_ci *
653bf215546Sopenharmony_ci * Calls the matrix inversion function in inv_mat_tab corresponding to the
654bf215546Sopenharmony_ci * given matrix type.  In case of failure, updates the MAT_FLAG_SINGULAR flag,
655bf215546Sopenharmony_ci * and copies the identity matrix into GLmatrix::inv.
656bf215546Sopenharmony_ci */
657bf215546Sopenharmony_cistatic GLboolean matrix_invert( GLmatrix *mat )
658bf215546Sopenharmony_ci{
659bf215546Sopenharmony_ci   if (inv_mat_tab[mat->type](mat)) {
660bf215546Sopenharmony_ci      mat->flags &= ~MAT_FLAG_SINGULAR;
661bf215546Sopenharmony_ci      return GL_TRUE;
662bf215546Sopenharmony_ci   } else {
663bf215546Sopenharmony_ci      mat->flags |= MAT_FLAG_SINGULAR;
664bf215546Sopenharmony_ci      memcpy( mat->inv, Identity, sizeof(Identity) );
665bf215546Sopenharmony_ci      return GL_FALSE;
666bf215546Sopenharmony_ci   }
667bf215546Sopenharmony_ci}
668bf215546Sopenharmony_ci
669bf215546Sopenharmony_ci/*@}*/
670bf215546Sopenharmony_ci
671bf215546Sopenharmony_ci
672bf215546Sopenharmony_ci/**********************************************************************/
673bf215546Sopenharmony_ci/** \name Matrix generation */
674bf215546Sopenharmony_ci/*@{*/
675bf215546Sopenharmony_ci
676bf215546Sopenharmony_ci/**
677bf215546Sopenharmony_ci * Generate a 4x4 transformation matrix from glRotate parameters, and
678bf215546Sopenharmony_ci * post-multiply the input matrix by it.
679bf215546Sopenharmony_ci *
680bf215546Sopenharmony_ci * \author
681bf215546Sopenharmony_ci * This function was contributed by Erich Boleyn (erich@uruk.org).
682bf215546Sopenharmony_ci * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
683bf215546Sopenharmony_ci */
684bf215546Sopenharmony_civoid
685bf215546Sopenharmony_ci_math_matrix_rotate( GLmatrix *mat,
686bf215546Sopenharmony_ci		     GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
687bf215546Sopenharmony_ci{
688bf215546Sopenharmony_ci   GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
689bf215546Sopenharmony_ci   GLfloat m[16];
690bf215546Sopenharmony_ci   GLboolean optimized;
691bf215546Sopenharmony_ci
692bf215546Sopenharmony_ci   s = sinf( angle * M_PI / 180.0 );
693bf215546Sopenharmony_ci   c = cosf( angle * M_PI / 180.0 );
694bf215546Sopenharmony_ci
695bf215546Sopenharmony_ci   memcpy(m, Identity, sizeof(Identity));
696bf215546Sopenharmony_ci   optimized = GL_FALSE;
697bf215546Sopenharmony_ci
698bf215546Sopenharmony_ci#define M(row,col)  m[col*4+row]
699bf215546Sopenharmony_ci
700bf215546Sopenharmony_ci   if (x == 0.0F) {
701bf215546Sopenharmony_ci      if (y == 0.0F) {
702bf215546Sopenharmony_ci         if (z != 0.0F) {
703bf215546Sopenharmony_ci            optimized = GL_TRUE;
704bf215546Sopenharmony_ci            /* rotate only around z-axis */
705bf215546Sopenharmony_ci            M(0,0) = c;
706bf215546Sopenharmony_ci            M(1,1) = c;
707bf215546Sopenharmony_ci            if (z < 0.0F) {
708bf215546Sopenharmony_ci               M(0,1) = s;
709bf215546Sopenharmony_ci               M(1,0) = -s;
710bf215546Sopenharmony_ci            }
711bf215546Sopenharmony_ci            else {
712bf215546Sopenharmony_ci               M(0,1) = -s;
713bf215546Sopenharmony_ci               M(1,0) = s;
714bf215546Sopenharmony_ci            }
715bf215546Sopenharmony_ci         }
716bf215546Sopenharmony_ci      }
717bf215546Sopenharmony_ci      else if (z == 0.0F) {
718bf215546Sopenharmony_ci         optimized = GL_TRUE;
719bf215546Sopenharmony_ci         /* rotate only around y-axis */
720bf215546Sopenharmony_ci         M(0,0) = c;
721bf215546Sopenharmony_ci         M(2,2) = c;
722bf215546Sopenharmony_ci         if (y < 0.0F) {
723bf215546Sopenharmony_ci            M(0,2) = -s;
724bf215546Sopenharmony_ci            M(2,0) = s;
725bf215546Sopenharmony_ci         }
726bf215546Sopenharmony_ci         else {
727bf215546Sopenharmony_ci            M(0,2) = s;
728bf215546Sopenharmony_ci            M(2,0) = -s;
729bf215546Sopenharmony_ci         }
730bf215546Sopenharmony_ci      }
731bf215546Sopenharmony_ci   }
732bf215546Sopenharmony_ci   else if (y == 0.0F) {
733bf215546Sopenharmony_ci      if (z == 0.0F) {
734bf215546Sopenharmony_ci         optimized = GL_TRUE;
735bf215546Sopenharmony_ci         /* rotate only around x-axis */
736bf215546Sopenharmony_ci         M(1,1) = c;
737bf215546Sopenharmony_ci         M(2,2) = c;
738bf215546Sopenharmony_ci         if (x < 0.0F) {
739bf215546Sopenharmony_ci            M(1,2) = s;
740bf215546Sopenharmony_ci            M(2,1) = -s;
741bf215546Sopenharmony_ci         }
742bf215546Sopenharmony_ci         else {
743bf215546Sopenharmony_ci            M(1,2) = -s;
744bf215546Sopenharmony_ci            M(2,1) = s;
745bf215546Sopenharmony_ci         }
746bf215546Sopenharmony_ci      }
747bf215546Sopenharmony_ci   }
748bf215546Sopenharmony_ci
749bf215546Sopenharmony_ci   if (!optimized) {
750bf215546Sopenharmony_ci      const GLfloat mag = sqrtf(x * x + y * y + z * z);
751bf215546Sopenharmony_ci
752bf215546Sopenharmony_ci      if (mag <= 1.0e-4F) {
753bf215546Sopenharmony_ci         /* no rotation, leave mat as-is */
754bf215546Sopenharmony_ci         return;
755bf215546Sopenharmony_ci      }
756bf215546Sopenharmony_ci
757bf215546Sopenharmony_ci      x /= mag;
758bf215546Sopenharmony_ci      y /= mag;
759bf215546Sopenharmony_ci      z /= mag;
760bf215546Sopenharmony_ci
761bf215546Sopenharmony_ci
762bf215546Sopenharmony_ci      /*
763bf215546Sopenharmony_ci       *     Arbitrary axis rotation matrix.
764bf215546Sopenharmony_ci       *
765bf215546Sopenharmony_ci       *  This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
766bf215546Sopenharmony_ci       *  like so:  Rz * Ry * T * Ry' * Rz'.  T is the final rotation
767bf215546Sopenharmony_ci       *  (which is about the X-axis), and the two composite transforms
768bf215546Sopenharmony_ci       *  Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
769bf215546Sopenharmony_ci       *  from the arbitrary axis to the X-axis then back.  They are
770bf215546Sopenharmony_ci       *  all elementary rotations.
771bf215546Sopenharmony_ci       *
772bf215546Sopenharmony_ci       *  Rz' is a rotation about the Z-axis, to bring the axis vector
773bf215546Sopenharmony_ci       *  into the x-z plane.  Then Ry' is applied, rotating about the
774bf215546Sopenharmony_ci       *  Y-axis to bring the axis vector parallel with the X-axis.  The
775bf215546Sopenharmony_ci       *  rotation about the X-axis is then performed.  Ry and Rz are
776bf215546Sopenharmony_ci       *  simply the respective inverse transforms to bring the arbitrary
777bf215546Sopenharmony_ci       *  axis back to its original orientation.  The first transforms
778bf215546Sopenharmony_ci       *  Rz' and Ry' are considered inverses, since the data from the
779bf215546Sopenharmony_ci       *  arbitrary axis gives you info on how to get to it, not how
780bf215546Sopenharmony_ci       *  to get away from it, and an inverse must be applied.
781bf215546Sopenharmony_ci       *
782bf215546Sopenharmony_ci       *  The basic calculation used is to recognize that the arbitrary
783bf215546Sopenharmony_ci       *  axis vector (x, y, z), since it is of unit length, actually
784bf215546Sopenharmony_ci       *  represents the sines and cosines of the angles to rotate the
785bf215546Sopenharmony_ci       *  X-axis to the same orientation, with theta being the angle about
786bf215546Sopenharmony_ci       *  Z and phi the angle about Y (in the order described above)
787bf215546Sopenharmony_ci       *  as follows:
788bf215546Sopenharmony_ci       *
789bf215546Sopenharmony_ci       *  cos ( theta ) = x / sqrt ( 1 - z^2 )
790bf215546Sopenharmony_ci       *  sin ( theta ) = y / sqrt ( 1 - z^2 )
791bf215546Sopenharmony_ci       *
792bf215546Sopenharmony_ci       *  cos ( phi ) = sqrt ( 1 - z^2 )
793bf215546Sopenharmony_ci       *  sin ( phi ) = z
794bf215546Sopenharmony_ci       *
795bf215546Sopenharmony_ci       *  Note that cos ( phi ) can further be inserted to the above
796bf215546Sopenharmony_ci       *  formulas:
797bf215546Sopenharmony_ci       *
798bf215546Sopenharmony_ci       *  cos ( theta ) = x / cos ( phi )
799bf215546Sopenharmony_ci       *  sin ( theta ) = y / sin ( phi )
800bf215546Sopenharmony_ci       *
801bf215546Sopenharmony_ci       *  ...etc.  Because of those relations and the standard trigonometric
802bf215546Sopenharmony_ci       *  relations, it is pssible to reduce the transforms down to what
803bf215546Sopenharmony_ci       *  is used below.  It may be that any primary axis chosen will give the
804bf215546Sopenharmony_ci       *  same results (modulo a sign convention) using thie method.
805bf215546Sopenharmony_ci       *
806bf215546Sopenharmony_ci       *  Particularly nice is to notice that all divisions that might
807bf215546Sopenharmony_ci       *  have caused trouble when parallel to certain planes or
808bf215546Sopenharmony_ci       *  axis go away with care paid to reducing the expressions.
809bf215546Sopenharmony_ci       *  After checking, it does perform correctly under all cases, since
810bf215546Sopenharmony_ci       *  in all the cases of division where the denominator would have
811bf215546Sopenharmony_ci       *  been zero, the numerator would have been zero as well, giving
812bf215546Sopenharmony_ci       *  the expected result.
813bf215546Sopenharmony_ci       */
814bf215546Sopenharmony_ci
815bf215546Sopenharmony_ci      xx = x * x;
816bf215546Sopenharmony_ci      yy = y * y;
817bf215546Sopenharmony_ci      zz = z * z;
818bf215546Sopenharmony_ci      xy = x * y;
819bf215546Sopenharmony_ci      yz = y * z;
820bf215546Sopenharmony_ci      zx = z * x;
821bf215546Sopenharmony_ci      xs = x * s;
822bf215546Sopenharmony_ci      ys = y * s;
823bf215546Sopenharmony_ci      zs = z * s;
824bf215546Sopenharmony_ci      one_c = 1.0F - c;
825bf215546Sopenharmony_ci
826bf215546Sopenharmony_ci      /* We already hold the identity-matrix so we can skip some statements */
827bf215546Sopenharmony_ci      M(0,0) = (one_c * xx) + c;
828bf215546Sopenharmony_ci      M(0,1) = (one_c * xy) - zs;
829bf215546Sopenharmony_ci      M(0,2) = (one_c * zx) + ys;
830bf215546Sopenharmony_ci/*    M(0,3) = 0.0F; */
831bf215546Sopenharmony_ci
832bf215546Sopenharmony_ci      M(1,0) = (one_c * xy) + zs;
833bf215546Sopenharmony_ci      M(1,1) = (one_c * yy) + c;
834bf215546Sopenharmony_ci      M(1,2) = (one_c * yz) - xs;
835bf215546Sopenharmony_ci/*    M(1,3) = 0.0F; */
836bf215546Sopenharmony_ci
837bf215546Sopenharmony_ci      M(2,0) = (one_c * zx) - ys;
838bf215546Sopenharmony_ci      M(2,1) = (one_c * yz) + xs;
839bf215546Sopenharmony_ci      M(2,2) = (one_c * zz) + c;
840bf215546Sopenharmony_ci/*    M(2,3) = 0.0F; */
841bf215546Sopenharmony_ci
842bf215546Sopenharmony_ci/*
843bf215546Sopenharmony_ci      M(3,0) = 0.0F;
844bf215546Sopenharmony_ci      M(3,1) = 0.0F;
845bf215546Sopenharmony_ci      M(3,2) = 0.0F;
846bf215546Sopenharmony_ci      M(3,3) = 1.0F;
847bf215546Sopenharmony_ci*/
848bf215546Sopenharmony_ci   }
849bf215546Sopenharmony_ci#undef M
850bf215546Sopenharmony_ci
851bf215546Sopenharmony_ci   matrix_multf( mat, m, MAT_FLAG_ROTATION );
852bf215546Sopenharmony_ci}
853bf215546Sopenharmony_ci
854bf215546Sopenharmony_ci/**
855bf215546Sopenharmony_ci * Apply a perspective projection matrix.
856bf215546Sopenharmony_ci *
857bf215546Sopenharmony_ci * \param mat matrix to apply the projection.
858bf215546Sopenharmony_ci * \param left left clipping plane coordinate.
859bf215546Sopenharmony_ci * \param right right clipping plane coordinate.
860bf215546Sopenharmony_ci * \param bottom bottom clipping plane coordinate.
861bf215546Sopenharmony_ci * \param top top clipping plane coordinate.
862bf215546Sopenharmony_ci * \param nearval distance to the near clipping plane.
863bf215546Sopenharmony_ci * \param farval distance to the far clipping plane.
864bf215546Sopenharmony_ci *
865bf215546Sopenharmony_ci * Creates the projection matrix and multiplies it with \p mat, marking the
866bf215546Sopenharmony_ci * MAT_FLAG_PERSPECTIVE flag.
867bf215546Sopenharmony_ci */
868bf215546Sopenharmony_civoid
869bf215546Sopenharmony_ci_math_matrix_frustum( GLmatrix *mat,
870bf215546Sopenharmony_ci		      GLfloat left, GLfloat right,
871bf215546Sopenharmony_ci		      GLfloat bottom, GLfloat top,
872bf215546Sopenharmony_ci		      GLfloat nearval, GLfloat farval )
873bf215546Sopenharmony_ci{
874bf215546Sopenharmony_ci   GLfloat x, y, a, b, c, d;
875bf215546Sopenharmony_ci   GLfloat m[16];
876bf215546Sopenharmony_ci
877bf215546Sopenharmony_ci   x = (2.0F*nearval) / (right-left);
878bf215546Sopenharmony_ci   y = (2.0F*nearval) / (top-bottom);
879bf215546Sopenharmony_ci   a = (right+left) / (right-left);
880bf215546Sopenharmony_ci   b = (top+bottom) / (top-bottom);
881bf215546Sopenharmony_ci   c = -(farval+nearval) / ( farval-nearval);
882bf215546Sopenharmony_ci   d = -(2.0F*farval*nearval) / (farval-nearval);  /* error? */
883bf215546Sopenharmony_ci
884bf215546Sopenharmony_ci#define M(row,col)  m[col*4+row]
885bf215546Sopenharmony_ci   M(0,0) = x;     M(0,1) = 0.0F;  M(0,2) = a;      M(0,3) = 0.0F;
886bf215546Sopenharmony_ci   M(1,0) = 0.0F;  M(1,1) = y;     M(1,2) = b;      M(1,3) = 0.0F;
887bf215546Sopenharmony_ci   M(2,0) = 0.0F;  M(2,1) = 0.0F;  M(2,2) = c;      M(2,3) = d;
888bf215546Sopenharmony_ci   M(3,0) = 0.0F;  M(3,1) = 0.0F;  M(3,2) = -1.0F;  M(3,3) = 0.0F;
889bf215546Sopenharmony_ci#undef M
890bf215546Sopenharmony_ci
891bf215546Sopenharmony_ci   matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
892bf215546Sopenharmony_ci}
893bf215546Sopenharmony_ci
894bf215546Sopenharmony_ci/**
895bf215546Sopenharmony_ci * Create an orthographic projection matrix.
896bf215546Sopenharmony_ci *
897bf215546Sopenharmony_ci * \param m float array in which to store the project matrix
898bf215546Sopenharmony_ci * \param left left clipping plane coordinate.
899bf215546Sopenharmony_ci * \param right right clipping plane coordinate.
900bf215546Sopenharmony_ci * \param bottom bottom clipping plane coordinate.
901bf215546Sopenharmony_ci * \param top top clipping plane coordinate.
902bf215546Sopenharmony_ci * \param nearval distance to the near clipping plane.
903bf215546Sopenharmony_ci * \param farval distance to the far clipping plane.
904bf215546Sopenharmony_ci *
905bf215546Sopenharmony_ci * Creates the projection matrix and stored the values in \p m.  As with other
906bf215546Sopenharmony_ci * OpenGL matrices, the data is stored in column-major ordering.
907bf215546Sopenharmony_ci */
908bf215546Sopenharmony_civoid
909bf215546Sopenharmony_ci_math_float_ortho(float *m,
910bf215546Sopenharmony_ci                  float left, float right,
911bf215546Sopenharmony_ci                  float bottom, float top,
912bf215546Sopenharmony_ci                  float nearval, float farval)
913bf215546Sopenharmony_ci{
914bf215546Sopenharmony_ci#define M(row,col)  m[col*4+row]
915bf215546Sopenharmony_ci   M(0,0) = 2.0F / (right-left);
916bf215546Sopenharmony_ci   M(0,1) = 0.0F;
917bf215546Sopenharmony_ci   M(0,2) = 0.0F;
918bf215546Sopenharmony_ci   M(0,3) = -(right+left) / (right-left);
919bf215546Sopenharmony_ci
920bf215546Sopenharmony_ci   M(1,0) = 0.0F;
921bf215546Sopenharmony_ci   M(1,1) = 2.0F / (top-bottom);
922bf215546Sopenharmony_ci   M(1,2) = 0.0F;
923bf215546Sopenharmony_ci   M(1,3) = -(top+bottom) / (top-bottom);
924bf215546Sopenharmony_ci
925bf215546Sopenharmony_ci   M(2,0) = 0.0F;
926bf215546Sopenharmony_ci   M(2,1) = 0.0F;
927bf215546Sopenharmony_ci   M(2,2) = -2.0F / (farval-nearval);
928bf215546Sopenharmony_ci   M(2,3) = -(farval+nearval) / (farval-nearval);
929bf215546Sopenharmony_ci
930bf215546Sopenharmony_ci   M(3,0) = 0.0F;
931bf215546Sopenharmony_ci   M(3,1) = 0.0F;
932bf215546Sopenharmony_ci   M(3,2) = 0.0F;
933bf215546Sopenharmony_ci   M(3,3) = 1.0F;
934bf215546Sopenharmony_ci#undef M
935bf215546Sopenharmony_ci}
936bf215546Sopenharmony_ci
937bf215546Sopenharmony_ci/**
938bf215546Sopenharmony_ci * Apply an orthographic projection matrix.
939bf215546Sopenharmony_ci *
940bf215546Sopenharmony_ci * \param mat matrix to apply the projection.
941bf215546Sopenharmony_ci * \param left left clipping plane coordinate.
942bf215546Sopenharmony_ci * \param right right clipping plane coordinate.
943bf215546Sopenharmony_ci * \param bottom bottom clipping plane coordinate.
944bf215546Sopenharmony_ci * \param top top clipping plane coordinate.
945bf215546Sopenharmony_ci * \param nearval distance to the near clipping plane.
946bf215546Sopenharmony_ci * \param farval distance to the far clipping plane.
947bf215546Sopenharmony_ci *
948bf215546Sopenharmony_ci * Creates the projection matrix and multiplies it with \p mat, marking the
949bf215546Sopenharmony_ci * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
950bf215546Sopenharmony_ci */
951bf215546Sopenharmony_civoid
952bf215546Sopenharmony_ci_math_matrix_ortho( GLmatrix *mat,
953bf215546Sopenharmony_ci		    GLfloat left, GLfloat right,
954bf215546Sopenharmony_ci		    GLfloat bottom, GLfloat top,
955bf215546Sopenharmony_ci		    GLfloat nearval, GLfloat farval )
956bf215546Sopenharmony_ci{
957bf215546Sopenharmony_ci   GLfloat m[16];
958bf215546Sopenharmony_ci
959bf215546Sopenharmony_ci   _math_float_ortho(m, left, right, bottom, top, nearval, farval);
960bf215546Sopenharmony_ci   matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
961bf215546Sopenharmony_ci}
962bf215546Sopenharmony_ci
963bf215546Sopenharmony_ci/**
964bf215546Sopenharmony_ci * Multiply a matrix with a general scaling matrix.
965bf215546Sopenharmony_ci *
966bf215546Sopenharmony_ci * \param mat matrix.
967bf215546Sopenharmony_ci * \param x x axis scale factor.
968bf215546Sopenharmony_ci * \param y y axis scale factor.
969bf215546Sopenharmony_ci * \param z z axis scale factor.
970bf215546Sopenharmony_ci *
971bf215546Sopenharmony_ci * Multiplies in-place the elements of \p mat by the scale factors. Checks if
972bf215546Sopenharmony_ci * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
973bf215546Sopenharmony_ci * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
974bf215546Sopenharmony_ci * MAT_DIRTY_INVERSE dirty flags.
975bf215546Sopenharmony_ci */
976bf215546Sopenharmony_civoid
977bf215546Sopenharmony_ci_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
978bf215546Sopenharmony_ci{
979bf215546Sopenharmony_ci   GLfloat *m = mat->m;
980bf215546Sopenharmony_ci   m[0] *= x;   m[4] *= y;   m[8]  *= z;
981bf215546Sopenharmony_ci   m[1] *= x;   m[5] *= y;   m[9]  *= z;
982bf215546Sopenharmony_ci   m[2] *= x;   m[6] *= y;   m[10] *= z;
983bf215546Sopenharmony_ci   m[3] *= x;   m[7] *= y;   m[11] *= z;
984bf215546Sopenharmony_ci
985bf215546Sopenharmony_ci   if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
986bf215546Sopenharmony_ci      mat->flags |= MAT_FLAG_UNIFORM_SCALE;
987bf215546Sopenharmony_ci   else
988bf215546Sopenharmony_ci      mat->flags |= MAT_FLAG_GENERAL_SCALE;
989bf215546Sopenharmony_ci
990bf215546Sopenharmony_ci   mat->flags |= (MAT_DIRTY_TYPE |
991bf215546Sopenharmony_ci		  MAT_DIRTY_INVERSE);
992bf215546Sopenharmony_ci}
993bf215546Sopenharmony_ci
994bf215546Sopenharmony_ci/**
995bf215546Sopenharmony_ci * Multiply a matrix with a translation matrix.
996bf215546Sopenharmony_ci *
997bf215546Sopenharmony_ci * \param mat matrix.
998bf215546Sopenharmony_ci * \param x translation vector x coordinate.
999bf215546Sopenharmony_ci * \param y translation vector y coordinate.
1000bf215546Sopenharmony_ci * \param z translation vector z coordinate.
1001bf215546Sopenharmony_ci *
1002bf215546Sopenharmony_ci * Adds the translation coordinates to the elements of \p mat in-place.  Marks
1003bf215546Sopenharmony_ci * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1004bf215546Sopenharmony_ci * dirty flags.
1005bf215546Sopenharmony_ci */
1006bf215546Sopenharmony_civoid
1007bf215546Sopenharmony_ci_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1008bf215546Sopenharmony_ci{
1009bf215546Sopenharmony_ci   GLfloat *m = mat->m;
1010bf215546Sopenharmony_ci   m[12] = m[0] * x + m[4] * y + m[8]  * z + m[12];
1011bf215546Sopenharmony_ci   m[13] = m[1] * x + m[5] * y + m[9]  * z + m[13];
1012bf215546Sopenharmony_ci   m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1013bf215546Sopenharmony_ci   m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1014bf215546Sopenharmony_ci
1015bf215546Sopenharmony_ci   mat->flags |= (MAT_FLAG_TRANSLATION |
1016bf215546Sopenharmony_ci		  MAT_DIRTY_TYPE |
1017bf215546Sopenharmony_ci		  MAT_DIRTY_INVERSE);
1018bf215546Sopenharmony_ci}
1019bf215546Sopenharmony_ci
1020bf215546Sopenharmony_ci
1021bf215546Sopenharmony_ci/**
1022bf215546Sopenharmony_ci * Set matrix to do viewport and depthrange mapping.
1023bf215546Sopenharmony_ci * Transforms Normalized Device Coords to window/Z values.
1024bf215546Sopenharmony_ci */
1025bf215546Sopenharmony_civoid
1026bf215546Sopenharmony_ci_math_matrix_viewport(GLmatrix *m, const float scale[3],
1027bf215546Sopenharmony_ci                      const float translate[3], double depthMax)
1028bf215546Sopenharmony_ci{
1029bf215546Sopenharmony_ci   m->m[MAT_SX] = scale[0];
1030bf215546Sopenharmony_ci   m->m[MAT_TX] = translate[0];
1031bf215546Sopenharmony_ci   m->m[MAT_SY] = scale[1];
1032bf215546Sopenharmony_ci   m->m[MAT_TY] = translate[1];
1033bf215546Sopenharmony_ci   m->m[MAT_SZ] = depthMax*scale[2];
1034bf215546Sopenharmony_ci   m->m[MAT_TZ] = depthMax*translate[2];
1035bf215546Sopenharmony_ci   m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1036bf215546Sopenharmony_ci   m->type = MATRIX_3D_NO_ROT;
1037bf215546Sopenharmony_ci}
1038bf215546Sopenharmony_ci
1039bf215546Sopenharmony_ci
1040bf215546Sopenharmony_ci/**
1041bf215546Sopenharmony_ci * Set a matrix to the identity matrix.
1042bf215546Sopenharmony_ci *
1043bf215546Sopenharmony_ci * \param mat matrix.
1044bf215546Sopenharmony_ci *
1045bf215546Sopenharmony_ci * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1046bf215546Sopenharmony_ci * Sets the matrix type to identity, and clear the dirty flags.
1047bf215546Sopenharmony_ci */
1048bf215546Sopenharmony_civoid
1049bf215546Sopenharmony_ci_math_matrix_set_identity( GLmatrix *mat )
1050bf215546Sopenharmony_ci{
1051bf215546Sopenharmony_ci   STATIC_ASSERT(MATRIX_M == offsetof(GLmatrix, m));
1052bf215546Sopenharmony_ci   STATIC_ASSERT(MATRIX_INV == offsetof(GLmatrix, inv));
1053bf215546Sopenharmony_ci
1054bf215546Sopenharmony_ci   memcpy( mat->m, Identity, sizeof(Identity) );
1055bf215546Sopenharmony_ci   memcpy( mat->inv, Identity, sizeof(Identity) );
1056bf215546Sopenharmony_ci
1057bf215546Sopenharmony_ci   mat->type = MATRIX_IDENTITY;
1058bf215546Sopenharmony_ci   mat->flags &= ~(MAT_DIRTY_FLAGS|
1059bf215546Sopenharmony_ci		   MAT_DIRTY_TYPE|
1060bf215546Sopenharmony_ci		   MAT_DIRTY_INVERSE);
1061bf215546Sopenharmony_ci}
1062bf215546Sopenharmony_ci
1063bf215546Sopenharmony_ci/*@}*/
1064bf215546Sopenharmony_ci
1065bf215546Sopenharmony_ci
1066bf215546Sopenharmony_ci/**********************************************************************/
1067bf215546Sopenharmony_ci/** \name Matrix analysis */
1068bf215546Sopenharmony_ci/*@{*/
1069bf215546Sopenharmony_ci
1070bf215546Sopenharmony_ci#define ZERO(x) (1<<x)
1071bf215546Sopenharmony_ci#define ONE(x)  (1<<(x+16))
1072bf215546Sopenharmony_ci
1073bf215546Sopenharmony_ci#define MASK_NO_TRX      (ZERO(12) | ZERO(13) | ZERO(14))
1074bf215546Sopenharmony_ci#define MASK_NO_2D_SCALE ( ONE(0)  | ONE(5))
1075bf215546Sopenharmony_ci
1076bf215546Sopenharmony_ci#define MASK_IDENTITY    ( ONE(0)  | ZERO(4)  | ZERO(8)  | ZERO(12) |\
1077bf215546Sopenharmony_ci			  ZERO(1)  |  ONE(5)  | ZERO(9)  | ZERO(13) |\
1078bf215546Sopenharmony_ci			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1079bf215546Sopenharmony_ci			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1080bf215546Sopenharmony_ci
1081bf215546Sopenharmony_ci#define MASK_2D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1082bf215546Sopenharmony_ci			  ZERO(1)  |            ZERO(9)  |           \
1083bf215546Sopenharmony_ci			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1084bf215546Sopenharmony_ci			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1085bf215546Sopenharmony_ci
1086bf215546Sopenharmony_ci#define MASK_2D          (                      ZERO(8)  |           \
1087bf215546Sopenharmony_ci			                        ZERO(9)  |           \
1088bf215546Sopenharmony_ci			  ZERO(2)  | ZERO(6)  |  ONE(10) | ZERO(14) |\
1089bf215546Sopenharmony_ci			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1090bf215546Sopenharmony_ci
1091bf215546Sopenharmony_ci
1092bf215546Sopenharmony_ci#define MASK_3D_NO_ROT   (           ZERO(4)  | ZERO(8)  |           \
1093bf215546Sopenharmony_ci			  ZERO(1)  |            ZERO(9)  |           \
1094bf215546Sopenharmony_ci			  ZERO(2)  | ZERO(6)  |                      \
1095bf215546Sopenharmony_ci			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1096bf215546Sopenharmony_ci
1097bf215546Sopenharmony_ci#define MASK_3D          (                                           \
1098bf215546Sopenharmony_ci			                                             \
1099bf215546Sopenharmony_ci			                                             \
1100bf215546Sopenharmony_ci			  ZERO(3)  | ZERO(7)  | ZERO(11) |  ONE(15) )
1101bf215546Sopenharmony_ci
1102bf215546Sopenharmony_ci
1103bf215546Sopenharmony_ci#define MASK_PERSPECTIVE (           ZERO(4)  |            ZERO(12) |\
1104bf215546Sopenharmony_ci			  ZERO(1)  |                       ZERO(13) |\
1105bf215546Sopenharmony_ci			  ZERO(2)  | ZERO(6)  |                      \
1106bf215546Sopenharmony_ci			  ZERO(3)  | ZERO(7)  |            ZERO(15) )
1107bf215546Sopenharmony_ci
1108bf215546Sopenharmony_ci#define SQ(x) ((x)*(x))
1109bf215546Sopenharmony_ci
1110bf215546Sopenharmony_ci/**
1111bf215546Sopenharmony_ci * Determine type and flags from scratch.
1112bf215546Sopenharmony_ci *
1113bf215546Sopenharmony_ci * \param mat matrix.
1114bf215546Sopenharmony_ci *
1115bf215546Sopenharmony_ci * This is expensive enough to only want to do it once.
1116bf215546Sopenharmony_ci */
1117bf215546Sopenharmony_cistatic void analyse_from_scratch( GLmatrix *mat )
1118bf215546Sopenharmony_ci{
1119bf215546Sopenharmony_ci   const GLfloat *m = mat->m;
1120bf215546Sopenharmony_ci   GLuint mask = 0;
1121bf215546Sopenharmony_ci   GLuint i;
1122bf215546Sopenharmony_ci
1123bf215546Sopenharmony_ci   for (i = 0 ; i < 16 ; i++) {
1124bf215546Sopenharmony_ci      if (m[i] == 0.0F) mask |= (1<<i);
1125bf215546Sopenharmony_ci   }
1126bf215546Sopenharmony_ci
1127bf215546Sopenharmony_ci   if (m[0] == 1.0F) mask |= (1<<16);
1128bf215546Sopenharmony_ci   if (m[5] == 1.0F) mask |= (1<<21);
1129bf215546Sopenharmony_ci   if (m[10] == 1.0F) mask |= (1<<26);
1130bf215546Sopenharmony_ci   if (m[15] == 1.0F) mask |= (1<<31);
1131bf215546Sopenharmony_ci
1132bf215546Sopenharmony_ci   mat->flags &= ~MAT_FLAGS_GEOMETRY;
1133bf215546Sopenharmony_ci
1134bf215546Sopenharmony_ci   /* Check for translation - no-one really cares
1135bf215546Sopenharmony_ci    */
1136bf215546Sopenharmony_ci   if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1137bf215546Sopenharmony_ci      mat->flags |= MAT_FLAG_TRANSLATION;
1138bf215546Sopenharmony_ci
1139bf215546Sopenharmony_ci   /* Do the real work
1140bf215546Sopenharmony_ci    */
1141bf215546Sopenharmony_ci   if (mask == (GLuint) MASK_IDENTITY) {
1142bf215546Sopenharmony_ci      mat->type = MATRIX_IDENTITY;
1143bf215546Sopenharmony_ci   }
1144bf215546Sopenharmony_ci   else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1145bf215546Sopenharmony_ci      mat->type = MATRIX_2D_NO_ROT;
1146bf215546Sopenharmony_ci
1147bf215546Sopenharmony_ci      if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1148bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1149bf215546Sopenharmony_ci   }
1150bf215546Sopenharmony_ci   else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1151bf215546Sopenharmony_ci      GLfloat mm = DOT2(m, m);
1152bf215546Sopenharmony_ci      GLfloat m4m4 = DOT2(m+4,m+4);
1153bf215546Sopenharmony_ci      GLfloat mm4 = DOT2(m,m+4);
1154bf215546Sopenharmony_ci
1155bf215546Sopenharmony_ci      mat->type = MATRIX_2D;
1156bf215546Sopenharmony_ci
1157bf215546Sopenharmony_ci      /* Check for scale */
1158bf215546Sopenharmony_ci      if (SQ(mm-1) > SQ(1e-6F) ||
1159bf215546Sopenharmony_ci	  SQ(m4m4-1) > SQ(1e-6F))
1160bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1161bf215546Sopenharmony_ci
1162bf215546Sopenharmony_ci      /* Check for rotation */
1163bf215546Sopenharmony_ci      if (SQ(mm4) > SQ(1e-6F))
1164bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_GENERAL_3D;
1165bf215546Sopenharmony_ci      else
1166bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_ROTATION;
1167bf215546Sopenharmony_ci
1168bf215546Sopenharmony_ci   }
1169bf215546Sopenharmony_ci   else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1170bf215546Sopenharmony_ci      mat->type = MATRIX_3D_NO_ROT;
1171bf215546Sopenharmony_ci
1172bf215546Sopenharmony_ci      /* Check for scale */
1173bf215546Sopenharmony_ci      if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1174bf215546Sopenharmony_ci	  SQ(m[0]-m[10]) < SQ(1e-6F)) {
1175bf215546Sopenharmony_ci	 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1176bf215546Sopenharmony_ci	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1177bf215546Sopenharmony_ci         }
1178bf215546Sopenharmony_ci      }
1179bf215546Sopenharmony_ci      else {
1180bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1181bf215546Sopenharmony_ci      }
1182bf215546Sopenharmony_ci   }
1183bf215546Sopenharmony_ci   else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1184bf215546Sopenharmony_ci      GLfloat c1 = DOT3(m,m);
1185bf215546Sopenharmony_ci      GLfloat c2 = DOT3(m+4,m+4);
1186bf215546Sopenharmony_ci      GLfloat c3 = DOT3(m+8,m+8);
1187bf215546Sopenharmony_ci      GLfloat d1 = DOT3(m, m+4);
1188bf215546Sopenharmony_ci      GLfloat cp[3];
1189bf215546Sopenharmony_ci
1190bf215546Sopenharmony_ci      mat->type = MATRIX_3D;
1191bf215546Sopenharmony_ci
1192bf215546Sopenharmony_ci      /* Check for scale */
1193bf215546Sopenharmony_ci      if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1194bf215546Sopenharmony_ci	 if (SQ(c1-1.0F) > SQ(1e-6F))
1195bf215546Sopenharmony_ci	    mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1196bf215546Sopenharmony_ci	 /* else no scale at all */
1197bf215546Sopenharmony_ci      }
1198bf215546Sopenharmony_ci      else {
1199bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1200bf215546Sopenharmony_ci      }
1201bf215546Sopenharmony_ci
1202bf215546Sopenharmony_ci      /* Check for rotation */
1203bf215546Sopenharmony_ci      if (SQ(d1) < SQ(1e-6F)) {
1204bf215546Sopenharmony_ci	 CROSS3( cp, m, m+4 );
1205bf215546Sopenharmony_ci	 SUB_3V( cp, cp, (m+8) );
1206bf215546Sopenharmony_ci	 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1207bf215546Sopenharmony_ci	    mat->flags |= MAT_FLAG_ROTATION;
1208bf215546Sopenharmony_ci	 else
1209bf215546Sopenharmony_ci	    mat->flags |= MAT_FLAG_GENERAL_3D;
1210bf215546Sopenharmony_ci      }
1211bf215546Sopenharmony_ci      else {
1212bf215546Sopenharmony_ci	 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1213bf215546Sopenharmony_ci      }
1214bf215546Sopenharmony_ci   }
1215bf215546Sopenharmony_ci   else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1216bf215546Sopenharmony_ci      mat->type = MATRIX_PERSPECTIVE;
1217bf215546Sopenharmony_ci      mat->flags |= MAT_FLAG_GENERAL;
1218bf215546Sopenharmony_ci   }
1219bf215546Sopenharmony_ci   else {
1220bf215546Sopenharmony_ci      mat->type = MATRIX_GENERAL;
1221bf215546Sopenharmony_ci      mat->flags |= MAT_FLAG_GENERAL;
1222bf215546Sopenharmony_ci   }
1223bf215546Sopenharmony_ci}
1224bf215546Sopenharmony_ci
1225bf215546Sopenharmony_ci/**
1226bf215546Sopenharmony_ci * Analyze a matrix given that its flags are accurate.
1227bf215546Sopenharmony_ci *
1228bf215546Sopenharmony_ci * This is the more common operation, hopefully.
1229bf215546Sopenharmony_ci */
1230bf215546Sopenharmony_cistatic void analyse_from_flags( GLmatrix *mat )
1231bf215546Sopenharmony_ci{
1232bf215546Sopenharmony_ci   const GLfloat *m = mat->m;
1233bf215546Sopenharmony_ci
1234bf215546Sopenharmony_ci   if (TEST_MAT_FLAGS(mat, 0)) {
1235bf215546Sopenharmony_ci      mat->type = MATRIX_IDENTITY;
1236bf215546Sopenharmony_ci   }
1237bf215546Sopenharmony_ci   else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1238bf215546Sopenharmony_ci				 MAT_FLAG_UNIFORM_SCALE |
1239bf215546Sopenharmony_ci				 MAT_FLAG_GENERAL_SCALE))) {
1240bf215546Sopenharmony_ci      if ( m[10]==1.0F && m[14]==0.0F ) {
1241bf215546Sopenharmony_ci	 mat->type = MATRIX_2D_NO_ROT;
1242bf215546Sopenharmony_ci      }
1243bf215546Sopenharmony_ci      else {
1244bf215546Sopenharmony_ci	 mat->type = MATRIX_3D_NO_ROT;
1245bf215546Sopenharmony_ci      }
1246bf215546Sopenharmony_ci   }
1247bf215546Sopenharmony_ci   else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1248bf215546Sopenharmony_ci      if (                                 m[ 8]==0.0F
1249bf215546Sopenharmony_ci            &&                             m[ 9]==0.0F
1250bf215546Sopenharmony_ci            && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1251bf215546Sopenharmony_ci	 mat->type = MATRIX_2D;
1252bf215546Sopenharmony_ci      }
1253bf215546Sopenharmony_ci      else {
1254bf215546Sopenharmony_ci	 mat->type = MATRIX_3D;
1255bf215546Sopenharmony_ci      }
1256bf215546Sopenharmony_ci   }
1257bf215546Sopenharmony_ci   else if (                 m[4]==0.0F                 && m[12]==0.0F
1258bf215546Sopenharmony_ci            && m[1]==0.0F                               && m[13]==0.0F
1259bf215546Sopenharmony_ci            && m[2]==0.0F && m[6]==0.0F
1260bf215546Sopenharmony_ci            && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1261bf215546Sopenharmony_ci      mat->type = MATRIX_PERSPECTIVE;
1262bf215546Sopenharmony_ci   }
1263bf215546Sopenharmony_ci   else {
1264bf215546Sopenharmony_ci      mat->type = MATRIX_GENERAL;
1265bf215546Sopenharmony_ci   }
1266bf215546Sopenharmony_ci}
1267bf215546Sopenharmony_ci
1268bf215546Sopenharmony_ci/**
1269bf215546Sopenharmony_ci * Analyze and update a matrix.
1270bf215546Sopenharmony_ci *
1271bf215546Sopenharmony_ci * \param mat matrix.
1272bf215546Sopenharmony_ci *
1273bf215546Sopenharmony_ci * If the matrix type is dirty then calls either analyse_from_scratch() or
1274bf215546Sopenharmony_ci * analyse_from_flags() to determine its type, according to whether the flags
1275bf215546Sopenharmony_ci * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1276bf215546Sopenharmony_ci * then calls matrix_invert(). Finally clears the dirty flags.
1277bf215546Sopenharmony_ci */
1278bf215546Sopenharmony_civoid
1279bf215546Sopenharmony_ci_math_matrix_analyse( GLmatrix *mat )
1280bf215546Sopenharmony_ci{
1281bf215546Sopenharmony_ci   if (mat->flags & MAT_DIRTY_TYPE) {
1282bf215546Sopenharmony_ci      if (mat->flags & MAT_DIRTY_FLAGS)
1283bf215546Sopenharmony_ci	 analyse_from_scratch( mat );
1284bf215546Sopenharmony_ci      else
1285bf215546Sopenharmony_ci	 analyse_from_flags( mat );
1286bf215546Sopenharmony_ci   }
1287bf215546Sopenharmony_ci
1288bf215546Sopenharmony_ci   if (mat->flags & MAT_DIRTY_INVERSE) {
1289bf215546Sopenharmony_ci      matrix_invert( mat );
1290bf215546Sopenharmony_ci      mat->flags &= ~MAT_DIRTY_INVERSE;
1291bf215546Sopenharmony_ci   }
1292bf215546Sopenharmony_ci
1293bf215546Sopenharmony_ci   mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1294bf215546Sopenharmony_ci}
1295bf215546Sopenharmony_ci
1296bf215546Sopenharmony_ci/*@}*/
1297bf215546Sopenharmony_ci
1298bf215546Sopenharmony_ci
1299bf215546Sopenharmony_ci/**
1300bf215546Sopenharmony_ci * Test if the given matrix preserves vector lengths.
1301bf215546Sopenharmony_ci */
1302bf215546Sopenharmony_ciGLboolean
1303bf215546Sopenharmony_ci_math_matrix_is_length_preserving( const GLmatrix *m )
1304bf215546Sopenharmony_ci{
1305bf215546Sopenharmony_ci   return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1306bf215546Sopenharmony_ci}
1307bf215546Sopenharmony_ci
1308bf215546Sopenharmony_ci
1309bf215546Sopenharmony_ci/**
1310bf215546Sopenharmony_ci * Test if the given matrix does any rotation.
1311bf215546Sopenharmony_ci * (or perhaps if the upper-left 3x3 is non-identity)
1312bf215546Sopenharmony_ci */
1313bf215546Sopenharmony_ciGLboolean
1314bf215546Sopenharmony_ci_math_matrix_has_rotation( const GLmatrix *m )
1315bf215546Sopenharmony_ci{
1316bf215546Sopenharmony_ci   if (m->flags & (MAT_FLAG_GENERAL |
1317bf215546Sopenharmony_ci                   MAT_FLAG_ROTATION |
1318bf215546Sopenharmony_ci                   MAT_FLAG_GENERAL_3D |
1319bf215546Sopenharmony_ci                   MAT_FLAG_PERSPECTIVE))
1320bf215546Sopenharmony_ci      return GL_TRUE;
1321bf215546Sopenharmony_ci   else
1322bf215546Sopenharmony_ci      return GL_FALSE;
1323bf215546Sopenharmony_ci}
1324bf215546Sopenharmony_ci
1325bf215546Sopenharmony_ci
1326bf215546Sopenharmony_ciGLboolean
1327bf215546Sopenharmony_ci_math_matrix_is_general_scale( const GLmatrix *m )
1328bf215546Sopenharmony_ci{
1329bf215546Sopenharmony_ci   return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1330bf215546Sopenharmony_ci}
1331bf215546Sopenharmony_ci
1332bf215546Sopenharmony_ci
1333bf215546Sopenharmony_ciGLboolean
1334bf215546Sopenharmony_ci_math_matrix_is_dirty( const GLmatrix *m )
1335bf215546Sopenharmony_ci{
1336bf215546Sopenharmony_ci   return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1337bf215546Sopenharmony_ci}
1338bf215546Sopenharmony_ci
1339bf215546Sopenharmony_ci
1340bf215546Sopenharmony_ci/**********************************************************************/
1341bf215546Sopenharmony_ci/** \name Matrix setup */
1342bf215546Sopenharmony_ci/*@{*/
1343bf215546Sopenharmony_ci
1344bf215546Sopenharmony_ci/**
1345bf215546Sopenharmony_ci * Copy a matrix.
1346bf215546Sopenharmony_ci *
1347bf215546Sopenharmony_ci * \param to destination matrix.
1348bf215546Sopenharmony_ci * \param from source matrix.
1349bf215546Sopenharmony_ci *
1350bf215546Sopenharmony_ci * Copies all fields in GLmatrix, creating an inverse array if necessary.
1351bf215546Sopenharmony_ci */
1352bf215546Sopenharmony_civoid
1353bf215546Sopenharmony_ci_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1354bf215546Sopenharmony_ci{
1355bf215546Sopenharmony_ci   memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1356bf215546Sopenharmony_ci   memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1357bf215546Sopenharmony_ci   to->flags = from->flags;
1358bf215546Sopenharmony_ci   to->type = from->type;
1359bf215546Sopenharmony_ci}
1360bf215546Sopenharmony_ci
1361bf215546Sopenharmony_ci/**
1362bf215546Sopenharmony_ci * Copy a matrix as part of glPushMatrix.
1363bf215546Sopenharmony_ci *
1364bf215546Sopenharmony_ci * The makes the source matrix canonical (inverse and flags are up-to-date),
1365bf215546Sopenharmony_ci * so that later glPopMatrix is evaluated as a no-op if there is no state
1366bf215546Sopenharmony_ci * change.
1367bf215546Sopenharmony_ci *
1368bf215546Sopenharmony_ci * It this wasn't done, a draw call would canonicalize the matrix, which
1369bf215546Sopenharmony_ci * would make it different from the pushed one and so glPopMatrix wouldn't be
1370bf215546Sopenharmony_ci * recognized as a no-op.
1371bf215546Sopenharmony_ci */
1372bf215546Sopenharmony_civoid
1373bf215546Sopenharmony_ci_math_matrix_push_copy(GLmatrix *to, GLmatrix *from)
1374bf215546Sopenharmony_ci{
1375bf215546Sopenharmony_ci   if (from->flags & MAT_DIRTY)
1376bf215546Sopenharmony_ci      _math_matrix_analyse(from);
1377bf215546Sopenharmony_ci
1378bf215546Sopenharmony_ci   _math_matrix_copy(to, from);
1379bf215546Sopenharmony_ci}
1380bf215546Sopenharmony_ci
1381bf215546Sopenharmony_ci/**
1382bf215546Sopenharmony_ci * Loads a matrix array into GLmatrix.
1383bf215546Sopenharmony_ci *
1384bf215546Sopenharmony_ci * \param m matrix array.
1385bf215546Sopenharmony_ci * \param mat matrix.
1386bf215546Sopenharmony_ci *
1387bf215546Sopenharmony_ci * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1388bf215546Sopenharmony_ci * flags.
1389bf215546Sopenharmony_ci */
1390bf215546Sopenharmony_civoid
1391bf215546Sopenharmony_ci_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1392bf215546Sopenharmony_ci{
1393bf215546Sopenharmony_ci   memcpy( mat->m, m, 16*sizeof(GLfloat) );
1394bf215546Sopenharmony_ci   mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1395bf215546Sopenharmony_ci}
1396bf215546Sopenharmony_ci
1397bf215546Sopenharmony_ci/**
1398bf215546Sopenharmony_ci * Matrix constructor.
1399bf215546Sopenharmony_ci *
1400bf215546Sopenharmony_ci * \param m matrix.
1401bf215546Sopenharmony_ci *
1402bf215546Sopenharmony_ci * Initialize the GLmatrix fields.
1403bf215546Sopenharmony_ci */
1404bf215546Sopenharmony_civoid
1405bf215546Sopenharmony_ci_math_matrix_ctr( GLmatrix *m )
1406bf215546Sopenharmony_ci{
1407bf215546Sopenharmony_ci   memset(m, 0, sizeof(*m));
1408bf215546Sopenharmony_ci   memcpy( m->m, Identity, sizeof(Identity) );
1409bf215546Sopenharmony_ci   memcpy( m->inv, Identity, sizeof(Identity) );
1410bf215546Sopenharmony_ci   m->type = MATRIX_IDENTITY;
1411bf215546Sopenharmony_ci   m->flags = 0;
1412bf215546Sopenharmony_ci}
1413bf215546Sopenharmony_ci
1414bf215546Sopenharmony_ci/*@}*/
1415bf215546Sopenharmony_ci
1416bf215546Sopenharmony_ci
1417bf215546Sopenharmony_ci/**********************************************************************/
1418bf215546Sopenharmony_ci/** \name Matrix transpose */
1419bf215546Sopenharmony_ci/*@{*/
1420bf215546Sopenharmony_ci
1421bf215546Sopenharmony_ci/**
1422bf215546Sopenharmony_ci * Transpose a GLfloat matrix.
1423bf215546Sopenharmony_ci *
1424bf215546Sopenharmony_ci * \param to destination array.
1425bf215546Sopenharmony_ci * \param from source array.
1426bf215546Sopenharmony_ci */
1427bf215546Sopenharmony_civoid
1428bf215546Sopenharmony_ci_math_transposef( GLfloat to[16], const GLfloat from[16] )
1429bf215546Sopenharmony_ci{
1430bf215546Sopenharmony_ci   to[0] = from[0];
1431bf215546Sopenharmony_ci   to[1] = from[4];
1432bf215546Sopenharmony_ci   to[2] = from[8];
1433bf215546Sopenharmony_ci   to[3] = from[12];
1434bf215546Sopenharmony_ci   to[4] = from[1];
1435bf215546Sopenharmony_ci   to[5] = from[5];
1436bf215546Sopenharmony_ci   to[6] = from[9];
1437bf215546Sopenharmony_ci   to[7] = from[13];
1438bf215546Sopenharmony_ci   to[8] = from[2];
1439bf215546Sopenharmony_ci   to[9] = from[6];
1440bf215546Sopenharmony_ci   to[10] = from[10];
1441bf215546Sopenharmony_ci   to[11] = from[14];
1442bf215546Sopenharmony_ci   to[12] = from[3];
1443bf215546Sopenharmony_ci   to[13] = from[7];
1444bf215546Sopenharmony_ci   to[14] = from[11];
1445bf215546Sopenharmony_ci   to[15] = from[15];
1446bf215546Sopenharmony_ci}
1447bf215546Sopenharmony_ci
1448bf215546Sopenharmony_ci/**
1449bf215546Sopenharmony_ci * Transpose a GLdouble matrix.
1450bf215546Sopenharmony_ci *
1451bf215546Sopenharmony_ci * \param to destination array.
1452bf215546Sopenharmony_ci * \param from source array.
1453bf215546Sopenharmony_ci */
1454bf215546Sopenharmony_civoid
1455bf215546Sopenharmony_ci_math_transposed( GLdouble to[16], const GLdouble from[16] )
1456bf215546Sopenharmony_ci{
1457bf215546Sopenharmony_ci   to[0] = from[0];
1458bf215546Sopenharmony_ci   to[1] = from[4];
1459bf215546Sopenharmony_ci   to[2] = from[8];
1460bf215546Sopenharmony_ci   to[3] = from[12];
1461bf215546Sopenharmony_ci   to[4] = from[1];
1462bf215546Sopenharmony_ci   to[5] = from[5];
1463bf215546Sopenharmony_ci   to[6] = from[9];
1464bf215546Sopenharmony_ci   to[7] = from[13];
1465bf215546Sopenharmony_ci   to[8] = from[2];
1466bf215546Sopenharmony_ci   to[9] = from[6];
1467bf215546Sopenharmony_ci   to[10] = from[10];
1468bf215546Sopenharmony_ci   to[11] = from[14];
1469bf215546Sopenharmony_ci   to[12] = from[3];
1470bf215546Sopenharmony_ci   to[13] = from[7];
1471bf215546Sopenharmony_ci   to[14] = from[11];
1472bf215546Sopenharmony_ci   to[15] = from[15];
1473bf215546Sopenharmony_ci}
1474bf215546Sopenharmony_ci
1475bf215546Sopenharmony_ci/**
1476bf215546Sopenharmony_ci * Transpose a GLdouble matrix and convert to GLfloat.
1477bf215546Sopenharmony_ci *
1478bf215546Sopenharmony_ci * \param to destination array.
1479bf215546Sopenharmony_ci * \param from source array.
1480bf215546Sopenharmony_ci */
1481bf215546Sopenharmony_civoid
1482bf215546Sopenharmony_ci_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1483bf215546Sopenharmony_ci{
1484bf215546Sopenharmony_ci   to[0] = (GLfloat) from[0];
1485bf215546Sopenharmony_ci   to[1] = (GLfloat) from[4];
1486bf215546Sopenharmony_ci   to[2] = (GLfloat) from[8];
1487bf215546Sopenharmony_ci   to[3] = (GLfloat) from[12];
1488bf215546Sopenharmony_ci   to[4] = (GLfloat) from[1];
1489bf215546Sopenharmony_ci   to[5] = (GLfloat) from[5];
1490bf215546Sopenharmony_ci   to[6] = (GLfloat) from[9];
1491bf215546Sopenharmony_ci   to[7] = (GLfloat) from[13];
1492bf215546Sopenharmony_ci   to[8] = (GLfloat) from[2];
1493bf215546Sopenharmony_ci   to[9] = (GLfloat) from[6];
1494bf215546Sopenharmony_ci   to[10] = (GLfloat) from[10];
1495bf215546Sopenharmony_ci   to[11] = (GLfloat) from[14];
1496bf215546Sopenharmony_ci   to[12] = (GLfloat) from[3];
1497bf215546Sopenharmony_ci   to[13] = (GLfloat) from[7];
1498bf215546Sopenharmony_ci   to[14] = (GLfloat) from[11];
1499bf215546Sopenharmony_ci   to[15] = (GLfloat) from[15];
1500bf215546Sopenharmony_ci}
1501bf215546Sopenharmony_ci
1502bf215546Sopenharmony_ci/*@}*/
1503bf215546Sopenharmony_ci
1504bf215546Sopenharmony_ci
1505bf215546Sopenharmony_ci/**
1506bf215546Sopenharmony_ci * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix.  This
1507bf215546Sopenharmony_ci * function is used for transforming clipping plane equations and spotlight
1508bf215546Sopenharmony_ci * directions.
1509bf215546Sopenharmony_ci * Mathematically,  u = v * m.
1510bf215546Sopenharmony_ci * Input:  v - input vector
1511bf215546Sopenharmony_ci *         m - transformation matrix
1512bf215546Sopenharmony_ci * Output:  u - transformed vector
1513bf215546Sopenharmony_ci */
1514bf215546Sopenharmony_civoid
1515bf215546Sopenharmony_ci_mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1516bf215546Sopenharmony_ci{
1517bf215546Sopenharmony_ci   const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1518bf215546Sopenharmony_ci#define M(row,col)  m[row + col*4]
1519bf215546Sopenharmony_ci   u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1520bf215546Sopenharmony_ci   u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1521bf215546Sopenharmony_ci   u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1522bf215546Sopenharmony_ci   u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1523bf215546Sopenharmony_ci#undef M
1524bf215546Sopenharmony_ci}
1525